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ABSTRACT

Optimizing resource use in complex networks with self-interested
participants (e.g. transportation networks, electric grids, Internet
systems) is a challenging and increasingly critical real-world prob-
lem. We propose an approach for solving this problem based on
multi-agent nonlinear negotiation, and demonstrate it in the con-
text of Wi-Fi channel assignment. We compare the performance
of our proposed approaches with a complete information optimizer
based on particle swarms, together with the de facto heuristic tech-
nique based on using the least congested channel. We have evalu-
ated all these techniques in a wide range of settings, including ran-
domly generated scenarios and real-world ones. Our experiments
show that our approach outperforms the rest of techniques in terms
of social welfare. The particle swarm optimizer is the only tech-
nique whose performance is close to ours, but its computation cost
is much higher. Finally, we also study the effect of some graphs
metrics on the gain that our approach can achieve.
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1. INTRODUCTION

In the last years, complex networks have attracted a lot of inter-
est within the Al community, both due to the inherent challenge
of some network-structured optimization problems (e.g. to be NP-
hard) and due to the enormous potential for real-world applications
(many important real-world problems have network structure). An
important sub-class involves autonomous, self-interested entities
(e.g. drivers in a transportation network), which tend to cause the
network to deviate from socially-optimal behaviour.

Taking this into account, it is not surprising that problems which
combine a networked structure and self-interested parties have been
drawing attention from the Al community. Different fields of re-
search are working on the challenges these problems raise, but,
so far, with only mixed success. Optimization techniques are es-
pecially suited to address large-scale systems with an underlying
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network structure, usually with a “divide and conquer” approach.
However, their performance severely decreases as the complexity
of the system increases [24], and with the presence of autonomous
entities which deviate from the globally optimal solution, thus harm-
ing the social goal. Automated negotiation has proven to be valu-
able to support decision-making processes in scenarios where it is
necessary to find an agreement quickly and with conflicting inter-
ests involved [25]. Potential applications of automated negotiation
range from e-commerce [20] to task distribution problem solving,
resource sharing or cooperative design [27]. One of the most im-
portant advantages of automated negotiation is that it takes into ac-
count the conflict of interests from the beginning. This enables
finding more stable solutions (agreements) which make participat-
ing agents less prone to deviating from the socially optimal solution
to favour their privately optimal solution. Although there is signifi-
cant work on game theory and bargaining in complex networks, the
nonlinear negotiation community has made only few, very specific
incursions in complex networked problems [3].

Wi-Fi technology, based on the IEEE 802.11 standard family,
has become an omnipresent technology in our daily lives. The 2.4
GHz wireless frequency band is the most common band where Wi-
Fi operates, and is divided into 11 partially overlapped frequency
channels [22]. Due to the high number of Wi-Fi devices together
with many other technologies and devices that operate in the same
band we have to accurately choose the frequency channel where
an access point should operate in. The main purpose of this paper
is to explore the possibilities of using non-linear negotiation tech-
niques [19] to solve complex network problems involving self in-
terested parties like the problem of frequency assignment in Wi-Fi
infrastructure networks. In this setting, different Wi-Fi providers,
acting as agents, have to collectively decide how to distribute the
channels used by their access points in order to minimize interfer-
ence between nodes and thus maximize the utility (i.e. network
throughput) for their clients. This is a particularly interesting prob-
lem, since it belongs to the family of Frequency Assignment Prob-
lems (which has been extensively studied from the perspective of
discrete optimization) and it is strongly related to the prominent
mathematical graph coloring problem [28] and to distributed con-
straint optimization models [11].

More specifically, we want to test the hypotheses that our non-
linear negotiation approaches can be used as an efficient alternative
to centralized, generic optimization tools. This work contributes to
achieve this goal in the following ways:



e We model the problem of Wi-Fi channel assignment as a
graph coloring problem (Section 2).

We propose to solve this problem using nonlinear automated
negotiation techniques, and define the corresponding negoti-
ation scenario (Section 3).

We generate a large set of scenario instances for this prob-
lem including both random and real-world settings, and we
perform extensive experimentation on these sets of instances,
comparing our negotiation approaches to three different ref-
erence techniques: arandom channel assignment, the de facto
standard in Wi-Fi networks based on choosing the least con-
gested channel and a complete information nonlinear opti-
mizer based on particle swarms (Section 4).

The experimental results (Section 5) show that our benchmarked
negotiation approaches significantly outperform the reference ap-
proaches in both random scenarios and real-world settings in terms
of social welfare and fairness. Also, we identify interesting pat-
terns regarding the influence of graph properties such as the order,
the diameter or some well-known centrality metrics on the relative
performance of the approaches. The last section includes a sum-
mary of the paper, some concluding remark and briefly describes
possible future lines of research.

2. PROBLEM MODELLING
2.1 Graph modelling

Graphs are one of the most commonly used tools for modelling
frequency assignment problems, because of the relationship be-
tween them and the graph coloring problem, which has been widely
studied by the mathematical community [28]. In graph coloring, an
abstract graph is considered, defined by a set of vertices along with
some edges connecting them, and the goal is to assign one color to
each vertex, in such a manner that the minimum possible number
of colors should be used, while avoiding monochromatic edges. In
the commonly used model for frequency assignment, graph vertices
represent elements that should be assigned a frequency while edges
represent element pairs that should not be assigned the same fre-
quency. This way, colors act as frequencies and hetero-chromatic
edges guarantee element pairs with different frequencies. Although
widely used, Tragos et al. [5] conclude that the model is not accu-
rate enough, because it does not reflect all the information. For
instance, the authors suggest that the information regarding adja-
cent channel interferences should be incorporated into the graph.

To model the Wi-Fi channel assignment problem we propose to
use two different graphs. In both graphs, there two different types
of vertices: access points (APs) and wireless devices or clients
(WDs). Note that APs are typically wireless routers and WDs can
be laptops, smartphones... that are able to communicate with other
WDs only through the AP which they are associated to. The first
graph, called connectivity graph (G), captures the association links
between APs and WDs. Note that every WD is associated to its
closest AP, and that, since APs are the ones who set the channel
to be used by their associated clients, all nodes connected in graph
G will use the same channel (color) to communicate. The sec-
ond graph, called interference graph (/), links node pairs where
the distance between them is below the corresponding interference
radius R (that depends on the sensitivity of the receiver): AP—AP
pairs will be linked provided that the distance condition is met,
AP-WD pairs only when the device is not associated to that AP,
and WD-WD pairs only if both devices are associated to different
APs, since the communications among the elements connected to
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the same AP are coordinated and do not interfere. The next section
describes the interference model in more detail.

2.2 Interferences and utility of the solutions

The weight of the edges in graph I represents the interference
between the nodes they link and it can be computed, for a node
operating in channel ¢ and the other node operating in channel j (i
andj € {1,...,11}), as:

Ij:Pt+Gt+G7‘_L_Ploss"_W(i?j)—'_w’

where P; stands for the transmission power (in dBm), G; (G,)
stands for the transmission (reception) antenna gain (in dB) and L
stands for losses due to walls, windows and other obstacles in the
propagation (in dB). W (4, j), called the co-channel index, can be
understood as the interference between color ¢ and color j. This
index includes the interferences not only between adjacent colors
but also between colors in a certain distance range, to take into ac-
count the partial overlapping between frequency channels in Wi-Fi.
To model this effect, we have used the values obtained in [22]. On
the other side, v, called activity index, accounts for the fact that
a higher bandwidth data flow will occupy the wireless channel a
higher fraction of the time. Finally, P,,ss stands for propagation
losses (in dB) and has been computed according to [10], that de-
fines signal losses in the 2.4GHz frequency band as:

Pioss = 7.6 + 401log,q d — 201ogo(hihr),

where d is the distance between interfering nodes, in meters, and h;
(hy) is the transmission (reception) antenna height, also in meters.

Once there is a model for interfering signals, the signal to noise
ratio for terminal ¢ (SIN R;) can be computed as the ratio between
the received desired signal and the sum of the received undesired
interferences, i.e.

SINR; = L ,
1;

M
2=

being P the power of the desired signal and M the number of in-
terference signals (1) that are received.

Note that each AP will have a SIN R value for every terminal
that is associated to it. In that case, we will assume that its SIN R
will be the minimum of all of them, which is in fact the worst case.

To quantify the goodness of the different network colorings, we
consider that the utility of an AP is closely related to the perceived
throughput and SINR. According to [1], in a wireless network
the throughput equals a maximum value when the SIN R is over
a certain value SIN Ry, and monotonically decreases with the
reduction of SIN R until an insufficient value of SIN R, called
SIN Rpin, is reached, when the throughput falls to zero. We
can consider the utility perceived by node ¢ (U;) as a normalized
throughput, so it can be defined as a value ranging from O to 1,
with 0 corresponding to the situations when there is a very low-
quality reception and the devices cannot keep connected (through-
put equals to zero), and 1 corresponding to the case when the sig-
nal quality is excellent (throughput equals to its maximum value).
Threshold values for STN R have been defined from the values pre-
sented in [9]. Finally, the utility value for a specific provider P;
(Up,) is computed as the sum of the utility values for all its APs
and the clients associated to these APs.

With the aforementioned description, we can formally formulate
the problem as follows. Given a geometric graph G, together with
a spectrum of k& = 11 colors (channels) endowed with a k X k
matrix W of interferences between them, the goal is to determine
a k-coloring c for the AP-vertices of GG such that the sum of utility
values for all the nodes in the graph (APs and WDs) is maximized,



i.e., achieving the maximum

max

Z U;(G,W,c) | cisacoloring of V(G) 5,
i€V (@)

where V' (G) denotes the set of vertices of G and U; (G, W, ¢) de-
notes the utility for the vertex 4 of graph G under the coloring c, for
a spectrum matrix W.

3. AUTOMATED NEGOTIATION
TECHNIQUES FOR CHANNEL
SELECTION

In this work, we propose to tackle the network-structured chan-
nel assignment problem in Wi-Fi using automated negotiation tech-
niques. Automated negotiation is quite a wide field [6] but most
authors agree that a negotiation problem can be characterized by a
negotiation domain (who negotiates and what they negotiate about),
an interaction protocol (which rules govern the negotiation pro-
cess), and a set of decision mechanisms or strategies that guide
the negotiating agents through every phase of the interaction proto-
col [7]. In the following we define our particular negotiation prob-
lem along these three dimensions.

3.1 Negotiation Domain

For the scope of this work, we assume a multiattribute negoti-
ation domain, where a deal or solution to the problem is defined
as the set of attributes (issues), and each one of them can be in
a certain range. In our case, for a channel assignment problem
with nap access points, a solution or deal S can be expressed as
S ={sili € 1,...,nap}, where s; € {1,...,11} represents the
assignation of a Wi-Fi channel to the i-th access point.

In this work, we assume that there are different network providers
or agents (commonly Internet Service Providers, ISPs), thus APs
belong to one of the agents. Each provider only has control over
the channel assignment for its own access points. According to
this situation, the agents will negotiate the channel assignment. Fi-
nally, each one of these agents will compute its utility for a certain
solution according to the model described in the previous section.
The problem settings (high cardinality of the solution space and at-
tribute interdependence) will make the utility functions highly com-
plex, with multiple local optima.

3.2 Interaction Protocol

There are many interaction protocols for negotiations in the lit-
erature, from the classical alternating offers model [26] to auction-
based protocols [12]. From the assumption that the negotiation
scenarios coming from Wi-Fi channel assignment will be highly
nonlinear, and according to the discussion in [19], we have chosen
a simple text mediation protocol [15]. In its simplest version, the
negotiation protocol will be as follows:

1. It starts with a randomly-generated candidate contract (Sg).
This means to assign each AP a random channel.

In each iteration ¢, the mediator proposes a contract S} to the
rest of agents.

3. Each agent either accepts or rejects the contract S .
The mediator generates a new contract Sy, from the pre-

vious contracts and from the votes received from the agents
and the process moves to step 2.
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This process goes on until a maximum number of iterations is
reached. The protocol, as defined, is rather generic and must be
completed with the definition of the decision mechanisms to be
used by the negotiating agents and the mediator.

3.3 Decision Mechanisms

For the mediator, we have implemented a single-issue mutation
mechanism [15] for the generation of new contracts, which works
as follows:

e If at time ¢ all agents have accepted the presented contract
S¢, this contract will be used as the base contract S® to gen-
erate the next contract S¢y;. Otherwise, the last mutually
accepted contract will be used.

To generate the next candidate contract S¢, 1, the mediator
takes the base contract S, and mutates one of its issues ran-
domly. In our case of study, this would correspond to choos-
ing a random access point and selecting a new random chan-
nel for it.

After a fixed number of iterations, the mediator advertises
the last mutually accepted contract as final.

For the agents, we have considered two different mechanisms to
vote about the candidate contracts Sy :

o Hill-climber (HC): In this case, the agent behaves as a greedy
utility maximizer. The agent will only accept a contract when
it has at least the same utility for her than the previous mu-
tually accepted contract. The first contract proposed by the
mediator is accepted by default.

e Annealer (SA): This negotiation mechanism, that we first pro-
posed in [15] and was further refined in [18] and [17], uses
a widespread nonlinear optimization technique called simu-
lated annealing (SA) [14]. The mechanism is similar to HC,
but when a contract yields a utility loss against the previous
mutually accepted contract, there will be a probability for the
agent to accept it nonetheless. This probability P, depends
on the utility loss associated to the new contract Au and also
depends on a parameter known as annealing temperature T,
so that P, = e = . Annealing temperature begins at an
initial value, and linearly decreases to zero throughout the
successive iterations of the protocol.

The choice of these two mechanisms is not arbitrary. Simulated
annealing techniques have yielded very satisfactory results in ne-
gotiation for nonlinear utility spaces [18, 17], and are the basis for
several of other works [19]. Furthermore, as discussed in [15], the
comparison between hill-climbers and annealers allows to assess
whether the scenario under consideration is a highly complex one,
since in such scenarios greedy optimizers tend to get stuck in local
optima, while the simulated annealing optimizer tends to escape
from them.

4. SCENARIOS, BENCHMARKS AND MET-
RICS

4.1 Considered scenarios

In this paper, we make the common assumption that Wi-Fi nodes
(APs and clients) are static elements. As in our problem there is
not any element that evolves with time, we deal with the problem
of evaluating the performance of a particular channel assighment
strategy by means of the computation described in Section 2.
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Figure 1: Polytechnic School building plan.

Moreover, the choice of the configuration parameters for the
studied scenarios has been driven by considering typical or reason-
able power transmission and sensitivity parameters from a realistic
point of view [4]. We have made the assumption that clients asso-
ciate to the AP which is closer to them. Finally, for each scenario,
we randomly assigned half of the APs to each agent.

With these assumptions, we have performed experiments both in
randomly generated scenarios where APs and clients are randomly
distributed throughout the environment, and in a real-world setting.
For the random scenarios we have generated scenarios varying the
number of APs (15, 50 and 100) and the number of clients per AP
(1, 5 and 10). Combining these parameters, we have generated
eight categories with 50 different graphs per category, for a total of
400 scenarios. This allowed us to have a wide range of problem
sizes (from tens of nodes to roughly one thousand nodes), and also
a wide diversity (due to the randomization of node placement).

For the real-world setting, we have made use of the real layout
of the first floor plant of our building, the Polythecnic School of
the University of Alcala. The sides of this square-shaped building
are approximately 130 meters long. In Fig. 1 we provide the plan
of this building, where the real positions of deployed APs are dis-
played with green dots and where signal coverage ranges from red
(high coverage) to light blue (very low coverage). In this figure
we can observe that the floor is equipped with 26 APs. Note that
the center of the plan represents a central courtyard, so it has low
signal coverage. For the position of WDs we have considered that
we have users attending classes in classrooms and also some stu-
dents are located randomly in the building (resting, in the cafeteria,
studying...). For this last group of students, we have considered
that there are 100 students randomly located in the building fol-
lowing a uniform distribution. For the students in classrooms, we
have tested several scenarios varying randomly the ratio of class-
rooms being used ¥, with ¥ € [0.25,0.5,0.75,1.0]. As there
are 48 classrooms in the building, we have considered scenarios
with 12, 24, 36 and 48 classrooms. For each classroom, we have
deployed 25 students in each one randomly using a normal distri-
bution around the center of each classroom and a standard devia-
tion normalized to the size of the scenario of 0.05. In Table 1 we
show a summary of the real-world scenarios under study. Finally,
as the specific random classrooms in use could affect the results,
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Figure 3: Interference graph / for Scenario 1.

we have tested three experiments for each value of ¥ (except for
WU = 1 because all classrooms are in use in this setting), for a total
of 10 deployments. As an example, Figure 2 shows the associa-
tion between APs and WDs (graph G according to Section 2.1) of
Scenario 1, while Fig. 3 shows the potential interferences between
network elements (graph [ in Section 2.1). In both figures, APs are
represented by green circles and WDs by small black squares.

It is in this real-world setting where the role of the mediator can
be more easily understood. In contrast to home and legacy wireless
networks that provide access via independent wireless APs, enter-
prise wireless networks, like the one just described, make use of
a centralized entity, known as wireless controller. A wireless LAN
controller is used in combination with protocols such as Lightweight
Access Point Protocol (LWAPP) or Control And Provisioning of
Wireless Access Points (CAPWAP) to manage access points in
large quantities by the network administrator or network operations

Table 1: Summary of scenarios of the real-world setting.

Scenario 4 # Classrooms | # WD
1,2,3 0.25 12 400
4,5,6 0.5 12 700
7,8,9 0.75 12 1000

10 1.0 48 1300




center. This controller is in charge of choosing the proper channel
for every AP that it manages, and pushing that configuration into
the APs. In this model, there is not a discrete and individual se-
lection of frequencies, but they are proposed by the controller in-
stead; the controller collects information from the APs, and uses
that information to come with a global frequency allocation. This
fits rather well with the mediated approach we are proposing: the
frequency assignment proposal could be determined by a media-
tor process running in the wireless controller or external to several
wireless controllers (one per provider). Even for home wireless
networks, the need for Wi-Fi providers in a geographical area to
collaborate to enhance the performance of wireless networks has
been pointed out [23] and there are ISPs advocating for the central
administration of home wireless access points.

4.2 Benchmarking techniques

In addition to the negotiation techniques we propose, presented
in Section 3, we have included a comparison with three reference
techniques:

e Random Reference: as a first base line, in this technique each
AP chooses a channel randomly.

o Least Congested Channel search (LCCS): LCCS is the de-
facto standard for Wi-Fi channel assignment [2], and its based

on each AP sensing the channel occupation and asynchronously

choosing the channel where it finds the lowest interferences
from other active APs and their clients. We have imple-
mented a coordinated LCCS, where there is a centralized
controller which evaluates the proposed changes before actu-
ally implementing them, thus preventing utility oscillations.
This is a usual implementation in corporate environments.

Particle Swarm Optimization (ALPSO): additionally to our
negotiator based on simulated annealing, we wanted to have,
as areference, a nonlinear optimizer using complete informa-
tion. We have chosen a parallel augmented Lagrange multi-
plier particle swarm optimizer, which solves nonlinear non-
smooth constrained problems using an augmented Lagrange
multiplier approach to handle constraints [13].

4.3 Graph metrics for performance evaluation

Among the aims of this work, we are interested in studying how
the structural properties of the network influence the performance
of optimization and negotiation approaches used to solve the prob-
lem. To this end, we have compared our experimental results with
respect to a number of graph metrics selected from the literature.
The first two of them are global metrics, while the rest are averages
of a centrality metric, a local measure of the importance of a node
within a graph:

e Graph order: The total number of nodes in the graph.

o Graph diameter: The longest distance between any pair of
nodes in the graph [21].

o Average degree centrality: The degree centrality of a vertex
is defined as its number of neighbors. Hence, the average
degree centrality is

Zvev deg(v)
V(G|

By the handshaking lemma ) _, deg(v) = 2|E(G)|, the
average degree centrality is related to the density of the graph,
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defined as the ratio between the actual number of edges and
the maximum possible number of edges

BG)] _ ey deg(v)
(V@) = V(@)

e Average closeness centrality: The closeness centrality of a
node v is the inverse of the farness, normalized by the num-
ber of other nodes

1
Ve -1

V@) -1
Zwev\{w} d(v, w)

e Average eigenvector centrality. The eigenvector centrality
identifies nodes that are connected to many other
well-connected nodes. Storing the centralities of the ver-
tices in a vector, this turns out to be the eigenvector asso-
ciated to the largest eigenvalue of the adjacency matrix of
the graph [16].

o Average betweenness centrality. The betweenness centrality
of a node v is based on the number of shortest paths in the
graph passing through that node. In particular, for each s, ¢
different from v, the ratio of shortest paths between s and ¢
containing v is obtained, and these ratios are summed up [16].

One of our hypothesis is that these metrics may be used as a ba-
sis for mechanism selection in networked problems involving self-
interested parties. In this paper we have used these metrics to com-
pare the relative performance of the benchmarked approaches.

S. EXPERIMENTAL RESULTS AND
DISCUSSION

In this section, we describe and discuss the results of our exper-
iments. For the sake of clarity, we initially analyze separately both
types of scenarios (random and real-world), and then we study the
impact of graph metrics in performance for both types. For all the
experiments we show we have performed 20 repetitions.

5.1 Random scenarios

In the first set of experiments, we study the effect of having dif-
ferent number of providers or agents (p) in the 400 random scenar-
ios using S A. APs have been randomly assigned to the p providers.
Table 2 shows the average normalized utility (U,,) for these ex-
periments for p € {1,2,5,10}. Note that the normalized utility
has been computed as the quotient between the sum of the utili-
ties achieved by each node and the number of nodes (graph order).
Results show that increasing the number of agents moderately de-
creases the utility, as the available information for the channel as-
signment is distributed among a higher number of agents when p
increases. From now on, we focus in the two-provider case (p = 2)
because there are more works in complex bilateral negotiations than
for the multilateral case (three or more agents).

Next, we study the performance of the benchmarked techniques
(random, LCCS, HC, SA and ALPSO) in the different scenario cat-
egories, recording the achieved social welfare (normalized utility)
and fairness as defined in [8]. Figure 4 shows the average normal-
ized utility (U,,) obtained by each technique for all the graphs in
each category. Note that the graph categories have been ordered
decreasingly according to the mean value of U,, obtained for all
the studied techniques (these mean values are represented with a
solid horizontal line for each category). Each bar in the figure also
includes the 95% confidence interval. In all the studied scenar-
ios, the worst performance is, as it could be expected, the random
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Figure 5: Fairness for the evaluated techniques in random scenarios.

Table 2: Normalized utility for different number of agents (p)
in random scenarios using S A.

Scenario p=1|p=2 | p=5| p=10
0.548 | 0.538 | 0.525 0.521
(50, 250) 0.615 0.602 | 0.596 0.591
0.618 | 0.604 | 0.592 0.587
0.488 | 0.482 | 0.470 0.465
(50, 500) 0479 | 0472 | 0.462 0.451
0.547 | 0.535 0.526 0.521
0.437 | 0427 | 0.402 0.400
(100, 500) | 0.447 | 0.429 | 0425 0.410
0.411 0.401 0.383 0.384

assignment. The performance of LCCS is better than random but
worse than the rest of techniques. Comparing HC, SA and ALPSO
we can conclude that, although their performance is quite similar,
SA is the best technique for all the scenarios under study (there is
a little advantage for the hill climber (HC) in the simplest cate-
gory, but it is not statistically significant). As the scenarios grow
more complex, the distance between S A and the rest of techniques
increases, which is reasonable since the size of the solution space
becomes larger. The increasing distance between S A and HC con-
firms our hypothesis that these scenarios are highly nonlinear [15].
It is also important to note that, for the more complex scenarios,
the SA negotiator significantly outperforms the particle swarm op-
timizer (ALPSO). This is a remarkable result, specially taking into
account that SA reaches the optimum faster than the ALPSO opti-
mizer.

Next, we study the performance of the different techniques under
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study in terms of their fairness (). We use the definition of fairness
given in [8], i.e.:
2

o~ (ui— )
F‘(ul7 ,’lLN) = Z ZT,
=1

being N the number of nodes (graph order), u; the utility for node
¢+ and wu the average utility for all nodes. From this definition, note
that lower values for F' are better. Figure 5 shows the performance
in terms of fairness for the studied techniques in the different graph
categories. For the simpler graphs ((15, 15), (15, 75), (15, 150) and
(50, 50)), HC, SA and ALPSO clearly outperforms the LCCS and
Random. However, this is not true for the more complex scenarios,
where there is not a clear ordering but in some cases Random is
the fairest solution. To explain this behaviour we have to consider
both fairness and utility together. As the performance in terms of
utility for Random is very poor, it is much easier to reach fair (but
poor) solutions between nodes. For that reason, we have computed
the ratio between the normalized utility (U,,) and the fairness (F)
to compare the different techniques, calling this value U F'. In Ta-
ble 3 we show the quotient between U I for the different techniques
under study and U F's 4, which is the value of UF for SA. Values
below one in the table mean that SA is able to obtain better results.
From that table we can conclude that SA offers the best results in
all cases except for the simplest graphs (15, 15), where HC and
ALPSO slightly outperform SA.

5.2 Real-world setting

For the real-world scenarios, Fig. 6 shows the normalized utility
(Un) for the different techniques under study, while Table 4 shows
the quotient between U F' for the studied techniques and U Fs 4.
Regarding Fig. 6, results show, again, that the annealer SA out-
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Figure 7: Utility of SA relative to ALPSO for different graph metrics.

Table 3: U F relative to U F's 4 in random scenarios.

Scenario | Random | LCCS | HC | ALPSO
(15, 15) 0.13 0.19 [ 1.03| 1.01
(15,75) 0.21 0.33 [ 0.83| 0.87
(15, 150) 0.27 0.40 [0.79| 0.84
(50, 50) 0.23 0.52 ({091 0.87
(50, 250) 0.48 0.69 [0.89| 0.86
(50, 500) 0.54 0.73 [0.89| 0.88
(100, 100) | 0.41 0.66 [090| 0.85
(100, 500) | 0.62 0.77 {093 | 0.90

performs the Random assignment, LCCS and HC. Comparing SA
and the complete-information optimizer ALPSO we show that their
performance in the real-world scenarios are fairly similar, being SA
slightly better in Scenarios 1-8 and slightly worse in Scenarios 9
and 10. Table 4 shows that if we analyze utility together with fair-
ness, SA behaves as the best solution in all the studied real-world
settings. For that reason, we can conclude that in the real-world
setting the use of SA for Wi-Fi channel assignment is advantageous
in terms of social welfare and fairness.

5.3 Impact of different graph metrics

In this section, we analyze the results of the best performing ap-
proach (SA) with respect to the different metrics discussed in Sec-
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Table 4: U F relative to U F's 4 in real-world setting.

Scenario | Random | LCCS | HC | ALPSO
1 0.58 0.78 |0.87 | 0.90
2 0.52 0.75 [0.89| 0.92
3 0.45 0.75 |0.83| 0.90
4 0.53 0.70 |0.81| 0.92
5 0.60 0.85 [0.89| 0.96
6 0.56 0.83 |10.88| 0.92
7 0.57 0.83 |0.88| 0.97
8 0.53 0.78 |0.84| 0.96
9 0.59 0.83 |0.86| 0.97
10 0.63 0.88 |091| 0.99

tion 4.3. This comparison is done in terms of the normalized utility
that the SA negotiator obtains relative to the particle swarm opti-
mizer ALPSO, i.e. we show the quotient Usa /Uarpso. We have
plotted these results for both random scenarios (blue dots) and real-
world scenarios (red crosses). Note that, for all figures, we also
include a dashed line that corresponds to the Usa = Uarpso
baseline. Regarding the graph order, in Fig. 7a, for the random
scenarios we can see an approximately linear increasing gain for
SA, with ALPSO doing better for low-order graphs and SA getting
to gains up to 10% for the larger graphs. However, this behaviour
does not hold for the real-world scenarios, where the gain decreases
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Figure 8: Utility of SA relative to ALPSO for different graph centrality metrics.

with the order. From this result we can conclude that the graph or-
der can not be used alone to estimate the gain that can be expected
from using SA. Figure 7b suggests that there may be optimal values
of graph diameter regarding the performance of SA. For example,
it is reasonable to expect small gains for both low and high graph
diameters.

In Fig. 8 we show the gain obtained by SA respect to ALPSO for
the four different centrality metrics defined in Section 4.3. Note
that these metrics are defined for each node, so we show their aver-
age value for each graph. Examining these figures we can see that
all of them show a clear and narrow range of centralities for which
the largest gains are obtained. For closeness centrality (Fig. 8b),
the results are better for larger average centrality, with the oppo-
site behaviour for the other three types of centrality. Interestingly
enough, the eigenvector centrality (Fig. 8c), which is smaller when
there are less nodes connected to many well-connected nodes, is
the only centrality for which the adequate values lead to SA out-
performing ALPSO in all the random scenarios. The real-world
scenarios, however, have very similar values for all the centralities
considered, which have led to both gains and losses for SA.

6. CONCLUSIONS AND FUTURE WORK

Optimizing resource use in complex networks with self-interested
participants is a challenging and increasingly critical real-world
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problem. This paper studies and evaluates the use of multiagent
negotiation techniques for WiFi-channel assignment, which is a re-
alistic problem derived from the popular graph coloring and fre-
quency assignment problems. We compare the negotiation-based
approaches with both the de facto standard for Wi-Fi channel as-
signment and a nonlinear centralized optimizer. Experiments show
that the negotiation-based approaches outperform the references in
both social welfare and fairness.

Although our experiments have yielded satisfactory results, there
is still plenty of research to be done in this area. A more in-depth
metric analysis is needed, specially to determine if the observed
correlations among metrics are inherent or caused by a scenario
generation bias. We are also exploring fully-distributed mecha-
nisms based on belief propagation. Finally, we are interested in
evaluating the strategic properties of the mechanisms, to see how
they perform when agents are allowed to “lie” in their messages
in order to try to influence the outcome of the mechanism to their
advantage.
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