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ABSTRACT
Market Clearing is an economic concept that features attractive
properties when used for resource and task allocation, e.g., Pareto
optimality and Envy Freeness. Recently, an algorithm based on
Market Clearing, FMC_TA, has been shown to be most effec-
tive for realistic dynamic multi agent task allocation, outperforming
general optimization methods, e.g., Simulated annealing, and ded-
icated algorithms, specifically designed for task allocation. That
been said, FMC_TAwas applied to a homogeneous team of agents
and used linear personal utility functions for representing agents’
preferences. These properties limited the settings on which the al-
gorithm could be applied.

In this paper we advance the research on task allocation methods
based on market clearing by enhancing the FMC_TA algorithm
such that it: 1) can use concave personal utility functions as its in-
put and 2) can apply to applications which require the collaboration
of heterogeneous agents, i.e. agents with different capabilities. We
demonstrate that the use of concave functions indeed encourages
collaboration among agents. Our results on both homogeneous
and heterogeneous scenarios indicate that the use of personal utility
functions with small concavity is enough to achieve the desired in-
centivized cooperation result, and on the other hand, in contrast to
functions with increased concavity, does not cause a severe delay
in the execution of tasks.
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1. INTRODUCTION
Realistic multi-agent dynamic task allocation often include tasks

that require cooperation between agents. In some cases this may
be because the task is too complex to be handled by a single agent.
In other cases the task may require multiple skills, which no single
agent possesses [6]. Furthermore, multiple agents collaborating in
performing a task can significantly reduce the time required to com-
plete it, even if the task does not strictly require such cooperation.

The law enforcement problem is such a realistic application, where
police officers must attend to events reported to the police head-
quarters. While some of these events are simple and can be handled
by a single police unit (e.g., domestic quarrel, small car accident),
more complex events (e.g., bank robbery, terror attack) require mul-
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tiple officers to work together. Such complex events many times re-
quire cooperation between officers with different skills, e.g., break-
ing into a building with hostages, defusing bombs etc.

In [1], a task allocation algorithm based on Fisher Market Clear-
ing (FMC_TA) was proposed. The algorithm is suitable for dy-
namic task allocation with spatial and temporal constraints in both
centralized and distributed settings, and requires worst-case poly-
nomial and pseudo-polynomial time respectively. The algorithm
was applied to a law enforcement problem, and the empirical re-
sults reported demonstrate its advantage in comparison with state
of the art algorithms, e.g., Market-based task allocation [5], Coali-
tion Formation with Look-Ahead [7], Simulated Annealing [8] and
general-purpose algorithms solving a distributed constraint opti-
mization problem(DCOP) [11].

The Fisher Market [4] receives as input a matrix of numeral pref-
erences, i.e., the linear utility the agent derives when allocated the
resource/task as a function of the portion of the resource/task it re-
ceives1. The output of a market clearing algorithm is an allocation
of the tasks to agents that specifies the fraction of each task, which
is allocated to each of the agents [2]. FMC_TA uses this output
to allocate the tasks to agents and then generates the order in which
the agents will perform the tasks. This order must include coor-
dinated arrival to tasks that are shared and need to be performed
concurrently by multiple agents.

While the success of the FMC_TA algorithm in comparison
to both general optimization algorithms and specifically designed
task allocation algorithms was encouraging, two of its properties
limited the scenarios to which it could be applied.

First, the utility functions that were used as the input to the Fisher
market in FMC_TA were linear [1], i.e., the mechanism consid-
ers the utility that an agent derives when performing some task to
be proportional to the portion of the task allocated to it. The main
problem with such linear functions is the difficulty to express co-
operation requirements for performing a task. Thus, in applications
in which mutual performance of tasks is essential and should be
preferred over allocations of tasks to single agents, the mechanism
does not allow to express these preferences.

Second, the mechanism was designed for homogeneous agents,
i.e., all agents were assumed to have the same skills. Tasks that re-
quire agents with special skills (e.g., officers that can defuse bombs)
could not be represented and consequently, the algorithm could not
guarantee that the agents assigned to such tasks, have the capabili-
ties required for performing them.

In this paper we address the two limitations of FMC_TA men-
tioned above and design FMC_TA+, which can use concave per-

1Since in this paper we are focusing on realistic task allocation ap-
plications, we will only consider tasks as the products of the Fisher
Market
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sonal utility functions as input. We hypothesize that by replacing
linear functions by concave functions, we will be able to incentivize
agents to cooperate [3]. Furthermore, we design FMC_TAH+

such that it allows to represent agent’s skills and express the com-
bination of skills required to perform a task.

In more details, we make four major contributions:

1. We propose the use of concave utility functions within
FMC_TA (FMC_TA+), including the details of the im-
plementation and a demonstration of how the use of concave
personal utility functions encourages collaboration among
agents, in comparison with using standard linear utility func-
tions, as input for the market clearing mechanism.

2. For a scenario including two police units and two tasks, we
analyze the advantages and disadvantages in cooperation and
specify the conditions for cooperation to be more efficient
than individual work, i.e., we indicate the problem settings
that lead to higher social welfare while sharing a task and an-
alyze the implication on execution delay of the correspond-
ing missions. These insights are used to design a heuristic for
the general case that allows our algorithm to determine for
which tasks it should incentivize cooperation using concave
personal utility functions, as input for the FMC mechanism.

3. We extend the expressiveness LEP model presented in [1]
by proposing LEPH , which allows the representation of
tasks that handling them requires specific combinations of
agent’s skills, and heterogeneous agents, each with a possi-
bly different set of skills.

4. We design FMC_TAH+, an algorithm that can allocate
agents to tasks such that their skills will apply to the combi-
nation of skills required to perform the tasks. We overcome
the limitation in FMC_TA by treating each skill required
for a task as an independent product in the Fisher market that
is attractive only for agents that have this skill. Thus, the out-
come of the FMC allocation must include an agent with such
a skill to participate in performing the corresponding task.

We present empirical evaluation that emphasize the significance
of the extensions we propose to FMC_TA. Our results when
comparing FMC_TA+ to FMC_TA indicate that small concav-
ity is enough to encourage the agents to cooperate and achieve the
desired outcome in the level of cooperation and team utility. In
addition, when using functions with small concavity the execution
delay is not increased as much as when using functions with high
concavity.

In order to evaluate the performance of FMC_TAH+ on het-
erogeneous dynamic task allocation problems, we designed an ex-
periment that applies to the extended LEPH and compared
FMC_TAH+ with Simulated annealing (SA), a state of the art
meta-heuristic, which performed best among all other competing
heuristics, both in our experiments and in the experiments on the
homogeneous settings presented in [1]. The results present a sig-
nificant advantage of the performance of FMC_TAH+ compared
to the performance of SA in multiple parameters.

2. BACKGROUND
This section describes the main details of theLEP formalization

and the FMC_TA algorithm. For further details see [1].

2.1 Law Enforcement Problems (LEP )
A static LEP includes n cooperative agents (police units),

a1, . . . , an ∈ A and m tasks v1, . . . , vm ∈ V situated in a city,

with the set of all possible locations denoted byL. We use ρ(ai, vj)
to denote the travel time from agent ai’s current location to task the
location of task vj .

Each task vj has an arrival time α(vj), an importance I(vj) > 0
and a workload w(vj) specifying how much work (in time units)
must be performed to complete the task. Multiple agents can share
a single event.

An allocation of tasks to agents is denoted by an n ×m matrix
X where entry xij is the fraction of task vj that is assigned to
ai. The tasks allocated to agent ai must be scheduled , i.e., σi =
(vi1, t

i
1, t

i ′
1 ), . . . , (viMi

, tiMi
, ti ′Mi

) is a sequence ofMi triples of the
form (vik, t

i
k, t

i ′
k ), where vik is the task performed by ai, starting at

time tik until time ti ′k .
The utility for performing task vj depends on the number of

agents q that work simultaneously on task vj and is denoted by
the non-negative capability function, Cap(vj , q). Let dvjq be the

time that q agents are working together on mission vj . Thus, qd
vj
q

w(vj)

is the relative part of the mission that is performed by q agents (as
mentioned above, w(vj) is the total time required to complete the
mission). The utility derived for completing task vj is:∑n
q=1

qd
vj
q

w(vj)
Cap(vj , q).

In addition, the soft deadline function δ(t) = βγt, where β ∈
(0, 1] and γ ≥ 0 are constants, reduces the utility as a result of a
delay in the starting time of handling a task.

The discounted utility for performing task vj that arrives at time
α(vj) and initially is handled at time tvj is:

U ′(vj) = β
γ(tvj−α(vj)) ∑n

q=1

qd
vj
q

w(vj)
Cap(vj , q)

When a new task arrives, the current task (if any) being per-
formed by agent ai is denoted CT i. Agents can interrupt the per-
formance of their current task. Task interruption incurs a penalty,
π(vj ,∆w), which depends on the task vj and the amount of work
∆w completed when the task is interrupted. The penalty for event
vj decreases exponentially with ∆w to a minimum value:
π(vj ,∆w) = max{I(vj)c

w(vj)−∆w, φ · I(vj)}, where c ∈ [0, 1)
and φ > 0 are constants and φI(vj) is the minimum penalty.

The total utility derived for performing vj is thus
U(vj) = U ′(vj)−

∑
ai:v

i
1 6=CTi

π(CTi,∆w)

2.2 FMC-based Task Allocation
A Fisher market [2] contains n buyers, each endowed with an

amount of money, andm goods. An n×mmatrixR represents the
preferences of buyers over products. A market-clearing solution is
a price vector p specifying a price pj for each good j that allows
each buyer i to spend all her money on goods that maximize bang-
per-buck (rij/pj) while all goods are sold. An FMC allocation is
an n×mmatrixX where each entry 0 ≤ xij ≤ 1 is the fraction of
good j allocated to buyer i given the market-clearing prices p. FMC
allocations are Pareto optimal and also envy-free when monetary
endowments are equal [9].
FMC_TA (Fisher Market Clearing-based Task Allocation) rep-

resents agents and tasks as buyers and goods, respectively, and en-
dows each agent with an equal amount of money. R is constructed
by optimistically ignoring the inter-task ordering constraints and
assuming the maximum value for the capability function. Specifi-
cally, we set entry rij at time t to be the utility of ai immediately
moving to vj and performing it with the optimal number of agents:

rij = βγ(t+ρ(ai,vj)) max
q
{Cap(vj , q)} − π(CT i,∆w)}

where the penalty is omitted if CT i = vj .
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In the second stage of FMC_TA, the allocated tasks are sched-
uled for each agent to reflect the spatio-temporal inter-task and
inter-agent constraints. The tasks allocated to each agent ai are
ordered by greedily prioritizing according to rij/xijwj , i.e., the
ratio between the utility the agent derives for performing a task (as
reported to the mechanism) and the time the agent spends on the
task. Once the initial order is selected, each agent computes the
initial schedule σi by setting tik and ti′k . Then, start times are up-
dated to reflect inter-agent constraints so that shared task execution
leads to higher social welfare and consequently to better perfor-
mance. Next, a check is performed whether the order of tasks in
the individual schedules can be optimized by moving individual
tasks earlier without delaying the execution of shared tasks.

This process, including the FMC allocation and the scheduling
of tasks, is completed in polynomial time at the worst case [1].

3. CONCAVE PERSONAL UTILITY FUNC-
TIONS

The utility functions used as input for the FMC_TA algorithm,
as described above, are limited to expressing unary preferences of
agents over products in the Fisher market. Amador et. al. demon-
strate that, although the input to the Fisher market does not allow to
represent spatial and temporal constraints, the fairness and Pareto
optimality properties of the allocation overcome this limitation and
produce high quality results [1]. However, when using linear func-
tions, benefits that agents can derive by cooperating cannot be ex-
pressed, i.e., the input matrix is limited to indicating the maximal
utility an agent can derive by completing a task, but it does not al-
low to indicate that higher utility is derived if the task is shared by
a number of agents.

In more details, in the R matrix that is used as input for the
FMC_TA algorithm, each entry rij contains a numeric number
that is used as a linear utility function, i.e., the mechanism consid-
ers the utility for agent ai from allocation xij to be rijxij (recall
that xij is the portion of task j allocated to agent i). The FMC
mechanism allows agents only to be assigned tasks that maximize
bang-per-buck according to the price vector, thus, an agent is indif-
ferent regarding the portions of tasks it receives. In other words, the
agent values equally allocations in which it shares tasks with others
and allocations in which it performs tasks on its own (as long as all
tasks are among the set of tasks that maximize bang per buck).

In order to overcome the limitation specified above, we propose
the use of concave utility functions as input to the FMC_TA algo-
rithm. Intuitively, if we consider equal size portions of a task, con-
cave utility functions offer agents more utility for the first portion
of the task they are allocated, than for the next portion. The util-
ity becomes smaller (i.e., diminishes) with every additional portion
they allocated to them [3].

For an agent ai and a task vj , the concave utility function uij(xij) :
[0, 1] → [0, rij ] is monotonically increasing in xij . The parame-
ter rij is the original entry from the R matrix, i.e., for agent ai,
the agent’s utility for allocation xij = 1 (entire mission) is equal
regardless of the concavity of the function (uij(1) = rij). The con-
cave utility function is of the form: uij(xij) = (hijxij)

µj where
µj ∈ (0, 1] and hij = (rij)

1/µj .
The following example demonstrates how the use of a concave

utility function incentivizes agents to share tasks. Figure 1 in-
cludes three curves, each representing the utility an agent derives
as a function of the portion x of a task which is allocated to it,
i.e., x ∈ [0, 1]. All three functions are concave utility functions
with distinct exponent value µ = 0.25, 0.5, 1. For sake of conve-
nience, and with no contradiction to the definition of the concave
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Figure 1: Concave utility function vs. Linear utility function.

function stated above, we denote u(x) = (hx)µ = uµ(x). Ob-
viously, the linear utility function is a special case of the concave
utility function where µ = 1. For the same value of h the expo-
nent µ affects the gradient. The gradient is steeper in the first part
of the function, as µ is closer to zero. The utility for a fraction x
is greater when µ is closer to zero. Formally, uµ′(x) > uµ(x)
when µ′ < µ. Thus, for example when x = 0.4 the utilities are
u1(0.4) < u0.5(0.4) < u0.25(0.4).

Notice, that the functions described above only consider the por-
tion of a task that a single agent is allocated and ignore the por-
tions allocated to other agents. Hence, when presented a choice
between performing a fraction of a single task or performing the
same fraction split between two tasks, assuming all tasks have the
same utility function, the structure of the function encourages an
agent to prefer performing smaller portions of two tasks. Formally,
uµ′(x) < uµ(x1) + uµ(x2) when x1 + x2 = x. Thus, when us-
ing concave functions (with µ < 1) the mechanism tends to split
tasks between agents, even in scenarios where there are many tasks
(more than the number of agents).

Two parameters of the function, h and µ, enable representing
the importance of the task (that takes into account spatial and tem-
poral constraints) and the specific importance of cooperation, re-
spectively. For tasks where cooperation is not required we use
µj = 1 and as the need for cooperation increases the µ parame-
ter decreases.

3.1 Benefit Bounds in a Two over Two LEP

In this section we analyze the benefit agents derive from coop-
eration in a small LEP including two police units and two mis-
sions (tasks).2 We indicate the condition under which cooperation
is more rewarding than individual work. While the utility agents
derive from a task often increases when the task is shared, the ex-
ecution delay may also grow as a result of sharing. Thus, we also
analyze and detect the lower bound for the differences in execution
delay between cooperative and non-cooperative execution.

The scenario we analyze includes two missions (tasks), v1, v2,
and two agents, a1, a2. Both missions arrive at time t = 0 and
for both, cooperative execution is more rewarding. The reward for
execution of task vj is generally defined for each mission j as:

Cap(vj , q) =

{
uj if q ≥ 2

ujcj if q = 1

where cj < 1. For each task vj there is a workload wj . We use
the ρ(a, v) function to denote distance in time units between two
locations. For the case of individual work, we assume that mission
vi is closer to agent ai, and therefore, it attends that mission i.e.,
a1 attends v1 and a2 attends v2. For the cooperation alternative
execution, without loss of generality, we assume that agents first
handle mission v1. We choose to relate to the case where cooper-
ation is possible in terms of time, i.e., the second agent can arrive
at the mission location before the first agent finishes handling it.

2For larger scenarios we present empirical results in the Section 5,
indicating the effect of increased cooperation.
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Formally:
ρ(a1, v1) + w1 > ρ(a2, v1) (1)

First we present the average execution delay for each case. We
denote the average execution delay for individual and cooperative
work by EDind and EDcoo, respectively. For the case of indi-
vidual work the execution delay for each mission is equal to the
travel time from the initial location of the agent that is assigned this
mission to the location of the mission ρ(ai, vi). This scenario is
illustrated in figure 2. Thus, in a scenario without cooperation the
average execution delay is:

EDind =
ρ(a1, v1) + ρ(a2, v2)

2
(2)

a1 a2 

v1 

Event 

Police unit 

ai 
vj 

Unit i 

Event j 

v2 

Figure 2: Individual work example.

For the case in which agents cooperate in performing tasks we
assume, without loss of generality, that agent a1 is closer to mission
v1 and will arrive first at the location. The execution delay for mis-
sion v1 remains ρ(a1, v1). Before executing mission v2 the agents
have to complete mission v1. The execution time is composed of
individual work time of agent a1 and cooperative work, after agent
a2 arrives. The individual work time is the difference between the
arrival times of the agents to the mission, ρ(a2, v1) − ρ(a1, v1),
and thus, the simultaneous work time is: w1−(ρ(a2,v1)−ρ(a1,v1))

2
.

Next, the agents travel to the location of mission v2. It takes them
ρ(v1, v2) time units. This scenario is illustrated in figure 3 and the
corresponding average execution delay is:

EDcoo =
2ρ(a1, v1) + (ρ(a2, v1)− ρ(a1, v1))

2

+
w1−(ρ(a2,v1)−ρ(a1,v1))

2
+ ρ(v1, v2)

2

(3)

a1 a2 

v1 

Event 

Police unit 

ai 
vj 

Unit i 

Event j 

v2 𝜌(𝑣1, 𝑣2) 

Figure 3: Cooperative work example.

PROPOSITION 1. EDcoo − EDind ≥ 2ρ(v1, v2)

PROOF. Following equations 2 and 3 we get the following:
ρ(a2, v1) + ρ(a1, v1) + w1 + 2ρ(v1, v2) > 2ρ(a2, v2) (4)

According to condition 1, ρ(a1, v1) + w1 > ρ(a2, v1). According
to the assumption that mission v2 is closer to agent a2, ρ(a2, v1) >
ρ(a2, v2). Thus equation 4 is valid and the lower bound for the
difference is 2ρ(v1, v2).

Next we analyze the difference in social welfare between the two
executions. In order to express the utility for each mission we have
to specify the soft deadlines (as defined in [1]), i.e., the reduction
in social welfare as a result of the execution delay discussed above.
We denote soft deadline functions for events by δ(t) = βt where

β ∈ (0, 1] and t is the execution delay. We denote the social wel-
fare for individual and cooperative work SWind and SWcoo, re-
spectively. For the case of individual work the reward for each
mission is uici. Thus, the social welfare in the case of individual
work is:

SWind = βρ(a1,v1)u1c1 + βρ(a2,v2)u2c2 (5)

In the cooperative case, the agents cooperate on both missions
so they earn the maximum reward, ui. However, for mission v1

there is a period of time that agent a1 handles the mission alone
until agent a2 arrives. The length of this period is (ρ(a2, v1) −
ρ(a1, v1)), and it is denoted by ta1 . The reward for that period is
u1c1. Thus, the social welfare for cooperative execution is:

SWcoo = βρ(a1,v1)(u1c1
ta1
w1

+ u1(1− ta1
w1

))

+βρ(a1,v1)+ w
2

+
ta1
2

+ρ(v1,v2)u2

(6)

PROPOSITION 2. The difference, in social welfare between the
cooperative mode and individual mode is:

SWcoo − SWind = diffsw = u1β
ρ(a1,v1)(1− ta1

w1
)(1− c1)

−u2(c2β
ρ(a2,v2) − βρ(a1,v1)+ w

2
+

ta1
2

+ρ(v1,v2))

(7)
PROOF. Follows immediately from equations 5 and 6.

After establishing the social welfare derived for both executions,
we need to determine when cooperative execution is beneficial, i.e.,
when diffsw > 0. To this end we analyze diffsw as a function
of two parameters and establish two corollaries that follow imme-
diately from Proposition 2.

The first is the ratio between the maximum utility that can be
derived from the two missions, u1

u2
. Note that diffsw increases as

the ratio u1
u2

increases.
COROLLARY 1. diffsw > 0 when

u1

u2
>
c2β

ρ(a2,v2) − βρ(a1,v1)+ w
2

+
ta1
2

+ρ(v1,v2)

βρ(a1,v1)(1− ta1
w1

)(1− c1)
(8)

The second parameter that we investigate is the distance between
the missions ρ(v1, v2). diffsw decreases as the distance ρ(v1, v2)
increases, i.e., the farther away the missions are from each other the
better it is for agents to separate. The condition on ρ(v1, v2) that
causes this inequality diffsw > 0 to be true is:

COROLLARY 2. diffsw > 0 when

ρ(v1, v2) < logβ
u1β

ρ(a1,v1)(1− ta1
w1

)(1− c1)− u2c2β
ρ(a2,v2)

u2β
ρ(a1,v1)+ w

2
+

ta1
2

(9)

Although the complexity of the problem prevents us from pro-
ducing such analytical results for the general case, the properties
proved above can be used to design a heuristic for determining for
which tasks cooperation should be incentivized by using concave
personal utility functions as input for the FMC mechanism. In de-
tail, let dt be distance threshold and rt be a ratio threshold. For
every task vj that requires cooperation we check the following two
conditions:

1. minvk (ρ(vj , vk)) < dt

2. maxvk (
uvj

uvk
) < rt

If at least one of the conditions above holds, we encourage co-
operation by using a concave utility function for this task in FMC,
otherwise we use a linear utility function.
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4. HETEROGENEOUS AGENTS
In many realistic dynamic task allocation scenarios the agents

are heterogeneous, i.e., each agent has a set of skills, which can
be different from the sets of skills of other agents. Different tasks
may require agents with specific skills for performing them [6].
In [1] LEP was presented as a problem with homogeneous agents,
i.e., all police units had the same set of skills. However, we ar-
gue that LEP can be a perfect example for a scenario as described
above where agents may have different skills, e.g., police officers
that specialize in defusing bombs, that have dogs that can detect
drugs etc. Thus, we start the discussion of task allocation in het-
erogeneous multi agents scenarios by presenting the extension of
LEP for such scenarios. Afterwards, we present the enhanced
FMC_TA algorithm that has been adjusted for solving problems
with heterogeneous agents.

4.1 LEP with Heterogeneous Agents
The extended LEP model (LEPH ) includes a set of k unique

skills S. Each agent ai has a subset Si ∈ S of skills.
In LEPH , for each task vj we redefine the term required work-

load to be a set Wj , where each member of such a set wsj speci-
fies the workload of a specific skill s that should be applied to vj
in the combined effort for completing this task. Thus, vj is com-
pleted only if all the work specified by members in Wj has been
performed by agents that posses the required skills. Formally, the
total workload for completing the task is wj =

∑
Wj

wsj .
The allocation specifies for an agent, not only what tasks to per-

form but also what skills to use. If the agent is required to use more
than one skill in performing the task, it must do so sequentially. If
multiple agents are performing different skills, they can do so con-
currently. Formally, an allocation of tasks to agents in LEPH is
denoted by an n ×m × k matrix X where entry xijs is the frac-
tion of task vj that is assigned to agent ai, utilizing the skill s. The
agents’ schedules must include, besides the task being performed
and the start and end time, the skill the agent is utilizing, i.e., each
member of σi includes (vj , s, t, t

′) specifying the task, the skill be-
ing utilized, and the start and end time for applying skill s on task
vj by this agent, respectively.

In LEP the utility agents derive for performing task vj depends
on the number of agents that work simultaneously on the task. In
LEPH their might be additional inter skills constraints that require
concurrency between police officers with different skills. Thus, ca-
pability function, is defined for a vector ~q ∈ Nk that specifies the
number of agents with each skill working concurrently on a task,
i.e., The l’th entry in ~q represents the number of agents with skill sl
working on the task concurrently. We note, that each agent can be
counted only once, i.e., it cannot utilize multiple skills simultane-
ously. The result of the function Cap(vj , ~q) is a vector ~g specifying
for each skill, the utility derived by an agent performing it, taking
under consideration the number of agents performing this skill and
the inter skill constraints.

Let dvj~q be the time that ~q represents the set of agents working

simultaneously on task vj . Thus,
d
vj
~q

w(vj)
is the relative portion of

time that the set of agents specified by ~q are working on vj . Denote
by ~Q the set of all possible vectors ~q. The utility derived by the

agents for completing vj is:
∑
~q∈~Q

d
vj
~q

w(vj)

∑k
l=1 q[l]g[l], where q[l]

and g[l] are the l’th entry in vectors ~q and ~g respectively.
The definitions for the soft deadline function δ(t) remain the

same. Thus, the discounted utility for performing task vj with ar-

rival time at time α(vj) and which is initially handled at time tvj

is: U ′(vj) = β
γ(tvj−α(vj)) ∑

~q∈~Q
d
vj
~q

w(vj)

∑k
l=1 q[l]g[l]

When a new task arrives, the current task (if any) being per-
formed by agent ai is denoted CT i and the current skill that is
used by ai for CT i is denoted CS i. Agents can interrupt the
performance of their current task. The penalty for task interrup-
tion, π(vj ,∆w

CSi
j ), which depends on the task vj and the amount

of work ∆wCSi
j for skill CS i completed when the task is inter-

rupted. The adjusted penalty for task vj decreases exponentially
with ∆wCSi

j to a minimum value:

π(vj ,∆w
CSi
j ) = max{I(vj)c

w
CSi
j −∆w

CSi
j , φ · I(vj)},

where c ∈ [0, 1) and φ > 0 are constants and φI(vj) is the mini-
mum penalty. The penalty is positive only if wCSi

j −∆wCSi
j > 0

and CS i ∈ Si, otherwise it equals to zero.
The total utility derived for performing vj is thus

U(vj) = U ′(vj)−
∑

ai:v
i
1 6=CTi

π(CTi,∆w
CSi
j )

4.2 FMC_TA with Heterogeneous Agents
FMC_TA for heterogeneous agents (FMC_TAH ) is a gener-

alization of FMC_TA (introduced in Section 2) that can be used
in scenarios with heterogeneous agents.

In FMC_TAH each task vj is represented as k subtasks vjs,
where k is the number of skills in LEPH . We denote R as a
3 − dimensional matrix of size n × m × k. Each entry rijs
at time t represents the personal utility of agent ai when immedi-
ately moving to handle subtask vjs. If agent ai does not possess
specialty s or task vj does not require it, the value of entry rijs will
be zero. The utility is constructed by optimistically ignoring the
inter-task ordering constraints and assuming the maximum value
for the capability function, as in FMC_TA.
Formally:
rijs = βγ(t+ρ(ai,vj)) max

~q
{Cap(vj , ~q)} − π(CT i,∆w

CSi
j )}

where the penalty is omitted if CT i = vj .
FMC_TAH+ uses concave utility functions as presented in

Section 3 as entries in matrix U (instead of matrix R). This ma-
trix is used as an input for the Fisher Market Clearing mechanism.
The utility function is uijk(xij) = (hijkxijk)µj where µj ∈ (0, 1]

and hijk = (rijk)1/µj .
In order to create the input for the FMC mechanism we transform

the 3− dimensional matrix U to 2− dimensional matrix U ′ of
size n×ms. We solve the FMC problem by using the polynomial-
time algorithm as described at [10]. The FMC mechanism produces
an output of 2 − dimensional matrix X ′ that is transformed to a
3− dimensional allocation matrix X , as is defined in the section
above.

The second stage of FMC_TAH+, where allocated tasks are
scheduled for each agent to reflect the spatio-temporal inter-task
and inter-agent constraints remains the same as in FMC_TA.

5. EXPERIMENTAL EVALUATION
In our experimental study we estimate the contribution of the

two extensions we proposed for FMC_TA. First we evaluate the
success of FMC_TA+, the extension of FMC_TA that enables
the use of concave personal utility functions as input to the FMC
mechanism, by comparing it to the standard version that uses lin-
ear personal utility functions. Second we compare the success of
FMC_TAH+ in solving LEPHs, by comparing it to Simulated
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annealing, the algorithm that was found most successful among the
competitors of FMC_TA in [1].

5.1 Evaluation of FMC_TA+

In our first set of experiments, the experimental design follows
the design in [1], which resembles a realistic LEP . The city was
represented by a rectangular region of the Euclidean plane of size
6× 6 kilometers, divided into 9 neighborhoods of size 2× 2, each
with a patrol task. The setup includes 8-hour shifts (as in real po-
lice departments), with 9 agents patrolling (one in each neighbor-
hood) at the beginning of each shift. The number of tasks arriv-
ing (i.e., the load) in a shift varied between 20, 40, 60, 80 and
100 missions. Tasks arrived at a fixed rate and were distributed
uniformly at random in the city. These included four types of
events of decreasing importance I(v) = 2400, 1600, 1200, 800
from type 1 to type 4, respectively. Patrols had I(v) = 500. Event
types were selected randomly according to the distribution of real
event types provided by law enforcement authorities in our home
city: 30%, 40%, 15%, 15% of events were of type 1 to 4, respec-
tively. The workloads were drawn from exponential distributions
with means 58, 55, 45, 37 for events of type 1 to 4, respectively [1].

The Cap quality of task execution for each agent was assumed
to improve up to a maximum number of agents Qv:

Cap(v, q) = min{ q
Qv

I(v), I(v)}

where Qv = 3, 2, 1, 1 for tasks of type 1 to 4, respectively. The
discount function used was δ(v, t) = 0.9t for all v.

In [1], the FMC_TA algorithm, using linear personal utility
functions as input, was found to dominate state of the art general
and specifically designed algorithms. Therefore, to avoid redun-
dancy, we omit the comparisons we performed with other algo-
rithms and present comparisons of different versions ofFMC_TA+

with standard FMC_TA.
In order to examine the influence of concave personal utility

functions on the performance of FMC_TA+ we implemented
multiple versions of the algorithm. All versions used linear util-
ity functions (i.e., concave utility functions with µ = 1) for tasks
of type 3 and 4, since these are simple tasks with low importance
for which cooperation is not required. For tasks of type 1 and 2 we
examined a set of values for µ ∈ {1, 0.9, 0.6, 0.3}.

We also report the results of a version of FMC_TA+

(FMC_TA+
cond) that applies to the conditions for cooperation,

based on the analysis of the small scenario, as presented in Sec-
tion 3.1. In detail, for every task of type 1 and 2 we checked the
following two conditions:

1. That the distance to the closest task is smaller than 5 kilome-
ters, i.e., dt = 5.

2. That the highest ratio between the utility of the task and any
other active task is smaller than 0.5, i.e. rt = 0.5.

If at least one of the conditions applied, a concave utility function
with µ = 0.9 was used as an input for this task. Otherwise, a linear
utility function was used.

Figure 4 presents the average percentage of shared tasks, of mis-
sions of type 1 or 2 as a function of shift load. Different curves
represent the use of different values of the parameter µ in the con-
cave utility function. As mentioned above, the curve that repre-
sents FMC_TA+ using the concave utility function with µ = 1
is equivalent standard FMC_TA using linear functions as input.
Thus, in the rest of this section we refer toFMC_TA+ with µ = 1
as FMC_TA to avoid confusion. The FMC_TA+

cond version of
the algorithm used a concave function with µ = 0.9 when the con-
ditions applied and therefore is denoted by µ = 0.9+ in the figure.

It is apparent that for low loads (20, 40 and 60 missions per shift)
there is no change in the sharing percentage. However, for high
loads (80 and 100 missions) the results indicate that sharing is more
prevalent when µ < 1. Moreover, in FMC_TA+

cond agents share
more tasks than in the other FMC_TA+ versions.
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Figure 4: Cooperation as a function of shift load.

Figure 5 presents the average portion of time where three agents
work simultaneously on a mission of type 1, as a function of shift
load. All versions of FMC_TA+ show a significant increase
in simultaneous work time for all shift loads, in comparison with
FMC_TA (for all comparisons p_value < 0.05). FMC_TA+

cond

has an even higher percentage of shared time than FMC_TA+ for
all shift loads. For standard FMC_TA, the simultaneous work-
ing time between 3 agents starts at 50% at shift load 20 and de-
creases. In the busiest shift, with 100 missions, the sharing time
is below 10%, i.e., the police units hardly cooperate. However, in
FMC_TA+

cond, the agents work simultaneously on the same task
60% of the time, in all shift loads.

Among the concave functions, the one that triggered the high-
est level of cooperation when used as input to FMC_TA+, was
the function with µ = 0.9, however, the differences between all
versions using functions with µ < 1 were not significant.
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Figure 5: Cooperation time as a function of shift load.

Figure 6 and Figure 7 presents team utility and the average ex-
ecution delay, receptively, as a function of shift load. The util-
ity increases as shift load increases for all versions of the algo-
rithm. However, the utility in the standard FMC_TA version
grows more moderately when the shift load grows, than the util-
ity of FMC_TA+ and FMC_TA+

cond. The differences in util-
ity between all FMC_TA+ versions and FMC_TA are signifi-
cant for high shift loads (80 and 100). In the shifts with the high-
est load (100) FMC_TA+

cond achieves higher team utility than
FMC_TA+ but the difference is not significant.

The execution delay increased as the load of the shift increased,
for all versions of the algorithms. Yet, the more concave the utility
function used by FMC_TA+ was, the higher was the execution
delay. There are significant differences between the curves that
represent FMC_TA with a linear utility function (µ = 1) and
FMC_TA+ using concave utility functions with µ ∈ {0.3, 0.6},
p_value < 0.05.

These results are consistent with the results obtained for the level
of sharing as presented in Figures 4 and 5 and the analytical results
presented in Section 3.1 for the small scenario. The use of con-
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cave functions in FMC_TA+ directly causes an increase in co-
operation and as a result, leads to higher social welfare, albeit with
higher execution delay. Nevertheless, when using personal utility
functions with minor concavity (µ = 0.9), we get high team utility
and minor execution delay.
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Figure 6: Team utility as a function of shift load.
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Figure 7: Execution delay as a function of shift load.

The results presented above show a clear advantage in the use
of concave utility functions within FMC_TA. They show an in-
crease in the general rate of sharing tasks and a significant increase
in the sharing of the most important tasks by more than two agents.
As a result the team utility increases for all versions of concavity in
which µ < 1.

Interestingly, while the differences in the concavity of the func-
tion had very small effect on the quality of the allocations in terms
of team utility (in some cases the smallest concavity, µ = 0.9 pro-
duced the highest utility), the execution delay was affected very
differently by the different µ values. While the execution delay of
FMC_TA+ with µ = 0.9 was almost similar to FMC_TA, the
execution delay of the version with µ = 0.3 was much higher. This
indicates that a function with small concavity is enough to increase
the cooperation of the agents to the desired level, and without dete-
riorating much the execution delay.

5.2 Evaluation of FMC_TAH+

In order to evaluate the contribution of FMC_TAH we ex-
tended the experimental setup presented above to an LEPH . We
used two setups in our experiments. The first included two skills
s1, s2 ∈ S. The sets of skills of six agents a1, ..., a6 included
only s1 and the sets of skills of the remaining three agents a7, a8

and a9 included only s2. As in the previous experiment the setup
included four types of events of decreasing importance I(v) =
2400, 1600, 1200, 800 from type 1 to type 4, respectively and the
workloads were drawn from the same exponential distributions.

The workload for missions of different types is described us-
ing vectors of size two, that represent the required workload for
each skill. The workload for missions of type 1 was ~w(vj) =
(2wj/3, wj/3), for missions of type 2 was ~w(v) = (wj/2, wj/2)
and for missions of types 3 and 4 the workload was ~w(vj) = (wj).

The Cap function varied for different types of tasks. The ex-
ecution quality was monotonically non-decreasing as more agents
perform the task concurrently, up to a specific number of agents

for each of the skills. When this specific number of agents for
some skill is reached, adding additional agents with this skill can
no longer improve execution quality. For tasks of type 3 and 4 the
Cap function was:

Cap(vj , ~q) =

{
I(v) if q1 ≥ 1, q2 ∈ N
0 otherwise

For tasks of type 2 the Cap function was:

Cap(vj , ~q) =


I(v) if q1 ≥ 1, q2 ≥ 1

I(v)/3 if q1 ≥ 1, q2 = 0 ∨ q1 = 0, q2 ≥ 1

0 if q1 = 0, q2 = 0

For tasks of type 1 the Cap function was:

Cap(vj , ~q) =


I(v) if q1 ≥ 2, q2 ≥ 1

I(v)/2 if q1 ≥ 2, q2 = 0 ∨ q1 = 1, q2 ≥ 1

I(v)/4 if q1 = 1, q2 = 0 ∨ q1 = 0, q2 = 1

0 if q1 = 0, q2 = 0

The discount function was δ(v, t) = 0.95t for any v.
We examined the FMC_TAH algorithm with only linear utility

function as input to FMC and the FMC_TAH+ algorithm where
a linear utility function was used (i.e., concave utility function with
µ = 1) for tasks of type 3 and 4, and for tasks of type 1 and 2 a
concave utility function with µ = 0.9 was used.

We compared the performance of FMC_TAH with the perfor-
mance of Simulated annealing (SA). SA was selected not only be-
cause it was found to dominate all other algorithms that FMC_TA
was compared with in [1], but it was also the only other algorithm
that allowed agents to share tasks efficiently (although not as effi-
cient as FMC_TA).

Figure 8 presents the team utility (SW ) as a function of shift
load. As expected, for the lower loads (20, 40, 60) the utility in-
creases with the load and all algorithms produce the same team util-
ity. However, for the high loads (80, 100) team utility inFMC_TAH

and FMC_TAH+ continues to increase while in SA it decreases.
For the high loads (80, 100) the difference in utility between
FMC_TAH+ and SA is significant, p_value < 0.05. In ad-
dition for the highest load(100) the difference in utility between
FMC_TAH+ and FMC_TAH is significant as well.
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Figure 8: Team utility as a function of shift load in LEPH .

Figure 9 presents the percentage of shared tasks of type 1 (upper
graph) and type 2 (lower graph). For shifts with smaller loads (20,
40, 60) when both algorithms were used, for both types of mission,
nearly 100% of the tasks were shared. However, for shifts with
high loads, the agents that used FMC_TAH or FMC_TAH+

still shared close to 100% of the tasks while in SA, the rate of
shared tasks decreased. Specifically, at the highest shift load, 100,
the sharing rate for type 1 missions decreased below 70% when SA
was used.

Figure 10 presents the average execution delay as a function
of the load. Time increases with shift loads, for all three algo-
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Figure 9: Cooperation rate as a function of shift load inLEPH .

rithms. However, in shifts with the highest load, FMC_TAH and
FMC_TAH+ have a significantly lower average execution delay.
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Figure 10: Execution delay as a function of shift load inLEPH .

Figure 11 presents the average rate of abandoned tasks (tasks
that agents stopped their execution before completion) as a func-
tion of the load. Apparently, the percentage of abandoned tasks in-
creases with shift load. FMC_TAH and FMC_TAH+ have sig-
nificantly lower percentage of tasks that were not completed com-
pared to SA, for all types of shifts.
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Figure 11: Abandonment rate as a function of shift load in
LEPH .

The second setup was larger and included five skills s1, . . . , s5 ∈
S. We increased the size of the city to 10× 10 kilometers, divided
into 25 neighborhoods of size 2 × 2. The number of agents was
increased to 25 and each agent had two skills that were chosen
randomly (uniformly), the first between s1 and s2, and the second
between s3, s4 and s5.

We further increased the shift loads, with respect the the higher
number of agents, to include 56, 111, 167, 222 and 287 missions.
Tasks arrived at a fixed rate and were distributed uniformly at ran-
dom in the city. As in the previous setups there are four types of
tasks with the same importance and the same exponential distribu-
tions for the workload. Tasks of type 3 and 4 require only one skill,
s1 and s2 respectively. Task of type 2 require two skills, s2 and
a randomly chosen skill from the set {s3, s4, s5}. Tasks of type

1 require two skills, s1 and a randomly chosen skill from the set
{s3, s4, s5}. The workload division between the different skills,
the Cap functions and the discount function remain the same, as
described above for the smaller setup.

The results for the larger problem setup in general were con-
sistent with the results obtained for the smaller setup. Figure 12
presents the average team utility as the function of the load.
FMC_TAH and FMC_TAH+ dominate over SA in the high
loads (222,278). The difference in team utility betweenFMC_TAH+

and SA for the highest load (278) remains the same, 32%. How-
ever, the difference between FMC_TAH and FMC_TAH+ for
the highest load is not significant in the large problem setup (unlike
in the small setup).
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Figure 12: Team utility as a function of shift load in LEPH

(larger setup).

As mentioned above, the results for other metrics: average ex-
ecution delay, average sharing rate and average abandonment rate,
are similar to the results obtained for the small setup and were omit-
ted for lack of space.

6. CONCLUSION
FMC_TA was recently proposed for solving dynamic task al-

location problems in general, and in particular for solving LEP s.
In [1], FMC_TA was found to outperform benchmark algorithms
in both centralized and distributed settings. Despite its success, the
scenarios in which it could be applied were limited to scenarios
with homogeneous agents, and scenarios where sharing of tasks is
not strictly preferred over single handling of tasks.

In this paper we enhanced FMC_TA by introducing the use of
concave personal utility functions as the input to the FMC mecha-
nism and by extending it to apply to teams of heterogeneous agents,
i.e., agents with different skills.

By using concave personal utility functions we incentivized co-
operation between agents. We analyzed the different cases in a
small LEP with two police units and two tasks, and proved that
in this small scenario, cooperation increases the team utility but at
the same time enlarges the execution delay. Our empirical results
demonstrate that small concavity of the function is enough to en-
courage a desired level of cooperation, which can be achieved with
a minor effect on the execution delay. Based on the properties we
proved for the small case scenario, we designing a heuristic for
deciding for which tasks to use concave utility functions as input
to the FMC mechanism. The version of the algorithm using this
heuristic generated more cooperation among agents and resulted in
better performance in terms of team utility and execution delay.

We further extended the LEP model presented in [1] to repre-
sent scenarios in which specific skills of agents are required in order
to perform tasks and extended the FMC_TA algorithm to handle
such scenarios, by extending the Fisher market to include prod-
ucts for every skill required for every task (and not just product per
task as in FMC_TA). Our experiments reveled a large advantage of
FMC_TAH+ over SA.

1089



REFERENCES
[1] S. Amador, S. Okamoto, and R. Zivan. Dynamic multi-agent

task allocation with spatial and temporal constraints. In
AAAI, 2014.

[2] W. C. Brainard, H. E. Scarf, et al. How to compute
equilibrium prices in 1891. 2000.

[3] A. E. Clark and A. J. Oswald. Comparison-concave utility
and following behaviour in social and economic settings.
Journal of Public Economics, 70(1):133–155, 1998.

[4] D. Gale. The Theory of Linear Economic Models.
McGraw-Hill, 1960.

[5] E. G. Jones, M. B. Dias, and A. Stentz. Learning-enhanced
market-based task allocation for oversubscribed domains. In
Proceedings of the 2007 IEEE/RSJ International Conference
on Intelligent Robots and Systems, San Diego, CA,
November 2007.

[6] S. D. Ramchurn, A. Farinelli, K. S. Macarthur, and N. R.
Jennings. Decentralized coordination in RoboCup Rescue.
The Computer Journal, 53(9):1447–1461, 2010.

[7] S. D. Ramchurn, M. Polukarov, A. Farinelli, C. Truong, and
N. R. Jennings. Coalition formation with spatial and
temporal constraints. In Proceedings of the 9th International
Conference on Autonomous Agents and Multiagent Systems
(AAMAS-10), pages 1181–1188, Richland, SC, 2010.

[8] C. R. Reeves. Modern heuristic techniques for combinatorial
problems, 1993.

[9] J. H. Reijnierse and J. A. M. Potters. On finding an envy-free
Pareto-optimal division. Mathematical Programming,
83:291–311, 1998.

[10] L. Zhang. Proportional response dynamics in the Fisher
market. Theoretical Computer Science, 412(24):2691–2698,
2011.

[11] W. Zhang, Z. Xing, G. Wang, and L. Wittenburg. Distributed
stochastic search and distributed breakout: properties,
comparison and applications to constraints optimization
problems in sensor networks. Artificial Intelligence,
161:1-2:55–88, January 2005.

1090




