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ABSTRACT
We study the voting problems where given is an election associ-
ated with a subset J of candidates, and the question is whether we
can modify the election in a way so that none of the candidates
in J wins the election. The modification operations include either
adding some votes/candidates or deleting some votes/candidates.
These problems are natural generalizations of destructive control
problems where J is a singleton and capture many practical situa-
tions. We achieve a broad range of complexity results for a number
of single-winner voting systems involving voting rules which are
compositions of commonly used voting correspondences, such as
Borda, Maximin and Copelandα, and three tie-breaking schemes,
namely the fixed-order, random candidates and random votes. In
particular, we achieve polynomial-time solvability results, NP-hardness
results, fixed-parameter tractability results as well as XP results. In
addition, we study other tie-breaking schemes and show that the
complexity of the problems may depend on tie-breaking schemes.

Keywords
destructive control; voting systems; Borda; Maximin; Copeland; 
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1. INTRODUCTION
Voting is a common method for preference aggregation and col-

lective decision-making, and has significant applications in mul-
tiagent systems, political elections, web spam reduction, pattern
recognition, etc. For instance, in multiagent systems, it is often
necessary for a group of agents to make a collective decision by
means of voting in order to reach a joint goal. In real-world ap-
plications, there exist many potential factors that may affect the
result of voting. For instance, an external agent may add some
new voters/candidates or delete some voters and candidates. These
scenarios have been formulated as strategic voting problems and
extensively studied in the literature [2, 3, 5, 7, 15, 23, 31, 34]. A
prominent method to address such issues concerning strategic be-
havior is to use complexity as a barrier [3, 11, 22]. The key point
is that if it is computationally hard for the external agent to fig-
ure out how to successfully change the result, he may refrain from
attacking the voting.
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Typical goals of the external agent are to make some distin-
guished candidate p win the election or make p lose the election.
A strategic voting problem with the former goal is referred to as
a constructive problem and with the latter one a destructive prob-
lem. Constructive strategic voting problems have long been stud-
ied since the conducted work of Bartholdi, Tovey and Trick [2, 3],
while the study of destructive counterpart was postponed till the
works of Conitzer, Sandholm and Lang [6], and Hemaspaandra,
Hemaspaandra and Rothe [15]. The motivation of the study of de-
structive strategic voting problems can be summarized as follows.
First, the external agent may have a strong will to prevent someone
from winning. Second, constructive strategic voting problems of-
ten turned out to be computationally harder than their destructive
counterparts, see, e.g., [4, 9, 33]. As a consequence, the external
agent who is a strong supporter of some candidate may find it is
more efficient to indirectly support his favorite candidate by carry-
ing out some strategic operations against some other candidates.

In this paper, we mainly study destructive strategic voting prob-
lems. However, in contrast to previous studies where the exter-
nal agent desires to prevent only one distinguished candidate from
winning the election, we consider the general case where there is
a set J of distinguished candidates whom the external agent wants
to make lose the election. This generalization captures more real-
world situations. For instance, in voting with multi-issue domains,
each candidate has a multi-issue structure and is uniquely identi-
fied by values that these issues take. In this case, the external agent
may averse a specific value of an issue and hence wants to prevent
all candidates taking this value from winning. Multi-issue domains
have been extensively studied in the literature. In addition, such
a generalization makes much sense concerning the second aspect
of motivation discussed above. Moreover, for both theoretical and
practical interests, the size of J provides a natural parameter for the
study of the problems from the parameterized complexity point of
view. For instance, in many real-world voting, there may be only a
few competitive candidates and other candidates have small chance
to win. If the resource is limited (e.g., lack of enough money),
the supporter of a specific candidate might focus on strategies only
against (other) competitive candidates.

We consider four modification operations potentially carried out
by the external agent, namely adding votes, deleting votes, adding
candidates and deleting candidates, leading to four problems de-
noted by RCAV, RCDV, RCAC and RCDC, respectively. In gen-
eral, each problem asks whether the external agent can make all
candidates in J lose the election by carrying out the correspond-
ing modification operation. We refer to Preliminaries for the for-
mal definitions of these problems. We investigate the (parameter-
ized) complexity of these problems for numerous single-winner
voting systems, involving voting rules which are compositions of
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the prevalent voting correspondences Borda, Copeland and Max-
imin and some tie-breaking schemes, including the fixed-order, ran-
dom candidates and random votes. We achieve a broad range of
complexity results including polynomial-time solvability results,
NP-hardness results, fixed-parameter tractability results as well as
XP results.

Recall that a parameterized problem is a subset Q ⊆ Σ∗ × N
for some finite alphabet Σ, where the first component is the main
part and the second component is the parameter. A parameter-
ized problem is fixed-parameter tractable (FPT) if it is solvable in
O(f(k)|n|O(1)) time, and is in XP if it is solvable in O(|n|f(k))
time, where k is the parameter, |n| is the size of the main part and
f is a computable function in k. A parameterized problem is para-
NP-hard if it is NP-hard even for constant parameters.

We first show that, except for RCDC for Maximin, all problems
are NP-hard. Then, we investigate how the size of J affects the
parameterized complexity of the problems. On the one hand, we
show that some of these problems are para-NP-hard. On the other
hand, we show all the remaining problems become polynomial-
time solvable if J contains a constant number of candidates. In
the parameterized complexity language, we show that they are ei-
ther fixed-parameter tractable, or fall in the class XP. In particu-
lar, for RCAC for Maximin we derive a single-exponential time
algorithm with running time O∗(2k)1. See Table 1 for a summary
of our complexity results. Our results hold for all aforementioned
tie-breaking schemes. However, we study an artificially made tie-
breaking scheme and show that there are problems whose complex-
ity differs with respect to this tie-breaking scheme and some of the
aforementioned tie-breaking schemes (see Theorems 3, 9 and 10).

The main reason that we study Borda, Copeland and Maximin
is that they are among the most significant voting correspondences
that have been extensively studied in the literature. In particular,
Borda is arguably the most classic positional voting correspon-
dence, and Copeland and Maximin are well-studied Condorcet-
consistent voting correspondences. Recall that the Condorcet win-
ner is the candidate who is preferred to every other candidate by a
majority of the voters. It is widely believed that Condorcet winner
outperforms all other candidates in many senses. Unfortunately, the
Condorcet winner does not always exist. A voting correspondence
is Condorcet-consistent if it selects the Condorcet winner when-
ever it exists. We would like to point out that studying the same
problems for other voting such as Bucklin and Approval is also an
interesting topic.

1.1 Preliminaries
Voting Correspondence. A voting is specified by an ordered set
C of candidates, a multiset ΠV = {�v1 ,�v2 , ...,�vn} of votes
cast by a corresponding set V = {v1, v2, . . . , vn} of voters (�vi is
cast by vi), and a voting correspondence ϕwhich maps the election
E = (C,ΠV ,V) to a nonempty subset of candidates ϕ(E), the win-
ners. If there is only one winner, we call it the unique winner. We
often discard V from the above notation for election E since ΠV is
sufficient to determine the winners. Each vote �v∈ ΠV is defined
as a linear order over the candidates, which is also referred to as
the preference of the vote. If it is clear from the context, we drop
v from �v . We say a is ranked above b in a vote �v if a �v b.
Throughout this paper, we interchangeably use the terms “vote”
and “voter”.

For a vote� over C andC ⊆ C,�C is the vote� restricted toC,
i.e., for c, c′ ∈ C, c � c′ implies c �C c′. Moreover, (C,ΠC

V ) is
the election (C,ΠV) restricted to C, i.e., an election with candidate
1O∗() is the O() notation with suppressed factors polynomial in
the size of the input.

setC and vote set {�C |�∈ ΠV}. For simplicity, we write (C,ΠV)
for (C,ΠC

V ).
For two candidates c and c′ in an election E = (C,ΠV),NE(c, c′)

is the number of votes preferring c to c′ in ΠV . We drop the index
E when it is clear from context. If NE(c, c′) > NE(c

′, c), we say
c beats c′; otherwise if NE(c, c′) = NE(c

′, c) we say c ties c′ in
E . In this paper, we mainly study the following voting correspon-
dences.

Borda: Every voter gives 0 points to her last-ranked candidate, 1
point to her second-last ranked candidate and so on. A can-
didate with the highest score is a winner.

Copelandα: For a candidate c, let B(c) and T (c) be the sets of
candidates who are beaten by c and who tie with c, respec-
tively. The Copelandα score of c is |B(c)|+α · |T (c)|. Here,
α is a rational number such that 0 ≤ α ≤ 1. A Copelandα

winner is a candidate with the highest score.

Maximin: For a candidaet c, the Maximin score of c is defined
as minc′∈C\{c}N(c, c′). A Maximin winner is a candidate
with the highest Maximin score.

Voting Rule. A single-winner voting is a voting with the voting
correspondence being replaced with a voting rule. A voting rule
ψ = µ ◦ ϕ is the composition of a voting correspondence ϕ and a
tie-breaking scheme µ which assigns to each C ⊆ C a probability
distribution over C and selects exactly one winner according to the
probability distribution. For simplicity, let µ(C, c) be the probabil-
ity µ assigns to c ∈ C. Hence,

∑
c∈C µ(C, c) = 1.

Tie-Breaking Scheme. The following tie-breaking schemes are
widely studied in the literature. Let (C,ΠV) be an election and
C ⊆ C a subset of candidates.

Fixed-Order µFO: There is a pre-defined order over C, and for each
c ∈ C, µFO(C, c) = 1 if and only if c is ranked above every
other candidate in C in the pre-defined order.

Random Candidates µRC: For each c ∈ C, µRC(C, c) = 1/|C|.
Random Votes µRV: For each c ∈ C, let nc be the number of votes

that rank c in the top among all candidates in C. Then,
µRV(C, c) = nc/|ΠV |.

Problem Formulation. We first formulate a general problem.

Multimode Control

Input: An ordered set C of candidates, a multiset ΠV of votes
over C, a subset D ⊆ C, a nonempty subset J ⊆ C \ D, a
submultiset ΠU ⊆ ΠV , positive integers kAV ≤ |ΠU |, kDV ≤
|ΠV \ ΠU |, kAC ≤ |D|, kDC ≤ |C \ (D ∪ J )|, a real number
0 ≤ ρ ≤ 1, a voting correspondence ϕ and a tie-breaking
scheme µ.

Question: Are there D ⊆ D, C ⊆ C \ (D ∪ J),ΠV ⊆
ΠV \ ΠU ,ΠU ⊆ ΠU such that |D|≤ kAC, |C|≤ kDC, |ΠU |≤
kAV, |ΠV |≤ kDV and µ(ϕ(A,ΠF ), c) ≤ ρ for every c ∈
J ∩ ϕ(A,ΠF ), where A = ((C \ D) \ C) ∪ D and ΠF =
((ΠV \ΠU ) \ΠV ) ∪ΠU?

In the definition, candidates in D and votes in ΠU are referred
to as unregistered candidates and unregistered votes, respectively.
Candidates not in D and votes not in ΠU are referred to as regis-
tered candidates and registered votes, respectively. Moreover, can-
didates in J are distinguished candidates. In general, the question
asks, given the original election (C \ D,ΠV \ ΠU ), whether an
external agent can add at most kAV unregistered votes and kAC un-
registered candidates, delete at most kDV registered votes and kDC
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registered candidates, so that every candidate in J has a possibility
less than ρ to win the election.

Resolute Control. Resolute control problems are special cases
of the multimode control problem. Hence, we only describe how
the inputs are restricted in each problem. First, in all resolute con-
trol problems we have ρ = 0. That is, the external agent has a
“resolute” goal to prevent all distinguished candidates from having
any chance to win. Clearly, NP-hardness for ρ = 0 implies the
NP-hardness for ρ being a part of the input. Moreover, in each res-
olute control problem, the external agent may perform only one of
the following four modification operations: adding votes, deleting
votes, adding candidates and deleting candidates. Therefore, we
have in total four problems—RCAV, RCDV, RCAC and RCDC.
Here “RC” stand for “resolution control” and “AV|DV|AC|DC”
stand for “adding votes|deleting votes|adding candidates|deleting
candidates”. Precisely, for eachX ∈ {AV, DV, AC, DC}, in the in-
put of the RCX problem, kY = 0 for every Y ∈ {AV, DV, AC, DC}\
{X}. Moreover, for X ∈ {AV, DV, DC}, D = ∅, and for X ∈
{AC, DC, DV}, ΠU = ∅.

Throughout this paper, I = (C,ΠV ,D ⊆ C, J ⊆ C \ D,ΠU ⊆
ΠV , kAV, kDV, kAC, kDC, ρ = 0, ϕ, µ) is the given instance of the
resolute control problem under consideration. We will not state this
again in all proofs. In addition, RCX for µ ◦ ϕ is RCX with voting
correspondence and tie-breaking scheme ϕ and µ, respectively. For
simplicity, when mentioning an instance of a problem in a proof,
we ignore µ ◦ϕ and the components with values 0 or ∅. Moreover,

m = |C|,m′ = |D|, n = |ΠV |, n′ = |ΠU |, k = |J |.

1.2 Related Work
Our work is closely related to constructive/destructive control by

adding/deleting votes/candidates extensively studied in the litera-
ture. The abbreviated names of these control problems are “CCAV,
CCDV, CCAC, CCDC, DCAV, DCDV, DCAC, DCDC”, where the
first two characters “CC|DC” stand for “constructive control|destructive
control” and the last two characters “AV|DV|AC|DC” stand for
“adding votes|deleting votes|adding candidates|deleting candidates”.
In particular, for each X ∈ {AV,DV,AC,DC}, CCX (resp. DCX)
has the same input as that of RCX but with J = {p}, and the ques-
tion is whether p can win (resp. lose) the election by carrying out
the corresponding modification operations (see [3, 13, 15] for fur-
ther details). Faliszewski, Hemaspaandra and Hemaspaandra [12]
studied a generalization of the above control problems where the
external agent launches a multimode attack. In particular, in the
generalization, all operations imposed in the above control prob-
lems, as well as operations of bribing votes are allowed. It is impor-
tant to point out that control problems are mainly concerned with
voting correspondences instead of voting rules. Hence, two dif-
ferent models, so-called the unique-winner and nonunique-winner
models, used to specify the exact meaning of winning an election
are often simultaneously studied for each of the above problems in
the literature. In particular, in the unique-winner model winning
an election means to be the unique winner, and in the nonunique-
winner model, winning an election means to be one of the winners
(can be also the unique winner). The terms “UNI” and “NON” are
appended to the names of the problems to specify the models of the
problems. For instance, CCAV-UNI is the unique-winner model of
the constructive control by adding votes problem, and CCAV-NON
is the nonunique-winner model of the same problem. In discus-
sions concerning control problems in this paper, results for CCX
and DCX for every X ∈ {AV,DV,AC,DC} hold for both the
unique-winner model and the nonunique-winner model.

In general, the relation between control problems and resolute
control problems are as follows. ForX ∈ {AV, DV} and many vot-
ing rules, by setting J = (C \ D) \ {p}, we can reduce CCX-UNI
to RCX, where p is the distinguished candidate in the CCX-UNI
instance and J is the set of distinguished candidates in the RCX in-
stance. Notice that this does not apply to the case X ∈ {AC, DC}.
The reason is that when X = AC, someone in D instead of p can
also prevent all candidates in J from winning, and when X = DC
we are not allowed to delete candidates in J in RCX. Notice that
tie-breaking schemes have impact on this relation. We will dis-
cuss this issue in detail in the next section. On the other hand, for
X ∈ {AV, DV, AC, DC}, DCX-NON is a special case of RCX.

Since we focus on single-winner voting, it does not make sense
to study constructive counterparts of the resolute control problems,
i.e., to make all candidates in J win the election (if |J |> 1, the
given instance must be a No-instance; otherwise, we have the con-
structive control problem). However, one may wonder the prob-
lems where the goal of the external agent is to make at least one
candidate in J win the election. In fact, these are special cases
of constructive control problems for multi-winner voting studied
in [21, 22, 25, 26]. In this setting, the external agent has a utility
to each candidate, and the goal of the external agent is to select
exactly k′ winners with a total utility greater than a given number
R by adding/deleting votes/candidates. So, if the external agent
has utility R to all candidates in J and has utility 0 to all the other
candidates, we have the problems discussed above.

Our study is also related to the recent work by Erdélyi, Reger and
Yang [10] where the destructive control problems in the setting of
group identification were investigated. In group identification, vot-
ers and candidates coincide. Each voter either qualifies or disqual-
ifies each candidate and the goal of group identification is to select
a subset of individuals, which are referred to as socially qualified
individuals. They studied destructive control problems where the
goal of the external agent is to prevent a given subset of individ-
uals from being socially qualified. Nevertheless, they are mainly
concerned with the complexity of the problems, rather than the pa-
rameterized complexity of the problems with respect to the size of
the given subset of individuals.

2. UNBOUNDED NUMBER OF
DISTINGUISHED CANDIDATES

In this section, we investigate the complexity of resolute control
problems when |J | is not considered as a parameter. Let X ∈
{AV,DV}. We shall establish a connection between RCX and
CCX-UNI in order to show the NP-hardness of RCX in general.

Suppose that a candidate p ties with several other candidates.
Let µ be a tie-breaking scheme which breaks ties in a way so that
a positive probability of p to win implies a positive probability of
at least one of other tied candidates to win. Then to make p win
with respect to µ ◦ ϕ where ϕ is a voting correspondence means
to make all except p lose the election with respect to ϕ. Due to
this, we can reduce CCX-UNI to RCX by defining J as the set
of all registered candidates except the distinguished candidate in
the instance of CCX-UNI. As a consequence, the NP-hardness of
CCX-UNI implies the NP-hardness of RCX.

Clearly, µRC satisfies the condition discussed above. For µFO,
if p is ranked last in the pre-defined order, then µFO satisfies the
condition. On the other hand, µRV does not satisfy the condition.
Consider the situation where p is ranked above every other tied
candidate in every vote. Then none of the tied candidates except p
has a positive chance to win. Nevertheless, for many voting, two
candidates c, c′ can tie only when there are both votes ranking c
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Maximin Copelandα, 0 ≤ α ≤ 1 Borda
k general k general k general

RCAV pa-NP-h (Theorem 4) NP-h (Theorem 1) pa-NP-h (Theorem 4) NP-h (Theorem 1) XP (Theorem 7) NP-h (Theorem 1)RCDV

RCAC FPT (Theorem 5) NP-h (Theorem 2) FPT (ILP-based) NP-h (Theorem 2) XP (Theorem 8) NP-h (Theorem 2)O∗(2k)
RCDC P (Theorem 3) (Theorem 6)

Table 1: A summary of our results on the complexity of resolute control problems. All results hold for the 3 tie-breaking schemes
described in Preliminaries. In the table, “P” stands for “polynomial-time solvable”, “NP-h” for “NP-hard” and “pa-NP-h” for
“para-NP-hard”. Moreover, k is the number of distinguished candidates. Results in columns indicated by “general” means that we
do not consider k as a parameter. All XP results are based on dynamic programming algorithms.

above c′, and votes ranking c′ above c. A voting correspondence ϕ
is Pareto optimal if when all votes rank a candidate a above another
candidate b, then b cannot be a winner with respect to ϕ.

LEMMA 1. Let ϕ be a voting correspondence. For each X ∈
{AV,DV}, CCX-UNI for ϕ is polynomial-time reducible to RCX for
µY ◦ϕ, where Y ∈ {FO,RC}, and for µRV ◦ϕ where ϕ is Pareto
optimal.

PROOF. We only show the reduction from CCAV-UNI to RCAV.
Let E = (C,ΠV , p ∈ C,ΠU , kAV) be an instance of CCAV-UNI for
ϕ, where p is the distinguished candidate. Consider first µFO and
µRC. Clearly, IE = (C,ΠV , J = C\{p},ΠU , kAV) is an instance of
RCAV for µRC◦ϕ. The instance of RCAV for µFO◦ϕ is IE together
with a pre-defined order where p is ranked last. The construction
clearly takes polynomial time. The correctness of the reduction is
easy to see. Consider now µRV. Clearly, IE is an instance of RCAV
for µRV ◦ ϕ. If E is a Yes-instance, so is IE . It remains to prove the
opposite direction. Assume that we made all candidates in J have
no positive probability to win with respect to µRV ◦ϕ, by adding at
most kAV votes in ΠU . Let A be the set of winners with respect to
ϕ in the final election. If p 6∈ A, then J ∩ A 6= ∅ and someone in
J has a positive probability to win the final election with respect to
µRV◦ϕ; a contradiction. So, assume that p ∈ A. IfA∩J 6= ∅, then
since ϕ is Pareto optimal, not every vote ranks p above everyone in
J in the final election. As a result, someone in J has a positive
possibility to win the final election, a contradiction. In summary, p
is the unique winner in the final election with respect to ϕ.

It is known that CCAV and CCDV for Borda, Maximin and
Copelandα are NP-hard [3, 12, 27]. Then, due to Lemma 1 and the
fact that Borda, Maximin and Copelandα are Pareto optimal [28],
we have the following theorem.

THEOREM 1. For Y ∈ {FO,RC,RV} andϕ ∈ {Borda,Maximin,
Copelandα}, RCAV and RCDV for voting rules µY ◦ϕ are NP-hard.

While Lemma 1 does not apply to control by adding/deleting
candidates, we are able to show the NP-hardness of RCAC for
Borda, Maximin and Copelandα, and the NP-hardness of RCDC
for Borda and Copelandα.

THEOREM 2. Let Y ∈ {FO,RC,RV}. Then, RCAC for µY ◦ϕ
where ϕ ∈ {Borda, Maximin, Copelandα}, and RCDC for µY ◦ ϕ
where ϕ ∈ {Borda,Copelandα} are NP-hard.

Faliszewski, Hemaspaandra and Hemaspaandra [12] proved that
both CCDC and DCDC for Maximin are polynomial-time solvable.
We extend these results to resolute control problems.

THEOREM 3. RCDC for µY ◦Maximin is polynomial-time solv-
able, for every Y ∈ {FO,RC,RV}.

PROOF. We develop a polynomial-time algorithm as follows.
The algorithm splits I intom−k subinstances, each of which takes
I together with a candidate q ∈ C \ J as the input, and asks if we
can delete at most kDC candidates in C \ (J ∪{q}) so that the Max-
imin score of q is greater than that of everyone in J . Clearly, I is a
Yes-instance if and only if at least one of the subinstances is a Yes-
instance. Moreover, if each subinstance is solvable in O(f(m,n))
time, then I is solvable inO(m ·f(m,n)) time. Let I ′ = (I, q) be
a subinstance as discussed above. We solve I ′ as follows. Observe
that deleting a candidate never decreases the scores of other candi-
dates. Therefore, if there is a candidate c ∈ C \ (J ∪{q}) such that
N(q, c) is less than the Maximin score of some c′ ∈ J at the mo-
ment, then c must be deleted. Due to this observation, to solve I ′,
we need only to first order the candidates c ∈ C \(J ∪{q}) accord-
ing to a non-decreasing order of N(q, c). Then, we delete the first
min{kDC,m−|J |−1} candidates in this order one by one: if q has
Maximin score greater than that of every candidate in J after delet-
ing a candidate, we immediately conclude that I ′ is a Yes-instance.
If no Yes-instance is concluded after deleting these candidates, I ′

is a No-instance. The algorithm clearly terminates in polynomial
time.

3. BOUNDED NUMBER OF
DISTINGUISHED CANDIDATES

In this section, we show how the number of distinguished can-
didates, i.e., k = |J |, affects the complexity of resolute control
problems. In particular, for each problem studied in this paper and
constant k, we either show it is NP-hard, i.e., the problem is para-
NP-hard with respect to k, or develop a polynomial-time algorithm,
i.e., the probelm is FPT or in XP with respect to k. Most of our
FPT- and XP-algorithms begin with splitting the given instance I
into polynomially many subinstances (no more than m), each of
which takes as input I together with a candidate q ∈ C \ J , and
asks whether q can prevent all candidates in J from winning the
election by carrying out the corresponding modification operations
imposed in the problem (analogous to the algorithm in the proof of
Theorem 3). Clearly, I is a Yes-instance if and only if at least one
of the subinstances is a Yes-instance. Moreover, if each subinstance
can be solved in FPT-time (XP-time), then I can be solved in the
same time complexity with respect to the notation O∗(). For sim-
plicity, we will not describe this step in all algorithms shown below
(except the one in the proof of Theorem 5, in which we split I in
a little different way) and will mainly focus on algorithms to solve
each subinstance. Hereinafter, I ′ = (I, q ∈ C \ J) is a subinstance
of I as discussed above.

1136



3.1 Copeland and Maximin
We first investigate Copeland and Maximin both of which are

Condorcet-consistent. It is known that DCAV-NON and DCDV-
NON for Maximin and Coplandα are NP-hard [12, 13]. As DCAV-
NON and DCDV-NON are special cases of RCAV and RCDV re-
spectively with J being a singleton, it follows that RCAV and RCDV
for µY ◦Copelandα and µY ◦Maximin, where Y ∈ {FO, RC, RV},
are NP-hard even if k = 1. From the parameterized complexity
perspective, they are para-NP-hard.

THEOREM 4 ([12, 13]). RCAV and RCDV for µY ◦Copelandα
and µY ◦Maximin, where Y ∈ {FO, RC, RV}, are para-NP-hard
with respect to k.

Now we turn our attention to RCAC. We have shown that RCAC
for Maximin in general (unbounded k) is NP-hard (Theorem 2).
We prove now that RCAC for Maximin is FPT with respect to k.
In particular, we develop a dynamic programming algorithm with
running time O∗(2k) for the problem.

THEOREM 5. RCAC for µY ◦ Maximin is FPT with respect to
k, for every Y ∈ {FO,RC,RV}.

PROOF. Let I = (C,ΠV ,D ⊆ C, J ⊆ C \ D, kAC) be a given
instance. We give an algorithm as follows. The algorithm guesses
a candidate q ∈ C \ J , the final score sc of q and a candidate
q′ ∈ C \ {q} such that N(q, q′) = sc. Assume that {q, q′} ⊆
C \ D, since otherwise, we can remove {q, q′} ∩ D from D and
decrease kAC by |D∩{q, q′}| (If kAC < 0 after doing so, we discard
the guess and proceed to the next one). This leads to at most
(m− k) · (m− 1) ·n subinstances, each of which takes I together
with the guessed candidates q, q′ and the guessed score sc as the
input, and asks if we can add at most kAC candidates inD so that the
Maximin score of q is sc and the Maximin score of every candidate
in J is less than sc. As Maximin is Pareto optimal, for every Y ∈
{FO,RC,RV}, I is a Yes-instance if and only if at least one of
the subinstances is a Yes-instance. Let I ′ = (I, q, q′, sc) be a
subinstance. Clearly, if there is a c ∈ C\D such thatN(q, c) < sc,
I ′ is a No-instance. Assume now that N(q, c) ≥ sc for every
c ∈ C \ D. Let (c1, c2, ..., ct) be an arbitrary but fixed order of all
candidates c ∈ D such thatN(q, c) ≥ sc, where t ≤ m′. Let J ′ ⊆
J be the set of candidates c ∈ J such that there is a c′ ∈ C \ D such
that N(c, c′) < sc. Clearly, all candidates in J ′ have score less
than sc no matter which candidates in {c1, c2, ..., ct} are added.
So, we need only to focus on candidates in J \ J ′. We maintain
a boolean table DT(i, R,B) where 1 ≤ i ≤ t, 1 ≤ R ≤ kAC,
B ⊆ J \ J ′ and B 6= ∅. The value of DT(i, R,B) indicates
whether we can add R candidates from {c1, c2, ..., ci} to make all
candidates in B have scores less than sc. Due to the definition of
DT, I ′ is a Yes-instance if and only if DT(i, R, J\J ′) = 1 for some
1 ≤ i ≤ t and 0 ≤ R ≤ kAC. To calculate the entries of the table,
for every nonempty B ⊆ J \ J ′ we initialize DT(1, 1, B) = 1 if
N(c, c1) < sc for every c ∈ B; and DT(1, 1, B) = 0 otherwise. In
addition, DT(1, 0, B) = 0. Moreover, DT(i, R,B) = 0 if R > i.
We use the following relation to update the table: DT(i, R,B) = 1
if and only if DT(i−1, R,B) = 1 or DT(i−1, R−1, B\M(ci)) =
1, where M(ci) = {c ∈ J \ J ′ | N(c, ci) < sc}. As we have
O∗(2k) entries, the running time of the algorithm to solve I ′ is
O∗(2k). As we have polynomially many subinstances, the running
time of the algorithm to solve I is bounded byO∗(2k) as well.

We have shown that RCAC and RCDC for Copelandα are NP-
hard in general. Now, we prove that when the number of distin-
guished candidates is considered as a parameter, both problems are

FPT. In particular, we give an integer-linear programming formu-
lation (ILP) with bounded number of variables for the instance we
desire to solve. It is known that ILPs with z variables can be solved
in FPT-time with respect to z [17].

THEOREM 6. RCAC and RCDC for µY ◦ Copelandα, 0 ≤
α ≤ 1 are FPT with respect to k, for every Y ∈ {FO,RC,RV}.

PROOF. As discussed previously, we only show how to solve
each subinstance I ′ = (I, q) in FPT-time.

RCAC. If q ∈ D, then we remove q from D and decrease kAC

by one. If kAC < 0 after doing so, we immediately conclude that
I ′ is a No-instance. Assume now that q ∈ C \ D. Observe that
after adding a candidate d ∈ D, the score of each candidate in
J ∪ {q} either increases by one, or by α, or remains unchanged.
Let (c1, c2, ..., ck) be an arbitrary but fixed order of J . For each
candidate d ∈ D, define ~d as a (k + 1)-dimensional vector such
that for each 1 ≤ i ≤ k

~d[i] =


1, N(ci, d) > N(d, ci)

α, N(ci, d) = N(d, ci)

0, N(ci, d) < N(d, ci)

and

~d[k + 1] =


1, N(q, d) > N(d, q)

α, N(q, d) = N(d, q)

0, N(q, d) < N(d, q)

Now we partition D into at most 3k+1 subsets. Precisely, two
candidates d, e ∈ D are in the same subset if and only if ~d = ~e.
LetD~v denote the subset in the partition such that for each d ∈ D~v ,
it holds that ~d = ~v, where ~v is a (k+ 1)-dimensional vector whose
components are from {1, α, 0}. Now we give an ILP formulation
with no more than 3k+1 variables for I ′. For each subset D~v , we
have a variable x~v , indicating the number of candidates in D~v to
be added. The restrictions are as follows. Let F = {~d | d ∈ D}.
Clearly, |F|≤ 3k+1.

(1) 0 ≤ x~v ≤ |D~v| for every ~v ∈ F .
(2) Since we can add at most kAC candidates, we have that∑

~v∈F

x~v ≤ kAC.

For each c ∈ C \ D, let sc(c) be the Copelandα score of c in
(C \ D,ΠV). Notice that if Y ∈ {RC, RV}, then for q to prevent
all candidates in J from winning, q has to have a Copelandα score
higher than that of every candidate in J in the final election. As a
result, for each candidate ci ∈ J , 1 ≤ i ≤ k, it has to be that

sc(q) +
∑
~v∈F

~v[k + 1] · x~v > sc(ci) +
∑
~v∈F

~v[i] · x~v.

On the other hand, if Y = FO, then for q to prevent all candidates
in J from winning, q has to have a Copelandα score higher than
that of every ci ∈ J such that ci � q, and have a score no less than
that of every ci ∈ J such that q � ci, where � is the pre-defined
tie-breaking order. Hence, for every ci ∈ J such that ci � q, it has
to be that

sc(q) +
∑
~v∈F

~v[k + 1] · x~v > sc(ci) +
∑
~v∈F

~v[i] · x~v.

Moreover, for every ci ∈ J such that q � ci, it has to be that

sc(q) +
∑
~v∈F

~v[k + 1] · x~v ≥ sc(ci) +
∑
~v∈F

~v[i] · x~v.
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RCDC. The algorithm is similar to the above one for RCAC.
Let (c1, c2, ..., ck) be an arbitrary but fixed order of J . Observe
that after deleting a candidate d ∈ C \ (J ∪ {q}), the score of each
candidate in J ∪ {q} either decreases by one, or by α, or remains
unchanged. For each candidate d ∈ C \ (J ∪ {q}), let ~d be a
(k+1)-dimensional vector defined in the same way as in the above
algorithm for RCAC.

Now we partition C \ (J ∪ {q}) into at most 3k+1 subsets. Pre-
cisely, two candidates d, e ∈ C \ (J ∪ {q}) are in the same subset
if and only if ~d = ~e. Let C~v denote the subset in the partition such
that for each d ∈ C~v , it holds that ~d = ~v, where ~v is a (k + 1)-
dimensional vector whose components are from {1, α, 0}. Now we
give an ILP formulation with no more than 3k+1 variables for I ′.
For each subset C~v , we have a variable x~v , indicating the number
of candidates in C~v to be deleted from the election. The restrictions
are as follows. Let F = {~d | d ∈ C \ (J ∪ {q})}.

(1) For each variable x~v , we have 0 ≤ x~v ≤ |C~v|.
(2) Since we can delete at most kDC candidates, we have that∑

~v∈F

x~v ≤ kDC.

For each c ∈ C, let sc(c) be the Copelandα score of c in the elec-
tion (C,ΠV). Notice that if Y ∈ {RC, RV}, then for q to prevent
all candidates in J from winning, q has to have a Copelandα score
higher than that of every candidate in J in the final election. As a
result, for each candidate ci ∈ J , it has to be that

sc(q)−
∑
~v∈F

~v[k + 1] · x~v > sc(ci)−
∑
~v∈F

~v[i] · x~v.

Analogous to the proof for RCAC, if Y = FO, then for every ci ∈
J such that ci � q, it has to be that

sc(q)−
∑
~v∈F

~v[k + 1] · x~v > sc(ci)−
∑
~v∈F

~v[i] · x~v,

and for every ci ∈ J such that q � ci, it has to be that

sc(q)−
∑
~v∈F

~v[k + 1] · x~v ≥ sc(ci)−
∑
~v∈F

~v[i] · x~v.

Due to the result of Lenstra [17], both ILPs for RCAC and RCDC
constructed above are solvable in FPT time with respect to k. Hence,
the problems stated in the theorem are FPT with respect to k.

3.2 Borda
Consider now the non-Condorcet-consistent voting correspon-

dence Borda. We have proved that RCAV and RCDV for µY ◦
Borda, Y ∈ {FO, RC, RV}, are NP-hard if k is unbounded (The-
orem 1). We prove now that if k is a constant, the same problems
are polynomial-time solvable, based on dynamic programming al-
gorithms. Precisely, from the parameterized complexity point of
view, RCAV and RCDV for µY ◦Borda, Y ∈ {FO, RC, RV}, are
in XP with respect to k. Recall that DCAV and DCDV for Borda
are polynomial-time solvable [27]. Hence, our results generalize
the results in [27].

THEOREM 7. RCAV and RCDV for µY ◦ Borda are in XP with
respect to k, for every Y ∈ {FO,RC,RV}.

PROOF. As discussed previously, we show only how to solve
each subinstance I ′ in XP-time. In particular, we resort to dynamic
programming algorithms to solve I ′. Let (c1, c2, ..., ck) be a fixed
order of candidates in J . We first give the definitions of the tables
and show how to calculate the entries as follows. For c ∈ C and
ΠT ⊆ ΠV , let scg(c,ΠT ) be the score of c obtained from the votes

in ΠT minus the score of q obtained from the votes in ΠT . For each
ci ∈ J , let SC(ci) = scg(ci,ΠV \ ΠU ). Recall that in RCDV we
have ΠU = ∅. For each �v∈ ΠV , let −→�v = 〈sc1, ..., sck〉 be the
integer vector where sci = scg(ci, {�v}).

RCAV. Let (�v(1), ...,�v(n′)) be a fixed order of the unregis-
tered votes. We maintain a table DT(x, y, s1, s2, ..., sk), where
1 ≤ x ≤ n, 0 ≤ y ≤ kAV and |si|≤ (m − 1) · (n − n′ + kAV)
for every 1 ≤ i ≤ k. We define DT(x, y, s1, s2, ..., sk) = 1 if and
only if there exists ΠV ⊆ {�v(1), ...,�v(x)} such that |ΠV |= y
and for every ci ∈ J it holds that SC(ci) + scg(ci,ΠV ) = si.
Initially, we set DT(1, 0, s1, ..., sk) = 1 if and only if SC(ci) = si
for every 1 ≤ i ≤ k. In addition, DT(1, 1, s1, ..., sk) = 1 if and
only if SC(ci) +

−−−→�v(1)[i] = si for every 1 ≤ i ≤ k. Moreover,
for x < y we set DT(x, y, s1, ..., sk) = 0. We use the following
relation to update the table: DT(x, y, s1, ..., sk) = 1 if and only if
DT(x − 1, y, s1, ..., sk) = 1 or DT(x − 1, y − 1, s′1, ..., s

′
k) = 1

where s′i = si −−−−→�v(x)[i] for each 1 ≤ i ≤ k.
RCDV. Let (�v(1), ...,�v(n)) be a fixed order of all votes. We

maintain a table DT(x, y, s1, s2, ..., sk), where 1 ≤ x ≤ n, 0 ≤
y ≤ kDV and |si|≤ (m − 1) · n for every 1 ≤ i ≤ k. We de-
fine DT(x, y, s1, s2, ..., sk) = 1 if and only if there exists ΠV ⊆
{�v(1), ...,�v(x)} such that |ΠV |= y and for every ci ∈ J it holds
that SC(ci)−scg(ci,ΠV ) = si. Initially, we set DT(1, 0, s1, ..., sk) =
1 if and only if SC(ci) = si for every 1 ≤ i ≤ k. In addition,
DT(1, 1, s1, ..., sk) = 1 if and only if SC(ci) − −−−→�v(1)[i] = si
for every 1 ≤ i ≤ k. Moreover, every DT(x, y, s1, s2, ..., sk) =
1 if y > x. We use the following relation to update the table:
DT(x, y, s1, ..., sk) = 1 if and only if DT(x−1, y, s1, ..., sk) = 1

or DT(x− 1, y− 1, s′1, ..., s
′
k) = 1 for s′i = si−−−−→�v(x)[i] for each

1 ≤ i ≤ k.
Now we describe the conditions to determine whether I ′ is a Yes-

instance. For RCX where X ∈ {AV, DV}, if Y ∈ {RC, RV}, then
I ′ is a Yes-instance if and only if there is an entry DT(x, y, s1, ..., sk) =
1 such that si < 0 for every 1 ≤ i ≤ k. If Y = FO, let � be the
predefined order to break the tie. Then, I ′ is a Yes-instance if and
only if there is an entry DT(x, y, s1, ..., sk) = 1 such that (1) for
every ci � q, si < 0; and (2) for every q � ci, si ≤ 0.

It is fairy easy to verify that the tables in the above algorithms
are bounded by O∗((mn)k). Hence, the algorithms terminate in
O∗((mn)k) time.

Now we consider RCAC and RCDC. We first prove that RCAC
and RCDC for Borda are in XP with respect to k. Recently, DCAC
and DCDC for Borda were shown to be polynomial-time solv-
able [18]. Our results generalize these results.

THEOREM 8. RCAC and RCDC for µY ◦Borda are in XP with
respect to k, for every Y ∈ {FO,RC,RV}.

PROOF. Due to space limitation, we give only the proof for
RCDC.

Let (a1, ..., ak) be a fixed order of J . Obviously, if a candidate
c is deleted, the score of every c′ ∈ C \ {c} decreases by

|{�∈ ΠV | c′ � c}|.

For each c ∈ C \ (J ∪ {q}) and c′ ∈ J , let

scgap(c′, c) = |{�∈ ΠV | c′ � c}|−|{�∈ ΠV | q � c}|.

Moreover, for each candidate c ∈ C \ (J ∪ {q}), let −→c be the
vector 〈scgap(a1, c), scgap(a2, c), ..., scgap(ak, c)〉. Clearly, it
holds that |scgap(ai, c)|≤ n for every 1 ≤ i ≤ k. We solve I ′

with a dynamic programming algorithm. In particular, we maintain
a table DT(x, r,−→s ), where 1 ≤ x ≤ m − k − 1, r ≤ kDC, and
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−→s is a k-dimensional integer vector with each component ranging
from−n · kDC to n · kDC. Let (c1, c2, ..., cm−k−1) be any arbitrary
but fixed order of the candidates in C \ (J ∪ {q}). The value of the
DT(x, r,−→s ) indicates whether there exists a B ⊆ {c1, c2, ..., cx}
such that |B|= r and

∑
c∈B scgap(ai, c) = −→s [i] for every 1 ≤

i ≤ k, where −→s [i] is the ith component of −→s . To calculate the
values of the entries, we start with the initiation as follows:

1. DT(1, 1,−→s ) = 1 if and only if −→s = −→c1 ;

2. DT(1, 0,−→s ) = 1 if and only if −→s = 〈0, 0, ..., 0〉; and

3. every DT(x, r,−→s ) = 1 if r > x.

We use the following relation to update the table: DT(x, r,−→s ) =
1 if and only if DT(x−1, r,−→s ) = 1 or DT(x−1, r−1,−→s −−→cx) =
1.

For each c ∈ C, let score(c, (C,ΠV)) be the Borda score of
c in the election (C,ΠV). Due to the definition of the table, for
Y ∈ {RC, RV}, I ′ is a Yes-instance if and only if there exists
DT(x, r,−→s ) = 1 such that for every 1 ≤ i ≤ k,

score(ai, (C,ΠV))− score(q, (C,ΠV)) < −→s [i].

For Y = FO, I ′ is a Yes-instance if and only if there is an entry
DT(x, r,−→s ) = 1 such that

1. for every ai ∈ J with ai � q,

score(ai, (C,ΠV))− score(q, (C,ΠV)) < −→s [i]; and

2. for every ai ∈ J with q � ai,

score(ai, (C,ΠV))− score(q, (C,ΠV)) ≤ −→s [i];

where � is the pre-defined tie-breaking order.
It is fairly easy to verify that the size of the table in the above

algorithm is bounded by O∗((nm)k). Therefore, the running time
of the algorithm is O∗((nm)k).

4. TIE-BREAKING SCHEMES
Our complexity results of resolute control problems do not dis-

tinguish between the tie-breaking schemes µFO, µRC and µRV. A
natural question is whether the complexity is in fact independent
of the tie-breaking schemes. Before we answer this question, let’s
recall some related work.

The complexity of various voting problems with respect to differ-
ent tie-breaking schemes has been studied in the literature recently.
It turned out that tie-breaking schemes may have fundamental im-
pact on the complexity results [19, 24]. For instance, Obraztsova,
Elkind and Hazon [24] revisited the polynomial-time algorithm of a
manipulation problem proposed by Bartholdi, Tovey and Trick [2].
The algorithm studied in [2] takes the assumption that ties are bro-
ken in favor of the manipulators’ preferred candidate. Obraztsova,
Elkind and Hazon showed that the polynomial-time algorithm ex-
tends to many voting rules where ties are broken with µFO and µRC.
On the other hand, they developed a polynomial-time tie-breaking
scheme and showed that the manipulation problem becomes NP-
hard if ties are broken with this tie-breaking scheme. Aziz et al. [1]
studied a manipulation problem with respect to the tie-breaking
schemes µRC and µRV, and showed that there is no direct connec-
tion between the complexity of the problems with respect to µRC

and µRV. In this section, we show that analogous phenomena oc-
curs as well in resolute control problems. For this purpose, we first
study a tie-breaking scheme µX3C for which RCDC for Maximin is
NP-hard.

The tie-breaking scheme µX3C resorts to the X3C problem de-
fined as follows.

Exact 3-Set Cover (X3C)
Input: An ordered set X = {x1, x2, ..., x3κ} and a
collection S = {s1, s2, ..., st} of 3-subsets of X .
Question: Is there an S′ ⊆ S such that |S′|= κ and
each xi ∈ X appears in exactly one set of S′?

We assume that each xi ∈ X occurs in exactly 3 subsets of S.
This does not change the complexity of the X3C problem [14].
Under this assumption, t = 3κ.

Given an ordered set X = {x1, x2, ..., x3κ}, there are in total(
3κ
3

)
different 3-subsets of X . Moreover, the order (x1, ..., x3κ)

implies a lexicographic order over all 3-subsets of X . Let fκ(i) be
the i-th 3-subset in this order.

Now we describe the tie-breaking scheme µX3C. For each 1 ≤
i ≤ m, let ci be the i-th candidate in C. Let C ⊆ C be the set of
tied candidates. The tie-breaking scheme µX3C uses µRC to break
the tie if one of the following cases occurs:

(1) there are no integers κ > 0 and ` =
(
3κ
3

)
such that m =

`+ 2κ+ 2;
(2) |C′ ∩ C|6= κ, where C′ is the set of the first ` candidates of
C; or

(3){c`+1, c`+2}\C 6= ∅, i.e., both the (`+1)-th and the (`+2)-
th candidate must be the tied candidates.

If none of the above cases occurs, it breaks the ties as follows:
If {fκ(i) | 1 ≤ i ≤ `, ci ∈ C} is an exact 3-set cover of
{x1, ..., x3κ}, c`+1 wins with probability 1; otherwise, c`+2 wins
with probability 1.

We have shown that RCDC for µY ◦Maximin, Y ∈ {FO, RC, RV}
is polynomial-time solvable (Theorem 3). Now we show that RCDC
for µX3C ◦Maximin is NP-hard. McGarvey [20] proved the follow-
ing lemma.

LEMMA 2. Let C be a set of m candidates and ψ any function
mapping from C×C to Z such that for every two distinct candidates
c, c′ ∈ C it holds that ψ(c, c′) = −ψ(c′, c). Then, there is a
polynomial-time algorithm to create a multiset of n votes over C
such that n is even and for every two distinct candidates c, c′ ∈ C,
D(c, c′) = ψ(c, c′), where D(c, c′) is the number of votes ranking
c above c′ minus the number of votes ranking c′ above c.

THEOREM 9. RCDC for µX3C ◦Maximin is NP-hard.

PROOF. We prove the theorem by a reduction from the X3C
problem. Let I = (X = {x1, ..., x3κ}, S = {s1, ..., s3κ}) be an
X3C instance (assume that each xi occurs in exactly 3 subsets of
S). Let ` =

(
3κ
3

)
. We construct an instance (C,ΠV , J ⊆ C, kDC)

for RCDC as follows. We create in total `+2+3κ candidates. First,
we create an ordered set of ` candidates Acollection = {c1, ..., c`}.
Then, we create two candidates c`+1 and c`+2. Finally, we create
an ordered set of 3κ candidatesAselector = {c`+2+1, ..., d`+2+3κ}.
Hence, we have that C = {c1, ..., c`+2+3κ}, with the candidates or-
dered according to the indices. Let A ⊂ Acollection be the set of
candidates corresponding to 3-subsets in S with respect to fκ, i.e.,
A = {ci ∈ Acollection | 1 ≤ i ≤ `, fκ(i) ∈ S}. For two candi-
dates c, c′, let D(c, c′) = N(c, c′)−N(c′, c), the number of votes
ranking c above c′ minus the number of votes ranking c′ above c.
We create an even number of n votes such that

• for every c ∈ Aselector , there are exactly κ + 1 candidates
c′ ∈ Aselector such that D(c, c′) = −2;

• for every c ∈ Acollection \A, there are exactly κ+ 1 candi-
dates c′ ∈ Acollection \A such that D(c, c′) = −2;

• for every ci ∈ A, D(ci, c`+2+i) = −2 and D(ci, c) = 0 for
every other candidate c ∈ C \ {ci, c`+2+i};
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• D(c`+1, c) = 0 for every candidate c other than c`+1; and

• D(c`+2, c) = 0 for every candidate c other than c`+2.

Due to Lemma 2, these votes can be constructed in polynomial
time. Finally, we set kDC = κ and J = {c`+2}. Before proving the
correctness of the reduction, let’s summarize some useful informa-
tion. First, c`+1 and c`+2 have Maximin score n/2 and every other
candidate has Maximin score at most n/2−1. Asm 6= `+2κ+2,
due to the tie-breaking scheme, c`+2 has a positive probability to
win. Moreover, as for every c ∈ Aselector ∪ Acollection \ A there
are κ + 1 candidates c′ with D(c, c′) = −2, every candidate in
Aselector∪Acollection \A still has Maximin score at most n/2−1
after deleting any κ candidates. Furthermore, a candidate ci ∈ A
has Maximin score n/2 in the final election if and only if the can-
didate c`+2+i is deleted.

Now we prove the correctness. Assume that S′ is an exact 3-set
cover. Consider deleting all candidates in {c`+2+i | fκ(i) ∈ S′}.
Then, according to the above discussion, all candidates ci ∈ A
such that fκ(i) ∈ S′ has Maximin score n/2, and hence, tied with
c`+1 and c`+2. Then, due to the definition of µX3C, c`+1 wins with
probability 1. Thus, the instance of RCDC is a Yes-instance.

It remains to prove opposite direction. As c`+2 has Maximin
score n/2 no matter which κ candidates are deleted, due to µX3C,
to prevent c`+2 from having a positive probability to win, we have
to delete exactly κ candidates, so that in the final election there
are exactly ` + 2 + 2κ candidates (Condition (1)). Moreover,
these deleted candidates must be all from the last 3κ candidates
in C, since otherwise, the (` + 2)-th candidate in the final election
would be someone in the last 3κ candidates in the original elec-
tion which is not a winner as discussed above, and hence, due to
µX3C, all tied candidates have positive probability to win includ-
ing c`+2 (Condition (3)). Furthermore, after deleting these candi-
dates, there must be a subset A′ ⊂ Acollection such that |A′|= 3κ
(Condition (2)), each candidate in A′ ties with c`+1 and c`+2, and
{fκ(i) | ci ∈ A′, 1 ≤ i ≤ `} is an exact 3-set cover. As dis-
cussed above, every candidate inAcollection\A has Maximin score
n/2− 1 no matter which κ candidates are deleted. Hence, none of
the candidates inAcollection \A ties with c`+1 and c`+2 in the final
election. This implies thatA′ is a subset ofA. As a result, for every
ci ∈ A′, fκ(i) ∈ S, implying that I is a Yes-instance.

One may still wonder whether the three natural tie-breaking schemes
µFO, µRC and µRV also have impact on the complexity results. We
clear up the confusion by the following theorem.

THEOREM 10. There exists a non-Pareto optimal voting cor-
respondence ϕ such that RCAV for voting rules µY ◦ ϕ for Y ∈
{FO,RC} is NP-hard but for Y = RV is polynomial-time solvable.

PROOF. Consider the following voting correspondence ϕ. Let
a and b be the two lexicographically smallest candidates. If a is
ranked in the first place in all votes and b is the unique Borda winner
among all the other remaining candidates, then awins as the unique
winner; otherwise, a and b win as co-winners. Then, CCAV for ϕ
is NP-hard (with the distinguished candidate to be a) since it is
equivalent to determining whether b can be made the unique Borda
winner in the election without a by adding kAV unregistered votes.
Due to Lemma 1, RCAV for µFO ◦ ϕ and µRC ◦ ϕ are NP-hard.
However, RCAV for µRV ◦ ϕ is polynomial-time solvable. Assume
that J 6= C and |{a, b} ∩ J |≤ 1 (otherwise, the given instance is a
No-instance). We distinguish between three cases. Case 1: a ∈ J .
In this case, if there is a registered vote that ranks a above b, return
“No”; otherwise, return “Yes” since ∅ is a solution. Case 2: b ∈ J .
In this case, if there is a registered vote which ranks b above a, then

return “No”; otherwise, return “Yes”, since ∅ is a solution. Case
3: {a, b} ∩ J = ∅. In this case, we directly return “Yes”, since no
candidate other than a and b can win the election.

Recall that the statement for µRV in Lemma 1 requires the voting
correspondence to be Pareto optimal. Theorem 10 implies that this
requirement is essential in Lemma 1.

5. CONCLUSION
We studied the complexity of the resolute control problems for

Borda, Maximin and Copelandα, where 0 ≤ α ≤ 1, with ties be-
ing broken with µFO, µRC and µRV. In these problems, we are given
an election with a set J of distinguished candidates, and an exter-
nal agent wants to prevent all distinguished candidates from having
a positive probability to win. Resolute control problems are natu-
ral generalizations of destructive control problems that have been
extensively studied in the literature. We first identified polynomial-
time solvable resolute control problems and NP-hard resolute con-
trol problems. Then, we further investigated the parameterized
complexity of the NP-hard resolute control problems with respect
to the number of distinguished candidates. In particular, for many
of them we either developed FPT-algorithms or XP-algorithms. For
instance, for RCDC for Maximin, we developed a single exponen-
tial time algorithm with running time O∗(2k). See Table 1 for a
summary of our complexity results.

In addition, we studied the impact of tie-breaking schemes on
the complexity of resolute control problems. We showed that there
are tie-breaking schemes with respect to which the complexity of
the resolute control problems differs. Nevertheless, it is impor-
tant to point out that either the tie-breaking schemes or the vot-
ing correspondences involved in our results are made artificially
(Theorems 9 and 10). It remains as an intriguing open question
whether there are commonly used voting correspondences and nat-
ural tie-breaking schemes for which the complexity of resolute con-
trol problems differs. It is also important to point out that even
though the three natural tie-breaking schemes µFO, µRC and µRV do
not have impact on the complexity of resolute control problems for
Borda, Maximin and Coplandα as shown in this paper, we have to
take them into account when developing FPT- or XP-algorithms for
the resolute control problems.

There remain several open questions. For instance, we do not
know whether the resolute control problems for Borda are FPT.
For FPT problems studied in this paper, a challenging task would
be to develop polynomial kernels, or prove that they do not admit
a polynomial kernel. Recall that a kernelization of a parameterized
problem Q is a polynomial-time algorithm that takes as input an
instance of Q and outputs an equivalent new instance of Q whose
size is bounded by a function of the parameter. Kernelization is one
of the most significant approaches to deal with FPT problems. We
refer to [16] for a comprehensive survey on kernelization.

Another direction for future research would be to study the res-
olute control problems in restricted elections. In particular, for pa-
NP-hard problems studied in this paper, it is intriguing to know
if they become FPT if the voters’ preferences are subject to some
combinatorial properties. Recently, complexity of voting problems
in elections with restricted preferences has received a considerable
amount of attention, see, e.g., [8, 29, 30, 32, 33].
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