
A Distributed, Multi-Agent Approach to Reactive Network
Resilience

Enrique de la Hoz,
Jose Manuel Gimenez-Guzman,

Ivan Marsa-Maestre and Luis Cruz-Piris
Computer Engineering Department

University of Alcala
enrique.delahoz@uah.es,

josem.gimenez@uah.es, ivan.marsa@uah.es,
luis.cruz@uah.es

David Orden
Department of Physics and Mathematics

University of Alcala
Alcala de Henares, Spain
david.orden@uah.es

ABSTRACT
Critical network infrastructures are communication networks whose
disruption can create a severe impact on other systems. Multi-agent
systems have been successfully used to protect critical network in-
frastructures, with approaches ranging from reasoning about se-
cure design and policies to multi-agent intrusion detection systems
(IDS). However, there is little research on the possibilities for multi-
agent systems to react to known intrusions. In this paper we pro-
pose a multi-agent framework for reactive network resilience, that
is, to allow a network to reconfigure itself in the event of a security
incident so that the risk of further damage is mitigated. The pro-
posed framework takes advantage of a risk model based on mul-
tilayer networks and of distributed belief propagation techniques
to agree on a new, more resilient configuration of the network in
the event of an attack. We compare our proposal with a number
of centralized optimization and multi-agent negotiation techniques.
Experiments show that our proposal outperforms the reference ap-
proaches both in terms of risk mitigation and performance

Keywords
Critical network infrastructures, reactive resilience, multi-agent be-
lief propagation

1. INTRODUCTION
Critical network infrastructures (CNIs) are those communication

network infrastructures whose disruption, intentional or accidental,
may have a high impact because of either its massive, even global,
deployment (e.g., Internet, cell provider networks) or its support-
ing role for other critical infrastructures (e.g., the network for the
internal communications of a control system in a nuclear facility, or
the communication network for the electrical grid). The protection
of critical network infrastructures is a top priority in the agendas of
our governments and critical service operators.

In the last years, multi-agent systems have emerged as a success-
ful approach for addressing complex security problems [1][2][3].
Most approaches deal with secure design and policing (e.g. how
to design a system which is as secure/resilient as possible with the

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

available resources, or how to allocate resources for surveillance
maximizing effectiveness). In the particular case of critical net-
work infrastructures, one of the most promising areas of research
are intrusion detection systems (IDS). However, the use of multi-
agent systems to react to such intrusions is still an emergent field.

In this work, we address reactive network resilience, which ex-
tends the concept of network resilience [4] to cover the ability of
a network to reconfigure itself in the event of a security incident
so that the risk of further damage is mitigated. In particular, we
propose a distributed, multi-agent framework for reactive network
reconfiguration in (semi-)virtualized CNIs over a zero-day attack
threat model. This assumes that the specific vulnerabilities in the
attack are unknown to the network operators, and therefore can
only be detected by using an anomaly-based IDS. The framework
will use the alert report from such an IDS and an a priori risk anal-
ysis model of the network to propose a new network configuration
(that is, an alternative redeployment of the different components
in the network) to minimize the impact of the incident. A more
in-depth discussion of the most relevant related works, with an em-
phasis on zero-day resiliency, can be found in Section 2.

Our goal is, therefore, to build a multi-agent reactive
risk-mitigation framework for critical network infrastructures. The
paper contributes to this goal in the following ways:

• We propose a risk model based on multi-layer networks, which
takes into account both conventional risk analysis metrics and
novel zero-day resilience metrics (Sections 3.1 and 3.2).

• We propose a novel perspective of reactive redeployment man-
agement as a multi-agent negotiation, with a strategy based on a
variation of the well-known graph coloring problem (Section 3.3).

• We propose an agreement determination approach based on dis-
tributed belief-propagation to collectively find a redeployment of
the network upon a security incident alert (Section 3.4).

To validate our approach and evaluate the impact of our contri-
butions, we have conducted a set of experiments over a range of
randomly-generated scenarios (Section 4). Results show our ap-
proach outperforms the reference techniques both in terms of risk
mitigation and performance. The last section summarizes our con-
tributions and sheds light on future lines of research.

2. RELATED WORK
In this section we briefly review the most relevant works related

to our proposal. We first discuss our threat scenario, resilience

1044

against zero-day attacks, and then we discuss some of the most
relevant and closely related multi-agent approximations to security
and network resilience in the literature. Finally, we frame the ap-
plication context of our approach within (semi-)virtualized network
infrastructures

2.1 Network resilience under zero-day attacks
Zero-day attacks are cyber-attacks which are performed by using

a vulnerability or attack vector which is not publicly-known (and
generally not known by the software/hardware vendor) [5]. While
for already known attacks the solution will be probably found in
the use of firewalls, antivirus or software patching and upgrading,
the mitigation of zero-day attacks is a harder task due to the lack of
information. In the literature, the work related to zero-day attacks
comprises two different fields. The first one is the detection of zero-
day attacks [6][7]. The second one, more related to this work, is
devoted to the development of metrics for evaluating the resilience
of a network against zero-day attacks. The proposal of metrics is of
vital importance to network security, as “you cannot improve what
you cannot measure” [8]. Network security metrics usually assign
scores to vulnerabilities according to their probability and/or im-
pact. A review and performance comparison of such metrics can
be found in [9]. However, this type of metrics is not valid for zero-
day attacks, due to the lack of knowledge and information about
them. For that reason, there are some works [8][10] that propose
metrics specifically suited for zero-day attacks. In [10], authors
consider network diversity as a metric for evaluating resilience.
Similarly,in [8] authors propose a metric based on counting how
many distinct zero-day vulnerabilities are required to compromise
a network asset.

Another interesting set of related works, but not specially de-
voted to zero-day attacks, are the pioneering works [11] and [12],
where authors analyze the robustness of complex networks under
localized attacks for determining how much damage a network can
sustain before it collapses. The differences between these works
and our work are clear, as these papers are more theoretical and
we consider more realistic computer network models. This realis-
tic model takes advantage of the fact that we model the problem
by means of a multi-layer graph, to capture the features of real-
world networks. As research on complex networks has evolved, it
has been clearer the need of going further than monolayer graph
modelling and exploring more realistic and complex models. Mul-
tiplex or multi-relational networks connect nodes using links that
can express different kinds of relationships [13]. Multilevel net-
works and meta-networks enable also hierarchical structures and
node and links of different types [14]. Recently, Kivela [15] has
presented a unified modelling for multi-layer networks that include
these concepts in a unified manner that takes advantage of the dif-
ferent mathematical tools available in the state of the art.

In addition to all the aforementioned and directly related fields,
there are some important works in different areas that can be re-
lated to the study of resilience in complex networks. First, mo-
bile ad-hoc networks and vehicular ad-hoc networks (MANET and
VANET). In these networks, nodes are constantly moving, and, ac-
cordingly, the connectivity must evolve to deal with this. For these
scenarios, it is critical to guarantee service continuity under this
dynamicity [16]. Second, delay tolerant networks [17], where ser-
vice interruption after power failures, attacks or node dispersion
are taken into account, has attracted much interest and its study
has been promoted by DARPA. And last, wireless sensor networks,
where it is necessary to create resilient network topologies able to
provide connectivity even after some sensors stop contributing as a
result of a battery outage [18].

2.2 Multi-agent approximations to security
and critical infrastructures

As inherently connected and interdependent complex systems,
critical infrastructures are not alien to multi-agent modelling [19].
In fact, a number of successful approaches to security in these envi-
ronments have emerged in the last years. Of particular interest are
the approximations based on the idea of “security games” [3][1].
These works use computational game theory to build decision sup-
port systems for efficient security resource allocation in surveil-
lance scenarios (e.g. airport security), by modelling the allocation
process as a Bayesian Stackelberg game [1]. In domains more
related to communication networks, we can find game-theoretic
works regarding intrusion detection, especially for distributed sys-
tems [20] and cyber-physical systems [21]. However, there is little
body of work about how to react to such intrusions once they are de-
tected. This is a particularly critical matter, since intrusions in CNIs
can easily lead to cascading failures. The most closely related work
to our own is probably the one in [22], although with some key dif-
ferences. First, authors address a different critical infrastructure
domain (the power grid), but with the same rapid cascading fail-
ure scenario we study. Second, they use a game-theoretic approach
which has serious complexity and scalability issues, as the authors
acknowledge. On the contrary, in this work we present an approach
based on heuristic, multi-agent negotiation. Negotiation-based ap-
proaches have been proven successful for many scenarios where
complexity and scalability issues made game-theoretic approaches
not suitable [23][24][25].

2.3 (Semi-)virtualized networking
The approach described in this paper takes into account the ongo-

ing transformation of datacenters and datacenter networks, driven
by virtualization, automation, and containers. Virtualization has
transformed the way in which we design and manage servers and
datacenters. This has led to increasing efficiencies and a trend to-
wards automation. Virtualization along with configuration man-
agement tools, such as Puppet, Chef or Ansible [16], has led to
a new approach known as programmable infrastructure or Infras-
tructure as Code (IaC) [26]. Infrastructure as Code is an approach
to infrastructure automation, based on practices from software de-
velopment, that emphasizes consistent, repeatable routines for pro-
visioning and changing systems and their configuration. IaC can
be defined as “the process of managing and provisioning comput-
ing infrastructure (processes, bare-metal servers, virtual servers,
etc.) and their configuration through machine-processable defini-
tion files, rather than physical hardware configuration or the use of
interactive configuration tools”. This way, IT infrastructure sup-
ports and enables change, and users are able to define, provision,
and manage the resources they need. Changes to the running sys-
tems become routine and improvements can be made continuously:
there is a document describing the deployment and introducing
changes to the deployment is just a matter of modifying that docu-
ment and applying the modification by using the proper provision-
ing and configuration management tools. It is important to notice
that this is not only limited to server management but to network
creation, configuration and management, thanks to approaches and
technologies such as Network Function Virtualization (NFV) and
SDN [27]. Finally, for working with large distributed infrastruc-
tures, the use of container technologies, such as Docker [28], is
also increasing. Containers are isolated places where an applica-
tion can run without affecting the rest of the system, and without
the system affecting the application [29]. By using containers, it
is possible to isolate pieces of your system into separate contain-
ers. For instance, you can have a container for Apache, a container

1045

for MySQL, and one for MongoDB. The underlying idea is being
able to create your distributed system by combining containers that
provide the functionality that you need. This allows to isolate in-
dividual elements of the application into independent units that can
be managed in a flexible manner. Containers can be created and
distributed by means of public or private repositories [30], just like
code is distributed in places such as Github or Bitbucket. Container
technology represents the technology foundation for the component
layer that we propose in this work.

3. A MULTI-AGENT FRAMEWORK FOR RE-
ACTIVE RESILIENCE IN CRITICAL IN-
FRASTRUCTURES

In this section we describe our proposal for reactive resilience in
(semi-)virtualized critical network infrastructures. The framework
starts from the following environment assumptions:

• There is a weighted risk assessment of the system prior to the
operation of our framework. This risk assessment comprises an
inventory of system assets, along with their value and interde-
pendencies.

• Assets rely on components to function. These components can
be instantiated according to different configurations.

• The main threat considered are zero-day attacks, which are nor-
mally configuration-specific, that is, they affect a single config-
uration or a set of similar ones.

• Components are virtualized and can be deployed in different
physical hosts along the physical network infrastructure, using
a container paradigm as discussed above.

• There is a control plane where the deployment decisions are
made. This control plane is in an overlay, isolated network, and
thus it is assumed not to be under the discussed threats.

• There is an intrusion detection system (IDS) able to identify
compromised components. We assume it to be an anomaly-
detection based IDS, since zero-day attacks are by definition un-
known, and therefore no additional information about the inci-
dent will be provided.

In the following, we describe our proposal, which is based on four
key elements: a multilayer network model, a reactive resilience risk
model, a multi-agent negotiation process for reactive redeployment,
and a belief-propagation agreement approach.

3.1 Multilayer network model
As stated above, our framework will take risk assessment and

alert reports and derive a new network configuration intended to
maximize resilience. To achieve this goal, we will use a multi-
layer network model to capture the situational awareness input (i.e.
actual risks due to a security incident) for the critical network in-
frastructure. Figure 1 shows an outline of the model.

The model defines three layers. The asset layer, on top, is ex-
tracted from risk analysis, and captures the relative importance of
the assets and their interdependencies. The bottom layer is the
infrastructure layer, which represents the actual infrastructure el-
ements (hosts, links and network appliances) upon which the assets
are deployed within the network. Between these two end layers,
there is a component layer, which represent the components (e.g.
databases, frontend elements) upon which assets depend on to pro-
vide their functionality. In the following, we describe in more detail
the different layers and the information they provide to the model.

3.1.1 Asset Layer
As stated above, the asset layer is extracted from risk analysis,

and is intended to capture the value of their different assets and the
dependency relationships between them. This is represented as a
weighted directed graph (Figure 2), where nodes represent assets
and directed edges represent dependencies of a node (head) on an-
other (tail). For instance, in the figure, asset a2 depends on assets
a1 and a3, asset a4 depends on a3, and assets a5 and a6 are mutu-
ally interdependent.

Node weights (e.g. wa1) are mandatory and represent the rel-
ative importance of a given asset for the organization from the
point of view of risk analysis. Edge weights (e.g.wa1→a2) are
optional and represent the criticality of the dependency between
two assets. There may be different ways to estimate the value of
these weights, but in general they will represent the relative im-
pact of the failure of one asset on the other. For instance, a weight
wa1→a2 = 0.5 may represent that a failure of asset a1 will reduce
the value/performance of asset a2 to 50%, or that if asset a1 fails
there is a probability of 50% of a cascading failure propagation to
a2.

Figure 1: Multilayer network model.

Asset	Layer

a2

a3

a4

a5

a6

a1

Figure 2: Asset Layer.

3.1.2 Component Layer
This layer captures the components (generally software) each as-

set relies on to provide its functionality and value to the organiza-
tion. For instance, a given control application within the system
may require to use a Web Service, or a database. Each component
ci is instantiated with a specific configuration γi (see Figure 3. That
is, for a given component ci (e.g., a web application), the configu-

1046

ration γi represents the actual instantiation of that component (e.g.,
a PHP web application using a MySQL database).

Component	Layer

C1,γ1
C2,γ2

C3,γ3 C4,γ4

C5,γ5

C6,γ6
C7,γ7

C8,γ8 C9,γ9 C10,γ1o

Figure 3: Component Layer.

Additional component layers can be included in the model to
provide finer granularity in the description of the component con-
figurations. For instance, the configuration for a given web ap-
plication can be provided in a single layer, with possible values
being e.g. LAMP (Linux, Apache, MySQL and PHP) or WAMP
(Windows, instead of Linux). Another option could be to split the
configuration description into four layers: operating system (Linux,
Windows), database (MySQL, PostgreSQL), Web Server (Apache,
Nginx) and Web Application framework (PHP, JSP). This allows a
great expressiveness when describing the system.

3.1.3 Infrastructure layer
This layer represents the actual physical/logical network infras-

tructure in the system, that is, the actual hosts and network elements
in the infrastructure. We assume a (partially) virtualized network,
so that the topology of this layer may not represent an actual phys-
ical topology. This layer could be split into virtual and physical
network layers as necessary, though. For the purpose of our re-
silience analysis, we will assume that the network infrastructure is
divided into segments (e.g. DMZs, VLANs), and we will give them
colors for convenience (Figure 4).

Infrastructure	Layer

Figure 4: Infrastructure Layer.

3.2 Reactive resilience model
As stated above, we will deal mainly with zero-day resilience.

Zero-days are normally configuration-specific (e.g. a zero-day ex-
ploit for Mac OS X 10.10.1), and they may lead to cascading at-
tacks (e.g. when having adjacent firewalls which are all vulnerable
to the same zero-day). Therefore, we need to take into account in

the model the effect of potential vulnerabilities and attack chains,
as a result of the interactions between configurations and between
network segments.

To account for this, we will include two parameters:

• Cross-configuration zero-day vulnerability (νij): this vulnerabil-
ity value νij accounts for the probability that a zero-day exploit
over configuration γi would allow also to compromise config-
uration γj . Usually, this is directly related to configuration di-
versity [8]. For instance, given that LAMP and WAMP configu-
rations are similar, they could be assigned a cross-configuration
zero-day vulnerability value of 0.8.

• Cross-segment vulnerability (µij): this vulnerability value µij
represents how easy would be for an attacker to send packets
from segment si to segment sj , provided that a machine in seg-
ment si has been compromised. This largely depends on fire-
wall access control rules, though it can be generally assumed that
adjacent segments will have higher cross-segment vulnerability
values than distant ones.

Our framework is intended to act in response to a security in-
cident alert. Such alert will correspond to anomalous behavior
in a given component, host or network segment. Both machine-
wide or segment-wide alerts can be generalized to component-wise
alerts, by assuming a worst-case scenario where all components in
the affected machine or network segment may have been compro-
mised. Therefore, without loss of generality, we can assume that
our framework reacts to compromises in components. If a com-
ponent has been compromised, attack paths can be traced from
this component to other components in the system, provided that
there is a way an attacker could progress from one component to
another, throughout the network and by compromising successive
machines. Under the assumption of a zero-day attack, an attacker
can progress through the network (pivot) if two conditions hold.
First, a network path must exist between the compromised com-
ponent and the component the attacker wants to pivot to. Second,
enough similarity between source component and target compo-
nent configurations must exist so that the zero-day attack is still
effective. The extent to which these two conditions hold is given,
respectively, by the appropriate vulnerability values µij and νij .
To take this into account, we can “flatten” the multilayer network
model into a configuration-spread projection from a given compro-
mised component. Figure 5 shows an example of such a projection.
In this example, the leftmost component has been compromised by
a given zero-day, and the projection shows all components to which
the zero-day attack could spread from that node. Two components
ci and cj are connected if it is possible for the zero-day to spread
between them (that is, there is enough similarity between configu-
rations for the zero-day to be potentially effective in both compo-
nents). The weight of the edge connecting these two nodes would
be the corresponding cross-configuration vulnerability value νij .
In the figure, node color represents the network segment where a
particular component instance has been deployed, according to the
infrastructure layer.

With this projection in mind, an attack path from any node to an-
other node is a loopless path between these two nodes. Any attack
path P will have an associated attack probability or risk ∝P , com-
puted as the product of the edge weights in the path (given by νij)
and the node traversal costs given by cross-segment vulnerability
value µij , to account for the fact that components in “close” net-
work segments will be easier to compromise for an attacker. That
is, for a given attack path P = (c1, c2, . . . , cN), the associated

1047

Configuration-spread	Projection

Figure 5: Configuration-spread projection of the model.

probability ∝P will be:

∝P=

N−1∏
i=1

µi,i+1 · νi,i+1

defined as a product in order to reflect the conditioned probabilities.
This allows us to estimate the worst-case overall risk over a given

component ci when we know cj have been compromised as the risk
of the highest probability attack path:

ρci|cj = max
∀Pcj→ci

∝P

Given that every component ci is associated to an asset ai (we
denote it as ci → ai) through the links between the asset layer and
the component layer, we can compute the inherent risk over a given
asset after the compromise of cj as

ρai|cj =
∑

k|ck→ai

ρck|cj

Taking into account the dependencies between assets wak→ai ,
extracted from the asset layer, we can iteratively compute the ag-
gregated risk over all assets , as follows:

• At iteration 0: ρai|cj
0 = ρai|cj

• At iteration t: ρai|cj
t = ρai|cj +

∑
k|ak→ai

wak→aiρak|cj
t−1

This computation is guaranteed to converge in at most d itera-
tions, where d is the diameter of the graph induced by the asset
layer, yielding a final value for the risk over each asset. From these
risks and the asset weights wai , we can finally derive the overall
risk over the system as a result of the compromise of component
cj :

ρcj =
∑
ai

waiρai|cj

Therefore, the goal of our framework will be to produce, in the
event of the compromise of a component cj , an alternative config-
uration of the system which minimizes this risk ρcj .

It is important to note that this is not the only possible projection
(or “flattening”) of the multilayer network model. We have cho-
sen it because it presents some interesting advantages for our pur-
pose. First, the computation of ρci|cj can be thought as an analogy
of the shortest path problem with non-negative real weights (tak-
ing 1

vij
and 1

µij
as weights), which is roughly solvable in O(E+V)

time, which E and V being, respectively, the number edges and ver-
tices of the configuration-spread projection. On the other hand, for
a given graph structure of the projection, network reconfiguration

after an attack reduces to re − coloring the graph -that is, rede-
ploying components in alternative infrastructure segments- so that
the overall risk induced by the security incident is minimized. This
will allow us to address the problem by distributed agent negoti-
ation with local information only, as we will see in the following
section.

3.3 Redeployment as multi-agent negotiation
From the projection discussed above, we can see that redeploy-

ment in reaction to an incident alert is a nonlinear optimization
process involving finding the configuration which minimizes the
overall risk ρcj caused by the incident. Formally, we can define the
reconfiguration problem as a tuple 〈S0, cj〉 where:

• S0 = {s0
i | i = 1, . . . , N} is the initial configuration of the

system, where each one of the N components ci is deployed in
segment s0

i in the infrastructure layer.

• cj is the component which has been compromised, which imme-
diately induces an initial risk ρcj

0.

A solution S to the problem 〈S0, cj〉 will be of the form S =
{si | i = 1, . . . , N}, giving each component ci an alternate de-
ployment segment si, and therefore inducing a new risk value ρcj ,
which we call residual risk.

General optimization of ρcj , as we will see in the evaluation, is a
costly process in terms of computation time, which would not suit
the real-time performance requirements of such a system. There-
fore, it will be necessary to find approaches which can yield sat-
isfactory solutions (even if sub-optimal) in a reasonable time. To
accomplish this, we will adopt a conversion of the problem into
multi-agent negotiation, with the following rationale:

• We assume a negotiating agent Aai per asset ai. This agent
will have the goal to minimize ρai|cj , given the information it
receives from the neighboring nodes in the multilayer network
model (components and assets it depends on).

• We assume a negotiating agent Aci per component ci. This
agent will be entitled with the goal to minimize ρci|cj , given
the information it receives from the neighboring nodes in the
configuration-spread projection (that is, the components with con-
figurations similar enough to propagate zero-days to it).

With this conversion, we greatly reduce the computational com-
plexity of the problem by distributing the computation among agents
and by making them react only to local information. We need, how-
ever, to establish agent communication and decision making mech-
anisms for the negotiation to progress. We propose these mecha-
nisms in the following section.

3.4 Distributed redeployment agreement based
on belief propagation

Given that ρcj depends on the maximum probability ∝P for all
attack paths, and that the factors contributing to that probability
are the cross-segment and cross-configuration vulnerability values
of adjacent nodes in the configuration-spread projection, intuitively
we need to minimize these vulnerability values in adjacent nodes.
Roughly speaking, we need to avoid having highly similar config-
uration in highly reachable network segments, to difficult tracing
successful attack paths through the network.

This is quite similar to the Threshold Coloring Problem (TSC)
[31], which is depicted in Figure 6. In this problem, we have an
undirected graph and a set of available colors (in the example, red,

1048

1 1/4
1

3/4

1 1/4
3/4

1

1 1/4
1

3/4

1 1/4
3/4

1

1 1/2 1/4
1/2 1 1/2
1/4 1/2 1

1 1/2 1/4

1

1/21/4

1/2 1/2

1

Figure 6: Example of the Threshold Spectrum Coloring Prob-
lem (TSC).

green and blue), with an associated interference matrix, which as-
signs an interference value for the occurrence of any pair of colors
in any edge of the graph. The goal of the TSC problem is to find
a coloring which minimizes the maximum interference per node
(the optimal solutions for the example problem can be seen shad-
owed in the figure). Our hypothesis is that, by translating the prob-
lem of recoloring the configuration-spread projection (as we stated
in the previous section) to this problem, we will find suitable re-
silient alternative topologies in a reasonable time. We will have as
the available color set the different network segments si where we
can deploy the different components, and as the color interference
matrix the cross-segment vulnerability values µij . We also have
to augment the model to introduce edge weights, which will cor-
respond to the cross-configuration vulnerability values νij of the
components represented by adjacent nodes.

Nonlinear optimization and negotiation techniques have been suc-
cessfully applied to the TSC problem in other contexts [31], but
they were centralized and used graph-wide information rather than
local information, and therefore they are not applicable to the multi-
agent setting described in the previous section (though they will
provide useful benchmarks for evaluation). We need, therefore, a
new technique, and here we propose a negotiation method based on
distributed belief propagation.

Belief Propagation (BP) is a message-passing heuristic for solv-
ing optimization and inference problems in the context of a graphi-
cal model [32]. Under certain conditions, BP is able to find optimal
solutions to factorized optimization problems, that is, optimization
problems of the form

minimize
∑
i∈V

Φi(xi) +
∑
c∈C

Ψc(xc)

subject to xi ∈ R, ∀i ∈ V,
where V is a finite set of variables and C is a finite collection of
subsets of V representing constraints. Φi functions are called vari-
able functions (they depend on the value of a single variable), and
Ψc functions are called factor functions (they depend on specific
combinations of variables called factors). All these functions are
real-valued.

For the purposes of this paper, we need to translate our aug-
mented Threshold Spectrum Coloring to a factorized optimization
problem. To do this, we use our components as variables (which

A
B C

D

A B C D

A,B A,D B,C B,D
Figure 7: Factor graph FP (right) for our example TSC prob-
lem.

can take different values depending on where they are redeployed)
and the links between pairs of nodes (which represent similar nodes
through which attack spreads may occur) as constraints. According
to this, we define the corresponding functions as follows:

Φi(si) = 0

ΨC(si, sj) = νijµij , ∀C ≡ (i, j)

That is, we use a constant zero value for each variable function,
and we multiply the cross-segment and cross-configuration vulner-
ability values for each factor function. With this formulation, we
try to mitigate the impact of putting close very similar components.
This is coherent with the risk model described in Section 3.2, where
risks are restricted to those caused by attack paths from the com-
promised node. It is worth noting that this formulation differs from
the TSC problem, given that here we try to minimize the sum of
the contributions for all nodes in the graph, while pure TSC aims
to minimize the maximum contribution for any single node in the
graph. However, as shown in [31], sum minimization is a good
heuristic to minimize the maximum in this context, and therefore
successful techniques proposed for TSC can be used here as bench-
marks.

Once the formulation has been established, we need to build the
factor graph F of our problem, which is a bipartite graph with vari-
able nodes in one side of the partition and factor nodes correspond-
ing to the constraints in the other side of the partition. Links be-
tween both partitions occur between a constraint and the variable
nodes it refers to. For instance, in the graph example given in Fig-
ure 6, the resulting factor graph F would be as shown in Figure 7.

Finally, we would have to apply the min-sum algorithm for BP
[32], which is reproduced in Algorithm 1 for convenience.

The problem with applying directly the min-sum BP algorithm to
our problem is that the algorithm only has correctness and conver-
gence guarantees when the solution is unique and the factor graph
is a tree. Although solution uniqueness can be achieved with ran-
domized weights as suggested in [32], most of our scenarios do not
create tree factor graphs. The usual junction tree technique used
in machine learning to address this problem [33] is not applicable
here, because we need computation to be distributed and use only
local information.

Taking this into account, to ensure convergence and correctness
of the algorithm, we propose to divide the factor graph into trees
using a gossip-inspired technique [34]. The technique we propose
works as follows:

• All component agents in the configuration-spread projection
are initialized to the unassigned state, which means they do
not belong to any tree.

• Nodes in unassigned state respond to the behaviour:

1049

Algorithm 1: min-sum BP
Input : F : bipartite factor graph with edges (i, f) between

variable nodes and factor nodes representing
constraints
N : number of iterations
Z: {zi}: available color set

Output: S: estimated optimal assignment
Initialize t = 0

foreach edge (i, f) in F do
initialize m0

f→i(z)∀z ∈ Z
end
for t = 1, 2, . . . , N do

foreach edge (i, f) in F do
update mt

i→f (z) = Φi(z) +
∑
k∈fi\f m

t−1
k→i(z)

update mt
f→i(z) =

min
y∈C|f|,yi=z

Ψf (y) +
∑
j∈f\im

t−1
j→f (yj)

end
t = t+ 1

end
Set the belief function as
bNi = Φi(z) +

∑
k∈fi m

N
k→i(z) for each variable node i

Estimate the optimal assignment S as
ŝ
N(z)
i for each variable node i

– Decide with probability p whether to start a new tree
(therefore changing their status to assigned) or to wait
a random time

– Upon receiving a message from an assigned neighbour
(that is, a neighbour already belonging to a tree), switch
to assigned status and acknowledge the membership to
the tree.

• Nodes in assigned state respond to the behaviour:

– Decide with probability p whether to invite a random
subset of its (not already-invited) neighbors to its tree
or to wait a random time.

This technique asynchronously divides the configuration-spread
projection graph into a set of disjoint trees, from which tree factor
graphs can be derived so that BP converges. Of course, when we
work with the resulting set of trees, we lose the information about
the influencing factors Ψij corresponding to components ci and cj
which are neighbors in the configuration-spread projection but have
ended up in different trees. To minimize the impact of this simplifi-
cation, we iteratively introduce this effect in the functions Φi of the
frontier nodes (that is, the nodes in a tree which are neighbors of
nodes in other trees). That is, the belief propagation process is re-
peated several times in an iterative manner, and at each iteration K
the frontier nodes are assigned a variable function ΦKi (si) which
is computed as follows:

ΦKi (si) =
∑
j∈ℵ(i)

Ψij(si, ŝ
K−1
j)

Where ℵ(i) is the set of neighbors of component ci in the
configuration-spread projection graph and ŝK−1

j is the optimal as-
signment for neighbor cj for the previous execution of the BP al-
gorithm.

Computation of the ΦKi functions is performed at each corre-
sponding component agent Ci. Computation of the Ψij functions

is randomly assigned to agents Ci and Cj to avoid agent manip-
ulation of the belief propagation process. Asset agents Ai make
a final vote after convergence based on their perceived risk miti-
gation, with each agent’s vote being weighted by the asset weigh
wai . A configuration is accepted if it receives more favorable than
negative votes (after weighting). If a configuration is rejected, the
whole process starts again.

4. EVALUATION
In this section we describe the experiments we have conducted

to validate our contributions and we discuss the results obtained.

4.1 Experimental settings
To test the performance of our multi-agent framework for reac-

tive risk mitigation, we have generated an extensive set of scenarios
representing different instances of the multilayer network model
described in Section 3.1. In particular, we have generated 60 dif-
ferent scenarios, as follows:

• We have generated six different Asset Layer graphs, two for each
of the following numbers of assets: {60, 70, 80}. Each graph was
generated as an Erdös-Renyi random acyclic graph, with p =
0.05. This creates an average degree of dependencies between
assets in the range of 3-4. This means that, on average, each asset
depends on 3-4 other assets. Each asset was assigned a random
weight, drawn from a uniform distribution between 1 and 10. For
the scope of this work, dependencies between assets are assumed
to be absolute. That is if asset ai depends on asset aj and asset
aj fails, ai fails too and all its value is lost.

• For each asset graph of N assets, two component layer cate-
gories have been generated, having 2N components each. Each
component layer category was generated as a random undirected
Erdös-Renyi graph with p values in the set {0.1,0.3}. This gen-
erates component/instance layer categories where a given 0-day
is supposed to affect, on average, 10% and 30% of the compo-
nents (with varying degree of similarity among instances). This
models a realistic situation and a worst-case scenario. For each
category, 10 different component layers were generated corre-
sponding to different configuration choices. For each instance
layer, cross-configuration vulnerability values νij between con-
figurations were randomly assigned, drawn from a uniform dis-
tribution between 0.5 and 1. Finally, components were randomly
linked to assets, ensuring that each asset depends on at least one
component and that no two assets rely on the same component.

• We randomly deployed each instance in an infrastructure layer
comprising six different network segments in a typical defense-
in-depth scenario (i.e. concentric rings of security). For each pair
of segments (si, sj) , the cross-segment vulnerability value µij
depends on the distance between the segments in the topology,
following an exponential decay, that is, µij = 1

2|i−j| .

For each one of the sixty scenarios, we ran simulations of the
redeployment negotiation process in the event of the compromise
of each single component, which accounts for 4200 different secu-
rity breach scenarios. Along with our proposed approach, we ran
simulations with four reference techniques, for comparison:

Augmented Lagrangian Particle Swarm Optimization (ALPSO):
This technique has been used because particle swarm is a well-
known optimizer that has been successfully applied to a number of
problems [35][36] and can be considered a generic nonlinear opti-
mizer that uses complete information. More specifically, we have
chosen a parallel augmented Lagrange multiplier particle swarm

1050

Table 1: Residual risk ratio results for N = 60 assets.

p = 0.1 p = 0.3

Mean 95% CI Time Mean 95% CI Time
ALHSO 0.2145 0.0057 0.9784 0.6174 0.0182 2.0667
ALPSO 0.4124 0.0197 3.1754 0.6963 0.0264 9.2430

BP 0.1680 0.0054 0.5089 0.5326 0.0154 1.0918
HC 0.2447 0.0088 1.0753 0.6522 0.0184 2.6617
SA 0.2097 0.0065 1.1552 0.5578 0.0205 2.7585

Table 2: Residual risk ratio results for N = 70 assets.

p = 0.1 p = 0.3

Mean 95% CI Time Mean 95% CI Time
ALHSO 0.3116 0.0092 1.1194 0.6677 0.0112 4.0253
ALPSO 0.3969 0.0192 6.6128 0.8024 0.0264 15.8024

BP 0.2010 0.0066 0.6877 0.6566 0.0138 2.2234
HC 0.2691 0.0063 1.5114 0.7909 0.0271 3.5227
SA 0.2074 0.0062 1.6023 0.7049 0.0121 3.6170

optimizer, which solves nonlinear non-smooth constrained prob-
lems using an augmented Lagrange multiplier approach to handle
constraints [37].

Augmented Lagrangian Harmony Search Optimization (ALHSO):
Another generic optimizer, this one based on harmony search, which
is an evolutionary optimization algorithm inspired by musical com-
position [38]. As with ALPSO, this technique will be used as a
reference of a nonlinear optimizer with complete information. As
above, we have used augmented lagrangian multipliers to deal with
constraints.

Hill-climber mediated negotiation (HC): This technique starts
from a randomly-generated solution, that is, starts by assigning a
random segment to each component in the graph. From this point,
and at every iteration, the mediator proposes a new solution (con-
tract) where a random graph node should change its value ran-
domly. If that mutation produces a better solution, we use the new
solution to generate the next mutation. This process goes on until a
maximum number of iterations is reached.

Simulated annealing mediated negotiation (SA): This is a nego-
tiation mechanism first proposed in [24] and further refined in [39]
and [25], uses a widespread nonlinear optimization technique called
simulated annealing [40]. The mechanism is similar to HC, but
when a contract yields a utility loss (i.e. risk increase) against the
previous mutually accepted contract, there will be a probability for
the agent to accept it nonetheless. This probability Pa depends on
the utility loss associated to the new contract ∆u, and also depends
on an annealing temperature parameter τ , so that Pa = e−∆u/τ .
Annealing temperature begins at an initial value, and linearly de-
creases to zero as the protocol iterates.

4.2 Simulation results
For each of the experiments detailed in the previous section, we

measured the residual risk ratio of the overall risk ρcj between
the original deployment and the reconfiguration yielded by our ap-
proach and each of the reference techniques. We also measured the
amount of time taken by each mechanism to provide a solution.

In Tables 1 to 3 we summarize the results obtained for the differ-
ent scenarios under study and for the different analyzed techniques.
The columns labeled with “Mean” represent the mean value for the
residual risk ratio for the 10 different instance layers generated cor-
responding to different configuration choices. Note that the resid-

Table 3: Residual risk ratio results for N = 80 assets.

p = 0.1 p = 0.3

Mean 95% CI Time Mean 95% CI Time
ALHSO 0.2320 0.0047 4.8296 0.7115 0.0234 12.9538
ALPSO 0.4094 0.0117 6.4584 0.8213 0.0252 11.4589

BP 0.1862 0.0056 0.8190 0.6730 0.0112 2.6136
HC 0.3036 0.0111 1.7981 0.7136 0.0167 4.5522
SA 0.2341 0.0057 1.8826 0.7246 0.0251 4.6598

ual risk ratio has been computed as the fraction of the residual risk
ρcj obtained by the optimization technique deployed and the ini-
tial risk ρcj

0 of the original deployment, so lower values are better.
We highlight in bold the best result for each scenario. We check
the validity of those results including the 95% confidence intervals
(columns labeled with “95% CI”). Finally, in those tables we also
include the time, expressed in seconds, required for each mecha-
nism to operate, also highlighting in bold the best performing tech-
nique. Results show that the best residual risk ratio is obtained by
BP in all cases, with some statistical ties. For the rest of the ana-
lyzed techniques, it is interesting to note that SA yields reasonably
good results, and clearly outperforms HC, which suggests a highly
non-monotonic scenario. Regarding the time required to compute
their results and, therefore, the time required to respond to an inci-
dent, our approach also significantly outperforms the others.

5. CONCLUSIONS AND FUTURE WORK
Securing critical network infrastructures (CNIs) is a complex

problem for today’s society, one in which artificial intelligence in
general and multi-agent systems in particular can play a big role.
Multi-agent systems have been successfully used for threat preven-
tion and detection in communication networks, but the challenge
of real-time reaction to cyber-attacks is still largely unexplored by
the multi-agent community. In this paper we have proposed a novel
multi-agent framework for reactive resilience in critical network in-
frastructures. In particular, we use a multi-layer network risk model
and a multi-agent negotiation approach to provide the network with
the ability to reconfigure itself in the event of an attack. We also
propose a negotiation process based on belief propagation (BP) and
compare it to other optimization and negotiation techniques from
the literature. Our experiments show that our BP negotiator clearly
outperforms the other approaches both in terms of residual risk and
performance. Although our experiments have yielded satisfactory
results, there is still plenty of research to be done in this area. We
have till now focused on reconfiguring the network via component
redeployment throughout the available physical infrastructure, but
now we want to explore the dual approach of changing component
configuration instead (i.e. reinstantiating components with differ-
ent configurations in the same deployment point) and see how these
two approaches combine. We are also working on reactive re-
silience against multiple simultaneous compromises. Finally, we
would like to study the influence of the underlying physical infras-
tructure on the effectiveness of the system.

Acknowledgments
This work has been supported by the Spanish Ministry of Economy,
Industry and Competitiveness grants TIN2016-80622-P
(AEI/FEDER, UE), TIN2014-61627-EXP, and MTM2014-54207,
and by the University of Alcala through CCG2016/EXP-048.

1051

REFERENCES
[1] Bo An, Milind Tambe, Fernando Ordonez, Eric Shieh, and

Christopher Kiekintveld. Refinement of Strong Stackelberg
Equilibria in Security Games. In Proceedings of the
Twenty-Fifth AAAI Conference on Artificial Intelligence,
AAAI’11, pages 587–593, San Francisco, California, 2011.
AAAI Press.

[2] Manish Jain, Jason Tsai, James Pita, Christopher
Kiekintveld, Shyamsunder Rathi, Milind Tambe, and
Fernando Ordóòez. Software Assistants for Randomized
Patrol Planning for the LAX Airport Police and the Federal
Air Marshal Service. Interfaces, 40(4):267–290, July 2010.

[3] James Pita, Milind Tambe, Chris Kiekintveld, Shane Cullen,
and Erin Steigerwald. GUARDS: Game Theoretic Security
Allocation on a National Scale. In The 10th International
Conference on Autonomous Agents and Multiagent Systems -
Volume 1, AAMAS ’11, pages 37–44, Taipei, Taiwan, 2011.
International Foundation for Autonomous Agents and
Multiagent Systems.

[4] James P. G. Sterbenz, Egemen K. Çetinkaya, Mahmood A.
Hameed, Abdul Jabbar, Shi Qian, and Justin P. Rohrer.
Evaluation of network resilience, survivability, and
disruption tolerance: Analysis, topology generation,
simulation, and experimentation. Telecommunication
Systems, 52(2):705–736, 2013.

[5] Mingyu Guo, Hideaki Hata, and Ali Babar. Revenue
Maximizing Markets for Zero-Day Exploits. In Matteo
Baldoni, Amit K. Chopra, Tran Cao Son, Katsutoshi
Hirayama, and Paolo Torroni, editors, PRIMA 2016:
Princiles and Practice of Multi-Agent Systems: 19th
International Conference, Phuket, Thailand, August 22-26,
2016, Proceedings, pages 247–260. Springer International
Publishing, Cham, 2016.

[6] Leyla Bilge and Tudor Dumitras. Before We Knew It: An
Empirical Study of Zero-day Attacks in the Real World. In
Proceedings of the 2012 ACM Conference on Computer and
Communications Security, CCS ’12, pages 833–844, New
York, NY, USA, 2012. ACM.

[7] Ghassan Ahmed Ali, Aman Jantan, and Abdulghani Ali.
Honeybee-based model to detect intrusion. In International
Conference on Information Security and Assurance, pages
598–607. Springer, 2009.

[8] L. Wang, S. Jajodia, A. Singhal, P. Cheng, and S. Noel.
K-Zero Day Safety: A Network Security Metric for
Measuring the Risk of Unknown Vulnerabilities. IEEE
Transactions on Dependable and Secure Computing,
11(1):30–44, January 2014.

[9] M. J. F. Alenazi and J. P. G. Sterbenz. Comprehensive
comparison and accuracy of graph metrics in predicting
network resilience. In Design of Reliable Communication
Networks (DRCN), 2015 11th International Conference on
the, pages 157–164, March 2015.

[10] M. Zhang, L. Wang, S. Jajodia, A. Singhal, and M. Albanese.
Network Diversity: A Security Metric for Evaluating the
Resilience of Networks Against Zero-Day Attacks. IEEE
Transactions on Information Forensics and Security,
11(5):1071–1086, May 2016.

[11] Yehiel Berezin, Amir Bashan, Michael M. Danziger, Daqing
Li, and Shlomo Havlin. Localized attacks on spatially
embedded networks with dependencies. Scientific Reports,
5:8934, March 2015.

[12] Shuai Shao and Xuqing Huang and H Eugene Stanley and

Shlomo Havlin. Percolation of localized attack on complex
networks. New Journal of Physics, 17(2):023049, 2015.

[13] Osman Yaıfmmode \breveg\else ğ\fian and Virgil Gligor.
Analysis of complex contagions in random multiplex
networks. Phys. Rev. E, 86(3):036103, September 2012.

[14] Kathleen M. Carley, Jana Diesner, Jeffrey Reminga, and
Maksim Tsvetovat. Toward an interoperable dynamic
network analysis toolkit. Decision Support Systems,
43(4):1324 – 1347, 2007. Special Issue Clusters.

[15] Mikko Kivelä, Alex Arenas, Marc Barthelemy, James P.
Gleeson, Yamir Moreno, and Mason A. Porter. Multilayer
networks. Journal of Complex Networks, July 2014.

[16] Stefan Dietzel, Julian Gürtler, and Frank Kargl. A resilient
in-network aggregation mechanism for {VANETs} based on
dissemination redundancy. Ad Hoc Networks, 37, Part 1:101
– 109, 2016. Special Issue on Advances in Vehicular
Networks.

[17] R. Fan, Y. T. Yu, and M. Gerla. RobustGeo: A
Disruption-Tolerant Geo-Routing Protocol. In 2015 24th
International Conference on Computer Communication and
Networks (ICCCN), pages 1–8, August 2015.

[18] Y. Yao, Q. Cao, and A. V. Vasilakos. EDAL: An
Energy-Efficient, Delay-Aware, and Lifetime-Balancing
Data Collection Protocol for Heterogeneous Wireless Sensor
Networks. IEEE/ACM Transactions on Networking,
23(3):810–823, June 2015.

[19] E. Casalicchio, E. Galli, and S. Tucci. Agent-based
modelling of interdependent critical infrastructures.
International Journal of System of Systems Engineering,
2(1):60–75, January 2010.

[20] I. Butun, S. D. Morgera, and R. Sankar. A Survey of
Intrusion Detection Systems in Wireless Sensor Networks.
IEEE Communications Surveys Tutorials, 16(1):266–282,
First 2014.

[21] Kun Wang, Miao Du, Dejun Yang, Chunsheng Zhu, Jian
Shen, and Yan Zhang. Game-Theory-Based Active Defense
for Intrusion Detection in Cyber-Physical Embedded
Systems. ACM Trans. Embed. Comput. Syst.,
16(1):18:1–18:21, October 2016.

[22] Paulo Shakarian, Hansheng Lei, and Roy Lindelauf. Power
Grid Defense Against Malicious Cascading Failure. In
Proceedings of the 2014 International Conference on
Autonomous Agents and Multi-Agent Systems, AAMAS ’14,
pages 813–820, Richland, SC, 2014. International
Foundation for Autonomous Agents and Multiagent Systems.

[23] Enrique de la Hoz, M. Jose Gimenez-Guzman, Ivan
Marsa-Maestre, and David Orden. Automated Negotiation
for Resource Assignment in Wireless Surveillance Sensor
Networks. Sensors, 15(11), 2015.

[24] Mark Klein, Peyman Faratin, Hiroki Sayama, and Yaneer
Bar-Yam. Negotiating Complex Contracts. Group Decision
and Negotiation, 12(2):111–125, 2003.

[25] Fabian Lang and Andreas Fink. Learning from the
Metaheuristics: Protocols for Automated Negotiations.
Group Decision and Negotiation, 24(2):299–332, 2015.

[26] Kief Morris. Infrastructure as Code. Managing Servers in
the Cloud. O’Reilly Media, 2016.

[27] Ken Gray and Thomas D Nadeau. Network Function
Virtualization. Morgan Kaufmann, 2016.

[28] Dirk Merkel. Docker: Lightweight Linux Containers for
Consistent Development and Deployment. Linux J.,

1052

2014(239), March 2014.
[29] D. Bernstein. Containers and Cloud: From LXC to Docker to

Kubernetes. IEEE Cloud Computing, 1(3):81–84, September
2014.

[30] James Turnbull. The Docker Book: Containerization is the
new virtualization. James Turnbull, 2014.

[31] David Orden, Ivan Marsa-Maestre, Jose Manuel
Gimenez-Guzman, and Enrique de la Hoz. Spectrum graph
coloring and applications to wifi channel assignment. arXiv
preprint arXiv:1602.05038, 2016.

[32] David Gamarnik, Devavrat Shah, and Yehua Wei. Belief
Propagation for Min-Cost Network Flow: Convergence and
Correctness. Operations Research, 60(2):410–428, April
2012.

[33] Lu Zheng and Ole Mengshoel. Optimizing Parallel Belief
Propagation in Junction Treesusing Regression. In
Proceedings of the 19th ACM SIGKDD International
Conference on Knowledge Discovery and Data Mining,
KDD ’13, pages 757–765, Chicago, Illinois, USA, 2013.
ACM.

[34] Alan Demers, Dan Greene, Carl Hauser, Wes Irish, John
Larson, Scott Shenker, Howard Sturgis, Dan Swinehart, and
Doug Terry. Epidemic Algorithms for Replicated Database
Maintenance. In Proceedings of the Sixth Annual ACM
Symposium on Principles of Distributed Computing, PODC
’87, pages 1–12, New York, NY, USA, 1987. ACM.

[35] K. Ishaque and Z. Salam. A Deterministic Particle Swarm

Optimization Maximum Power Point Tracker for
Photovoltaic System Under Partial Shading Condition. IEEE
Transactions on Industrial Electronics, 60(8):3195–3206,
August 2013.

[36] Pratyay Kuila and Prasanta K. Jana. Energy efficient
clustering and routing algorithms for wireless sensor
networks: Particle swarm optimization approach.
Engineering Applications of Artificial Intelligence, 33:127 –
140, 2014.

[37] P. W. Jansen and R. E. Perez. Constrained structural design
optimization via a parallel augmented Lagrangian particle
swarm optimization approach. Computers & Structures,
89(13–14):1352 – 1366, 2011.

[38] Zong Woo Geem, Joong Hoon Kim, and G.V. Loganathan. A
New Heuristic Optimization Algorithm: Harmony Search.
SIMULATION, 76(2):60–68, 2001.

[39] Ivan Marsa-Maestre, Miguel A. Lopez-Carmona, Juan R.
Velasco, and Enrique de la Hoz. Avoiding the Prisoner’s
Dilemma in Auction-based Negotiations for Highly Rugged
Utility Spaces. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems:
Volume 1 - Volume 1, AAMAS ’10, pages 425–432,
Richland, SC, 2010. International Foundation for
Autonomous Agents and Multiagent Systems.

[40] S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. Optimization
 by Simulated Annealing. Science, 220(4598):671, May 1983.

1053

