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ABSTRACT

Reinforcement Learning has long been employed to solve sequen-
tial decision-making problems with minimal input data. However,
the classical approach requires a large number of interactions with
an environment to learn a suitable policy. This problem is further
intensified when multiple autonomous agents are simultaneously
learning in the same environment. The feacher-student approach
aims at alleviating this problem by integrating an advising proce-
dure in the learning process, in which an experienced agent (human
or not) can advise a student to guide her exploration. Even though
previous works reported that an agent can learn faster when re-
ceiving advice, their proposals require that the teacher is an expert
in the learning task. Sharing successful episodes can also accel-
erate learning, but this procedure requires a lot of communication
between agents, which is unfeasible for domains in which com-
munication is limited. Thus, we here propose a multiagent advis-
ing framework where multiple agents can advise each other while
learning in a shared environment. If in any state an agent is unsure
about what to do, it can ask for advice to other agents and may
receive answers from agents that have more confidence in their ac-
tuation for that state. We perform experiments in a simulated Robot
Soccer environment and show that the learning process is improved
by incorporating this kind of advice.

Keywords

Transfer Learning, Multiagent Reinforcement Learning, Coopera-
tive learning, Autonomous Advice Taking

1. INTRODUCTION

Reinforcement Learning (RL) [16, 27] is a widely used tool to
autonomously learn how to solve sequential decision-making prob-
lems through interactions with the environment. Although RL has
been successfully employed in increasingly complex applications
[19, 20], RL agents are known to take a long time to reach conver-
gence, even when solving relatively small problems.

Transfer Learning (TL) [30] aims at alleviating this problem by
reusing previous knowledge, which has been done in many ways
following various approaches. In the teacher-student paradigm [29],
a more experienced agent (teacher) suggests actions to a learning
agent (student). This paradigm is very flexible because the student
and teacher roles may be played by both humans and autonomous
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agents, regardless of the internal representation or learning algo-
rithm of the agents [17, 29]. Teacher-student can also be used con-
comitantly with other approaches to accelerate learning, such as
function approximators or other TL methods. Furthermore, a stu-
dent may further benefit from advice given by multiple teachers
[34], which can be implemented in a Multiagent System (MAS)
composed of multiple RL agents. However, works following the
teacher-student paradigm assume that teachers follow a fixed (and
good) policy. This means that, in order to apply this idea in a Mul-
tiagent RL domain, teacher-student relations could only be estab-
lished after teachers have trained enough to achieve a fixed policy.

We here argue that simultaneously learning agents can advise
each other and accelerate learning, even when the advisor has not
yet converged to a fixed policy, as advice is likely to be useful in
the following situations:

1. A learning agent is in a new state, but a friendly agent has
already explored that region of the state space.

. A learning agent is joining a system in which other agents
have been learning for some time.

. The learning algorithm (or internal representation) of an agent
might not be as efficient as those of other agents for a given
task.

These agents can play both the roles of advisor and advisee'
during the learning process, as different agents may have explored
different areas of the state-action space at a given time step. As
all agents may be learning together, the advisor’s current policy is
most likely not optimal. In fact, even the assumption that the advi-
sor performs better than the advisee may be unrealistic if the agents
blindly advise each other. Hence, agents must be able to evaluate
how confident they are in their current policy.

The idea of giving advice to an RL agent is not new, and ear-
lier works focused on humans as teachers [6, 17]. Torrey et al. [32]
proposed a method to transfer knowledge from one task to another
as advice, however, this method requires a human-provided, hand-
coded mapping to link the two tasks. Clouse [5] proposed to train an
RL agent using an autonomous teacher that is assumed to perform
at a moderate level of expertise for the task. The work concludes
that receiving too much advice may hamper the performance of the
learner. The teacher-student framework, firstly proposed by Tor-
rey and Taylor [31] and extended by Taylor et al [29], introduces
a limitation in the number of times the teacher can provide advice,

!The agent that is giving advice and the agent that is receiving ad-
vice in our framework are hereafter referred, respectively, as ad-
visor and advisee. This terminology is introduced to differentiate
from the teacher/student phrasing, which is usually associated with
teachers following a fixed policy.



modeled as a numeric budget. The budget became an essential part
of the advising model thereafter because autonomous agents are
limited by communication costs and humans are limited by their
availability and attention capability [18]. Zimmer et al. [35] pro-
posed to build a sequential decision-making problem to learn when
to provide advise. Even though internal representations of the stu-
dent are not supposed to be known, the teacher must observe the
student rewards to solve the problem, and it is not clear if the ad-
vantages of this proposal compensate for the bad performance in
the initial steps of the learning process.

All the aforementioned works rely on a single teacher (that fol-
lows a fixed policy) to give advice, but we are interested in a sit-
uation in which multiple potential policies may be used to extract
advice. In [21], multiple agents learn the same problem and broad-
cast their average reward at the end of each epoch. Then, agents
who did not achieve the best reward average ask for advice from
the best agent. However, their setting corresponds to several agents
solving a single-agent task and sharing exploration results. Tan
[28] proposes an episode-sharing mechanism in which the agents
communicate successful episodes to accelerate learning. However,
the agents transmit episode data multiple times and no limitation
in communication is considered. Zhan et al. [34] take the possi-
bility of receiving suboptimal advice into account, and multiple
bits of advice are combined by a majority vote, which makes this
method more robust against bad advising. Furthermore, the agent
may refuse to follow the advice if it is confident enough in its pol-
icy. However, all teachers are assumed to have a fixed policy.

While in these methods either the student or the teacher alone is
in charge of triggering the advice, Amir et al. [2] propose a jointly-
initiated framework, in which both must agree that the current step
is promising to receive or provide advice. Some multi-task learning
methods that leverage among several policies are also related to
our work [3, 7, 13]. However, they usually assume that the source
policies are fixed, which is not true in our setting.

We here propose a new advising framework in which multiple
simultaneously learning agents can share advice between them. To
the best of our knowledge our proposal is the first policy advis-
ing framework intended to accelerate learning in a MAS composed
of simultaneously learning agents. Our work differs from [21] in so
far that all agent rewards depend on the joint actuation of all agents.
Furthermore, as all agents may be learning at the same time, unlike
in the majority of the advising framework proposals, we do not as-
sume that any agent follows a fixed policy. In our proposal, advice
takes place in jointly-initiated advisor-advisee relations (i.e., these
relations are only initiated under the agreement of both the advisor
and advisee [2]), which are established on demand when the ad-
visee is not confident in its policy in a given state and one or more
advisors believe that they have more knowledge for that state. All
agents are constrained by two budgets. The first one limits the num-
ber of times an agent can receive advice, and the second one limits
the number of times it can provide advice for other agents.

Our contribution in this paper is threefold. First, we propose a
novel advising framework for MASs composed of simultaneously
learning agents. Second, we introduce new confidence metrics that
allow the agent to locally (and easily) estimate if its policy is re-
liable. Third, we show that our framework can accelerate learning
in complex multiagent learning problems in our experiments, even
when all agents start learning with no previous knowledge.

2. PRELIMINARIES

In this Section we describe the underlying concepts of RL and
then present the teacher-student framework.
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2.1 Single-Agent and Multiagent RL

RL is used to solve sequential decision-making problems that
are modeled as Markov Decision Processes (MDP) [23]. An MDP
is described by the tuple (S, A, T, R), where S is the set of en-
vironment states, A is the set of actions available to an agent, T’
is the transition function, and R is the reward function (the agent
does not know 7" and R). At each decision step, the agent observes
the state s and chooses an action a (among the applicable ones
in s). Then the next state is defined by 7" and a reward signal r
can be observed. The agent goal is to learn an optimal policy 7™,
which maps the best action for each possible state. Temporal dif-
ference (TD) methods usually iteratively learn a Q-function, i.e., a
function that maps every combination of state and action to an esti-
mate of the long-term reward starting from the current state-action
pair: Q : S X A — R [33]. In finite MDPs, the SARSA algorithm
[26] eventually converges to the optimal Q-function Q*, which can
be used to define an optimal policy 7*(s) = argmax, Q" (s, a).
The update of the Q-values during training is given as Q(s, a)
Q(s,a)+alR(s,a)+vQ(s',a’) — Q(s, a)], where v is a learning
rate, s, s’ € S are the current and next state, respectively, a,a’ € A
are the current and next action, respectively, and + is a discount fac-
tor for future states. The SARSA()) algorithm is an extension of
SARS A, which improves the learning speed by updating Q-values
from past states at every time step, which is controlled by ), a factor
that describes the decay rate for this eligibility trace.

A Stochastic Game (SG) [4, 14], sometimes termed Markov Game
[15], can describe a MAS composed of multiple RL agents. A SG
is described by the tuple: (S, A1...y, T, R1...y), where y is the num-
ber of agents in the environment. The transition function now de-
pends on the joint action rather than one single individual action.
The set of states S is composed of local states from each agent:
S = 51 x S2 x --- x Sy, thus, full observability is assumed.
One way to solve a SG without specifying communication proto-
cols is learning in (S, A;, T, R;) for each agent ¢ in the same way
as in single-agent problems. The learning problem becomes harder
though, since the environment becomes non-stationary due to the
actuation of the other agents.

2.2 The Teacher-Student Framework

The teacher-student framework aims at accelerating a student
training through advice from a more experienced teacher [29]. The
teacher observes the student’s learning progress and can suggest an
action a at any step. However, advice is limited by a budget b. After
b is spent, the teacher is unable to provide further advice, hence
defining when to give advice is critical to accelerate learning. In
this formulation, the teacher is assumed to have a fixed policy and
is able to observe the current state of the student. When the teacher
identifies a state in which advising is expected to be beneficial, an
action is suggested to the student, who blindly follows the advice.

The ability to correctly predict relevant states for giving advice is
related to the available knowledge regarding the agents in the sys-
tem. Torrey and Taylor [31] propose several heuristics to identify
when the teacher should advise the student. In the case where the
agents use TD algorithms, it is possible to calculate an importance
metric for a given state. The Importance Advising strategy relies
on providing advice only for states in which an importance metric
I(s) is higher than a predefined threshold. This importance metric
is defined as

&)

This work also considers the possibility of providing advice only
when the student’s intended action is incorrect according to the
teacher’s policy, which results in a more efficient use of the budget

[(5) = m(?»x Qteacher(sy a) - main Qteache'r‘(87 Ll).



with the cost of increasing the transmitted data at each step. This
strategy is called Mistake Correcting Advice. Zhan et al. [34] ex-
tended this framework to receive advice from multiple teachers.
Their formulation provided the agent with the possibility to refuse
to follow a suggested action. However, here too, the teachers are
assumed to have a fixed policy and only the student is learning in
the environment.

3. ADVISING STRATEGY FOR SIMULTA-
NEOUSLY LEARNING AGENTS

We are interested in MAS composed of multiple autonomous
agents in a shared environment, where an agent can learn by ex-
ploring the environment and also accelerate the learning by asking
for advice from another agent that already has more experience for
the current state. In this paper we focus on MAS composed of mul-
tiple RL agents, although our framework is formulated in a general
form and is also applicable for agents using any learning algorithm.

Unfortunately, identifying which of the agents have a good pol-
icy is not easy, since some (or all) of them may be simultaneously
learning in the same environment. Hence, instead of providing a
fixed teacher (or set of teachers) like in the previous works, we pro-
pose to build ad hoc advisor-advisee relations. These relations are
established for a single step according to each agent’s confidence
in its own policy for the current state. Each agent in our advising
framework is equipped with a tuple { Pasi, Pgive, bask, bgive, G, ')
in order to be part of advisor-advisee relations. P,s, : S — [0, 1]
is a function that maps a given state to the probability of asking
for advice. At each step, before choosing their action for the cur-
rent state, agents consult their P,sx function, and, with the calcu-
lated probability, broadcast a request for advice to all reachable
agents. G defines the set of reachable agents for a given state”.
Pyive : S — [0,1] encodes the confidence of the agent in its
own policy and represents the probability of giving an advice when
requested. P, and Pgye change over time. P, is expected to
output smaller probabilities with increasing training time, while
Pyive is expected to output higher probabilities over time. by and
badvice are, respectively, the remaining budgets to receive and to
give advice, where the former is the maximum number of times
an agent can receive advice and the latter is the maximum num-
ber of times an agent can give advice. Finally, I' is a function that
combines the received advice (if more than one agent answered the
request) and selects one of the actions.

We rely on a jointly-initiated teaching strategy [2] to define when
an advisor-advisee relation is initiated, which happens only when
an advisee ¢ decides to ask for advice in a given time step (accord-
ing to a probability defined by P,sx) and an advisor j decides to
answer the advice request (according to Py;ye). An advisor-advisee
relation is composed of (i, j, s;, ¢, 7;), where s; is the state from
the advisee’s point of view, ( is a function to translate s; to a state
that j is able to understand, and 7; is the advisor’s policy (to ex-
tract the advice). In a fully observable environment, ¢ transforms
the state s; through exchanging the state features of the advisee
with the advisor without the need for additional communication. In
a partially observable environment, the advisee needs to communi-
cate her observations, which are processed by ( as if they were
the advisor’s observations. The advisor then suggests the action
according to 7;((s;)) and terminates the relation. Since advisor
policies are directly used, we assume that the agents can under-
stand or observe the state of one another and that they either are

’Some agents in the system may be temporarily unreachable, as
communication may only be possible if the agents are near, for ex-
ample.
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members of a team that receive the same reward (R1 = - -+ = Ry,)
[22] or the rewards of all agents are the same for a given tuple of
local observations and the joint actuation, which does not prevent
them from using different internal representations or algorithms.

At every learning step, the agent sends a broadcast to all reach-
able agents asking for advice in case it is not confident enough in
its policy for the current state. The agents who receive the call for
advice evaluate their confidence for the received advisee state and
establish an advisor-advisee relation if they are confident enough
in their policy for that state. The advisee combines all received ad-
vice, executing one of the suggested actions. If no advice is pro-
vided, the agent follows its usual exploration strategy, hence if the
agent cannot find an advisor willing to provide an action sugges-
tion, our frameworks reduces to regular learning with the cost of
some wasted communications. All agents are limited by a budget
bask to ask for advice and a budget by;v. to give advice. As the
actions are directly extracted from the advisor policy, we assume,
that, in all advisor-advisee relations 7; (¢ (s;)) € A;, i.e.,ina MAS
composed of heterogeneous agents, all communicated actions must
be available to the advisee. We here assume that the agents are co-
operatively trying to solve a task. Even though our framework can
be used to work with self-interested agents, that would require the
development of trust and/or argumentation mechanisms to identify
advisors in each state, which is outside of the scope of this work.

Algorithm 1 fully describes the action selection in our frame-
work. The agent first observes the current state s;. As long as the
budget b, sk is not spent, the agent calculates the probability ps, of
asking for advice in the current state according to P,sx and then,
if so chosen, sends a broadcast message to all reachable agents.
If any advisor provides an action suggestion, the budget bysk is
decremented and the provided action is executed. The I' function
determines which advice to follow in case more than one agent re-
sponded to the call. Finally, if no advice is received (either because
the agent did not ask for it or because no agent answered), the usual
exploration strategy is executed. Notice that, if the agent does not
know the reachable agent set, it can broadcast a request for advice
and wait until a predefined timeout to collect answers.

Algorithm 2 describes how an agent decides if it is confident
enough to give advice for the communicated state. At every re-
ceived call for advice, the agent estimates the probability ps; for
giving advice following Py;.., representing the confidence for its
policy. If the agent chooses to give advice, the advice giving budget
bgive is decremented and an advisor-advisee relation is established.
If the agent chooses not to give advice, the call is simply ignored.
All agents in the MAS may play both roles during the learning
process. As in the works mentioned before, the ability of predict-
ing the states in which advising is useful is critical to the success
of the method. However, in our setting, an importance metric I(s)
calculated as in Equation (1) is likely to be misleading, because
the Q-values can vary significantly until the agents have converged
their policies due to the random exploration order.

4. DECIDING WHEN TO ASK FOR AND
WHEN TO GIVE ADVICE

Deriving Importance Advising for our proposal is not straight-
forward, because the importance metric I(s) of Equation (1) may
be misleading for our setting as it does not evaluate the agent’s con-
fidence in the current Q-value estimate. Thus, we propose a new im-
portance metric that takes into account how many times the agent
explored the desired state. We calculate the advising probability to
ask for or give advice as:

Pask(s,7) = (1 +vq)~ T )



Algorithm 1 Action selection for a potential advisee ¢

Require: advising probability function P,sx, budget b,sk, action
picker function I', confidence function Y.
1: for all training steps do

2: Observe current state s;.

3: if basr > 0 then

4. Ps; & Pask(5i7 T)

5: With probability ps, do

6: Define reachable agents G(s;).
7: M+ 0

8: for Vz € G(s;) do

9: IT + I U z.advice(s;)
10: if II # () then
11: bask — bask -1
12: a + T'(II)
13: Execute a.
14: if no action was executed in this step then
15: Perform usual exploration strategy.

Algorithm 2 Response to advice requirement.

Require: advising probability function Pg;ye, budget bgiye, advi-
sor policy 7, advisee state s;, state translation function ¢, con-
fidence function W.

1: if bgive > O then

2 psj < Pgive(si, \IJ)

3 With probability ps; do

4: bgive — bgive -1

5 return 7({(s;))

6: return ()

Pgive(& )=1-(1+ Ug)_q/(s>7 (3)

where Y and WU are functions that evaluate the confidence for the
current state to, respectively, give and ask for advice (Vs € S,
T(s) > 0and ¥(s) > 0), and v, and v, are scaling variables.
These equations were designed to return a higher probability of
asking for advice when the agent has a low confidence in the cur-
rent state. Similarly, the probability of providing advice is higher
when the confidence in the state is high. Thus, a higher v, value
results in a lower probability of asking for advice, while a higher
vy results in a higher probability of giving advice. We here propose
two confidence functions, that may be used depending on the char-
acteristics of the agents in the MAS. The first metric can be used for
any kind of agent, regardless of which learning algorithm is used.
With the assumption that the agent is learning in the environment
and its policy is improving with the learning process’, we calculate
the confidence as:

T oisit(s) = \/Nwisits(s), )

where 7.yisit(s) is the number of times the agent visited the state
s. As the agent repeatedly visits a given state, this function re-
turns a higher value and, consequently, the probability for ask-
ing for advice is lower. A metric similar to Y+ is also appro-
priate for deciding when to give advice when the learning agent
cannot be supposed to follow a TD algorithm, hence we adopted
Uyisit(s) = logamvisits. If the agent can be assumed to follow a

3The number of visits is a very coarse estimation of the policy qual-
ity, because many other factors affect the learning speed (such as
internal representations or use of effective exploration techniques).
However, this metric is simple to compute and was enough to
achieve good results in our experiments.

TD learning algorithm, we can use the second confidence function,
computed as:

Urp(s) = Tuisit(s) Imaz.Q(s,a) — min.Q(s,a)|.  (5)

This function takes into account both the number of times the agent
visited the current state (encoded by Y ,;s:+) and the importance of
giving an advice in that state (as in Equation (1)).Thus, we derive
the Visit-Based Advising (T ,;sit, Vyisit) and Temporal Differ-
ence Advising (Yyisit, Y7p) for our setting by following these
confidence functions.

In case the advisee receives more than one advice, we select the
executed action through a majority vote, as in [34].

In the next Section we depict the relation between our proposal
and the state-of-the-art advising framework and present an experi-
mental evaluation of our proposal.

5. EXPERIMENTAL EVALUATION

Most of the state-of-the-art advising frameworks are not easily
adapted to tasks with simultaneously learning agents because they
were devised for different settings. We are here rather interested
in multiagent domains in which the transition function depends on
global states and joint actions.

The teacher-student framework [31] was originally devised for
single-agent tasks, but can be modified to be usable in our setting.
Tan’s proposal [28] can also be easily adapted. Thus, we investigate
the following advising strategies in our experiments:

e Ad Hoc TD advising (AdHocTD) - When the agents can
be assumed to follow a TD learning approach (and thus the
estimated Q-value is available), our proposal is implemented
as described by (Y yisit, Yrp) in the previous section;

e Ad Hoc Visit-Based advising (AdHocVisit) - We also com-
pare the results of our proposal when the confidence for ad-
vising in a state is evaluated only through the number of vis-
its, as described by (Yyisit, Wyisit) in the previous section
(i.e., learners cannot be assumed to follow a TD approach);

e Adapted Importance-Based Teacher-Student Advising
(Torrey) - We implement the original teacher-student frame-
work for our setting by defining each agent in the system as
a student of another agent (teacher). As in the original for-
mulation, advice is given when the teacher detects a state for
which Equation (1) is greater than a predetermined threshold
t. As in our proposal, the agents rely on a state translation
function ¢ to make correspondences between the teacher and
student states;

o Episode Sharing (EpisodeSharing) - As proposed in [28],
the agents share tuples of (s,a,r,s’) after a successful
episode. However, here the agents are restricted by a budget,
from which one unit is reduced for each shared tuple;

e Regular Learning (NoAdyvice) - As reference, we also eval-
uate the SARSA(X) learning algorithm without advising.

Note that the adaptation of the standard teacher-student frame-
work for our setting assumes that the teacher is able to keep track of
the student state at all time steps. Furthermore, the teacher-student
relation is fixed for a pair of agents. On its turn, our proposal is ro-
bust to states or situations in which the advisor is not able to eval-
uate the advisee state. In our experiments, the agents only ask for
advice once for the same state during the same episode. In case the
same state is repeatedly visited, an agent will only ask for advice
again in that state when the learning episode ends.



5.1 Evaluation Domain

We perform an experiment to evaluate how the different advis-
ing techniques affect the learning of a complex multiagent task. We
chose the Half Field Offense (HFO) [9] environment as our exper-
iment domain. HFO (illustrated in Figure 1) consists of a team of
friendly agents that must learn how to score goals against a team of
highly specialized defensive agents. While HFO is a simplification

Figure 1: The HFO environment with three offensive agents against
one goalkeeper.

of the full RoboCup task [10, 11, 12], it is still a hard learning task
in which the agents must take stochastic action effects and noisy
observations into account. The agents can benefit from cooperative
behaviors, which makes HFO an ideal task to evaluate the efficacy
of our proposal. A learning episode starts with the agents and ball
initiated in a random position on the field, and ends when either the
offense agents scored a goal, one of the defending agents caught
the ball, the ball left the half field in which the game is played, or a
time limit is exceeded.

Our experiments consist in a setting of three learning agents try-
ing to score goals against a highly skilled goalkeeper. The goal-
keeper follows the Helios policy (the 2012 RoboCup 2D champion
team) [1] while the learning agents start learning from scratch. The
agents may communicate but are autonomous, and the following
actions are available in the environment for each agent. When the
agent does not have the ball its only option is Move, which is an
automated action that moves the agent towards the best position
guided by the Helios strategy. When the agent is in possession of
the ball, four options are available:

1. Shoot — takes the best available shot;

2. PassNear — passes the ball to the nearest friendly agent;
3. PassFar — passes the ball to the farthest friendly agent;
4. Dribble — advances the agent and ball towards the goal.

The agent state is composed of the following observations, that are
normalized in the range [—1, 1]:

1. Able to Kick — indicates if the agent is in possession of the

ball;

2. Goal Center Proximity — provides the proximity to the cen-
ter of the goal;

3. Goal Center Angle — provides the angle from agent to goal
center;

4. Goal Opening Angle — provides the largest angle of agent to
goal with no blocking agents;

5. Friend 1 Goal Opening Angle — the goal opening angle of
the nearest friendly agent;

6. Friend 2 Goal Opening Angle — the goal opening angle of

the farthest friendly agent.
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The aforementioned state features were discretized by Tile Cod-
ing [24] configured with five tiles of size 0.5 and equally spread
over the state variable range. We performed all the experiments us-
ing SARSA()) with a learning rate of & = 0.1, a discount factor
of v = 0.9, and decay rate of A = 0.9. The e-greedy strategy was
used as the exploration strategy of all agents with e = 0.1.

All the learning agents receive the same reward of +1, when the
agents score a goal, and a penalty of —1 when the ball leaves the
field or when the goalkeeper captures the ball.

In order to evaluate the learning speed of the agents with each of
the advising frameworks, we trained the agents for 5000 episodes,
and evaluated the current performance every 20 episodes. During
evaluation, the Q-table update, random exploration, and the ability
to ask for advice are turned off for all agents, and the current policy
is used to play 100 episodes in order to evaluate the performance of
all algorithms. We performed experiments considering two scenar-
ios. In the first one, all three agents are trained from scratch. In the
second scenario, one of the agents was trained for 3000 learning
steps before the learning process. We also evaluated our approach
using the Mistake Correcting Advice strategy [31] in the first sce-
nario. It assumes that the agent asking for advice can communicate
more data, and also informs its intended action together with the
state. We expect that in this situation our proposal will be able to
present the same performance while expending less budget.

While the first scenario is of more interest for us, because all
agents are simultaneously learning, the second one takes into ac-
count systems where some of the agents are already trained. We
expect that the previous state-of-the-art methods will perform bet-
ter in the second one.

The results we describe in the next Section are averages over
50 executions of this procedure for each approach. In all experi-
ments, we used b = 1000 and ¢ = 0.01 for Torrey and Episode-
Sharing, and bask = bgive = 1000 for AdHocVisit and AdHocTD,
v, = 0.5 for both AdHocVisit and AdHocTD, with v, = 0.5 for
the former and vy, = 1.5 for the latter. We chose the scaling param-
eters in preliminary experiments, but we found out that the algo-
rithm is not very sensitive to small variations of these parameters.
A budget of 1000 steps corresponds to approximately 10 success-
ful episodes receiving guidance for all steps. The statistical signif-
icance of the experiments was assessed through a 95% confidence
Wilcoxon signed-rank test. All experiments and agents were codi-
fied using the HFO python interface®.

6. RESULTS AND DISCUSSION

The HFO domain has two standard metrics for performance eval-
uation. Goal Percentage (GP) is the percentage of the evaluation
episodes in which a goal was scored and Time fo Goal (TG) is the
average number of steps it took to score a goal. The two metrics
must be analyzed together and, ideally, the Goal Percentage is as
high as possible and the Time to Goal is as low as possible [9]. We
present the results for all evaluated scenarios in the next Sections.

6.1 All Agents Learning from Scratch

Figure 2 shows the Time to Goal (TG) metric for all algorithms.
During the first learning episodes the agents score goals very quickly
because they are attempting long shots right after obtaining the ball
possession. When this behavior results in a goal, TG is very low,
however, this happens rarely, which can be seen by the low Goal
Percentage (GP) observed in Figure 3 on the initial episodes. After
roughly 700 episodes, the agents were able to find a safer behavior

‘Al implementations are available at https://github.com/
f-leno/AdHoc_AAMAS-17.



to score goals, resulting in higher TG values yet allowing an in-
crease in GP. After 3000 learning episodes (see Figure 2 - right), the
difference between the TG observed for AdHocVisit and AdHocTD
became statistically significant when compared to NoAdvice. Tor-
rey had a significantly lower TG than NoAdvice until roughly 800
learning steps (see Figure 2 - left) and after that maintained compa-
rable results. Finally, EpisodeSharing was not significantly better
than NoAdvice in this metric. Thus, the ad hoc advising achieved
the best results regarding TG. However, because the difference in
average is not very high (roughly 3 steps) and we also observed
similar outcomes in all scenarios, hereafter we focus on the GP
metric to compare the algorithms.

Figure 3 shows the GP observed for all algorithms and Figure
4a shows the spent budget. As expected, Torrey’s importance met-
ric was misleading because the agents were learning from scratch,
which caused significantly worse performance between (roughly)
100 and 750 learning episodes when compared to NoAdvice. The
available budget for advising was inefficiently spent completely
during that interval. After that, the difference was not significant,
which means that Torrey brought no benefits at all in this experi-
ment.

In his work, Tan [28] concludes that EpisodeSharing accelerates
learning when the agents have an unrestricted budget. However, in
this experiment all the budget was spent after 80 learning episodes.
This resulted in a speed-up between 600 and 800 episodes, but af-
ter that the results were not significantly different from NoAdvice,
which shows that EpisodeSharing does not perform well when a
restricted budget must be taken into account. AdHocVisit was sig-
nificantly better than NoAdvice between 1400 and 1900, and in all
evaluations after 4000 learning episodes, resulting also in a better
asymptotic performance.

Notice also that AdHoc Visit finished the learning process without
using all the available budget, which summed up with the achieved
speed-up means that the advising budget was thoughtfully spent.
Finally, AdHocTD was significantly better than NoAdvice from 1400
learning episodes until the end of training. While AdHocTD was
never significantly worse than any of the algorithms after 1000
training steps, it also finished the experiment using less than 40% of
the available budget. Figure 4b shows the performance of the algo-
rithms in the last training episodes. The results of this experiments
show that AdHocTD is an efficient advising method when all agents
are learning simultaneously, and that AdHoc Visit can achieve a rea-
sonable speed-up when the learning algorithm is unknown.

6.2 Correcting Advice

We here give the ability to the advisee to communicate its in-
tended action together with the current state when asking for ad-
vice. The experiment in Section 6.1 is repeated, and we show the
results for AdHocTD, AdHocVisit, and Torrey (which are the algo-
rithms for which the Mistake Correcting Advice can be
implemented). Figure 5 shows the GP observed for these algo-
rithms. AdHocVisit and AdHocTD present no significant difference
in performance when comparing to the results in Figure 3. How-
ever, when comparing the spent budget (Figure 6a) it is noteworthy
that the same performance is achieved using less budget, which
means that the ad hoc approach makes good use of the extra avail-
able information. On its turn, Torrey presents negative effects in
this scenario. Figure 6a shows that the extra information allowed
the algorithm to use the budget for more time. However, this only
increased the number of misleading advice, resulting in a signif-
icantly worse performance after 2700 episodes, and in a worse
asymptotic performance, which is better visualized in Figure 6b.
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6.3 One Expert Agent Included

Figure 7 shows the GP metric observed for all algorithms, while
Figure 8a shows the spent budget. Notice that all the algorithms (in-
cluding NoAdvice) performed better than NoAdvice when all agents
are learning from scratch, which means that the agents learn to col-
laborate and solve the task faster when an expert is present.

Torrey is significantly worse than NoAdvice from 120 learning
episodes until roughly 650 episodes. Even though the expert now
offers good advice, sometimes the two learning agents present mis-
leading advice, which still hampers learning. After that, Torrey is
not significantly better than NoAdvice. On the other hand, Episode-
Sharing benefited from the presence of an expert agent, and pre-
sented a significantly better performance than NoAdvice from
roughly 350 to 550, 2600 to 3000, and 4950 to 5000, also finishing
the learning process with a better asymptotic performance.

AdHocVisit was worse than NoAdvice from 100 to 400 learning
episodes, but after episode 1750 AdHocVisit was always better and
achieved a higher asymptotic performance. The spent budget is also
smaller than in the first scenario, because the expert agent seldom
ask for advice. AdHocTD was never significantly worse than NoAd-
vice, and was always better after roughly 1300 learning episodes.
Also, AdHocTD spent less budget than AdHocVisit.

Compared to other Advising frameworks, AdHocVisit was worse
than EpisodeSharing until episode 800. After that, AdHocVisit
achieved a better result for almost all evaluations after episode 2800.
AdHocTD was never significantly worse than EpisodeSharing and
always better after episode 2700. Finally, AdHocTD was never worse
than AdHocVisit and had a better performance for most evaluations
since the beginning of the learning process. The performance for
all algorithms in the last learning episodes is depicted in Figure 8b.

6.4 Discussion

These scenarios show that the ad hoc advising approach achieves
better performance than other state-of-art algorithms when multiple
agents are simultaneously learning in a shared environment. The
achieved speed-up is significant when taking into account the com-
plexity of the domain, the limitation in the number of communica-
tions for asking for advice, and that the agents have no access to
previous information as implied by many TL algorithms. In addi-
tion to achieving better performance, our proposal also makes use
of less advising interactions, spending less budget than previous
proposals in our setting. We showed that the used budget can be
further reduced by using the Mistake Correcting Advice strategy,
i.e., including the intended action in communications when asking
for advice.

Finally, our experiments indicate that, when the learning agents
can be assumed to follow TD algorithms, the AdHocTD formula-
tion achieves a better performance, but the AdHocVisit formulation
still presents reasonable improvements in the learning process with-
out assumptions in regard to the learning algorithm.

7. CONCLUSION AND FURTHER WORKS

We here proposed a new advising framework in which multiple
agents can simultaneously learn and advise each other, even when
all agents start with no previous knowledge. In our framework, the
learning agents evaluate their confidence in the current state, and
may ask for guidance if their current policy is not reliable enough.
Then, the other agents may provide an advice if they are confident
enough in their policies. Rather than defining a fixed teacher for a
given student, the agents can establish ad hoc relations only for the
states in which their current policies are expected to be useful for
others. For this purpose, we propose two simple yet effective con-
fidence functions to evaluate the agent policies. Our experiments in
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Figure 2: The average number of steps to score a goal observed in the evaluation steps for each algorithm when learning from scratch. The
numbers are averages from 50 runs and the shaded area corresponds to the 95% confidence interval. The performance achieved by a random
agent was included as baseline. The performance of all algorithms is roughly constant between 1000 and 3000 learning steps, thus we show

the relevant intervals for ease of visualization.
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Figure 3: The average percentage of goals observed in the evaluation steps for each algorithm when learning from scratch. The numbers are
averages from 50 runs and the shaded area corresponds to the 95% confidence interval.
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Figure 4:

a complex simulated Robot Soccer task showed that the learning
is accelerated by the use of our advising framework. Even though
Tan’s proposal [28] is reported to accelerate learning when agents
can communicate among themselves without restrains, our experi-
ments show that its use of budget is very inefficient in restricted do-
mains. Furthermore, the conventional teacher-student importance
metric is misleading when the teacher is learning together with the
student. Both techniques were outperformed by ad hoc advising,
which shows that our advising framework is promising for acceler-
ating multiagent learning, especially when all agents start the learn-
ing process together with no previous knowledge.

Future works can improve the number of required communica-
tions for the ad hoc advising. One possible way to do so is to in-
teract with possible advisors and do not ask for advice for some
time if all agents are in the very beginning of the learning process.
In this work we do not focus on the discovery of the set of pos-
sible advisors. Garant et al [8] dynamically chose the "mentors"

EpisodeSharing

5000
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74 = AdHocTD

—— Torrey EpisodeSharing —— NoAdvice Random

4700 4800
Training Episodes

(b)

The average spent budget (a) and the zoomed averages of the last learning episodes (b) of the evaluation described in Section 6.1.

for Tan’s advising framework [28] through context features. Fu-
ture work could use Garant’s proposal to define the set of reachable
agents (. Furthermore, the efficacy of the ad hoc advising is still
unexplored in MAS composed of many agents following different
learning algorithms or internal representations. Ad hoc advising can
also be combined with other TL approaches, as in the framework
proposed in [25]. Finally, our work focused on cooperative tasks,
however real-work applications need to deal with agents following
unknown or diverse objectives. Therefore, another branch of future
work can be the development of trust mechanisms to estimate the
quality of advisors.
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