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ABSTRACT
The goal of this paper is to analyze the complexity of bribery
and destructive control in the framework of group identi-
fication. Group identification applies to situations where
a group of individuals try to determine who among them
are socially qualified for a given task. We consider consent
rules, the consensus-start-respecting rule, and the liberal-
start-respecting rule.
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1. INTRODUCTION
There are many real-world situations, where a group of

agents try to find a subgroup best qualified for a given task.
For example, faculties elect faculty members for hiring com-
mittees best qualified in a special field, or a set of agents
need to complete a task, but only some of them are capable
doing it. In such settings multi-winner voting rules come to
use.

We focus on the setting, where (1) the set of voters and
the set of candidates coincide (from now on we call them
individuals) and (2) the elected subgroup has no fixed size.
This setting is called group identification. Which subgroup
is actually elected, depends on each individual’s valuation of
both himself and all other agents. In our model, we are given
an individual set N and each individual a ∈ N either quali-
fies or disqualifies each individual a′ ∈ N (including a). As
an example, regard an institution where a certain task must
be assigned to some of its members. Each group member
has individual abilities and estimates for all members (in-
cluding themselves) if they are suitable for the task or not.
Each individual votes honestly in our setting. Depending on
each agent’s valuations, a social rule is applied determining
a subset of N which we refer to as socially qualified individ-
uals. Note that the set of socially qualified individuals can
be any subset of N .

In this work, we will focus on different ways how an exter-
nal agent can influence the set of socially qualified individu-
als either by altering some individuals’ valuations (bribery)
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or by adding, deleting or partitioning the set of individuals
(control).

1.1 Related Work
Our work fits in the line of research on the computational

aspects of strategic behavior in elections initiated by a series
of papers by Bartholdi et al. [2, 3, 4], proposing that com-
putational hardness offers a (worst-case) protection against
manipulative attacks. We refer to the paper by Faliszewski,
Hemaspaandra, and Hemaspaandra introducing bribery to
elections [12]. Electoral control was introduced in the con-
structive variant in the seminal paper by Bartholdi, Tovey,
and Trick [4] and in the destructive variant by Hemaspaan-
dra, Hemaspaandra, and Rothe [17]. A variant of destruc-
tive bribery has been introduced in the context of margin
of victory, however, this model is not directly related to our
models [26]. These problems have also been studied in the
context of judgment aggregation [5], however, this is a very
different setting compared to ours.

Settings where not just a winner, but a small set of can-
didates is selected from the set of candidates is called a
multi-winner election. Elkind et al. proposed and studied
the properties of multi-winner voting rules based on single-
winner scoring rules [9]. There are many different multi-
winner voting rules based on single-winner voting rules in
the literature that we do not use in our work [10, 13, 15,
23]. Meir et al. initiated the complexity theoretic analysis
of strategic behavior in multi-winner elections, where they
have investigated the complexity of manipulation and con-
trol under some prominent voting rules [20]. Obraztsova,
Zick, and Elkind investigated the complexity of manipula-
tion in multi-winner scoring rules with a special focus on
tie-breaking [22]. Furthermore, it is worth mentioning the
work by Aziz et al. on the computational aspects of best
responses in multi-winner approval voting [1].

In contrast, we are considering group identification, which
differs from bribery and control in voting theory in several
issues. In our model the sets of voters and candidates co-
incide and are called individual set. Each individual thus
votes on every other individual and himself. Furthermore,
in our setting agents are neither strategical nor selfish. Fi-
nally, in contrast to voting rules, in group identification we
do not want to select winners, but provide quantitative cri-
teria to decide if an individual is appropriate for a given
task or not. Note that these criteria are fixed (e.g., for con-
sent rules, two parameters uniquely determine these criteria)
and can produce arbitrary numbers of socially qualified in-
dividuals while in multi-winner elections we are interested in
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electing a committee of fixed size. Group identification, in
particular the liberal rule, the consent rules, the consensus-
start-respecting rule, and the liberal-start-respecting rule,
have been introduced and further studied from an economic
point of view in [18, 7, 8, 21, 24]. In contrast, we are inves-
tigating the computational aspects of strategic behavior in
group identification. Constructive control by adding, delet-
ing and partitioning individuals for group identification have
been first introduced and studied by Yang and Dimitrov [28].
Here, we are extending their work to destructive control and
to constructive and destructive bribery. To the best of our
knowledge, bribery has not been studied for group identifi-
cation up to now.

All social rules in this paper are approval-based in a sense
that each individual approves (qualifies) or disapproves (dis-
qualifies) every other individual. As opposed to approval
voting [6], we do not count the number of approvals and let
the individuals with the highest number of approvals win,
but apply a social rule given the approval assignment. The
last related work to mention is the work by Kilgour, Brams,
and Sanver on electing representative committees via ap-
proval ballotting [19]. Again, they are looking for a fixed
committee size. Furthermore, they are not considering the
complexity of manipulative actions in their model.

Organization.
In Section 2, we will give a survey about the basics in

group identification and the social rules we will consider in
this paper. In Section 3, we will introduce the underlying
problems. Section 4 is about constructive bribery whereas
Section 5 deals with destructive misuses on groups. Section 6
concludes the paper.

2. PRELIMINARIES
Let N := {a1, . . . , an} be a set of n ∈ N individuals. Let
P(N) be the collection of all nonempty subsets of N . For
our purposes, we will mostly use a and a′ for individuals
in N throughout this paper. We will sometimes say agents
instead of individuals. A profile over N is a function ϕ : N×
N → {0, 1}. We say that individual a ∈ N qualifies a′ ∈ N if
ϕ(a, a′) = 1 and disqualifies a′ if ϕ(a, a′) = 0. The mapping
ϕ induces a matrix (ϕ) ∈ {0, 1}n×n where ϕij := ϕ(ai, aj).
A social rule is defined as a function f : (ϕ,N)→ P(N), i.e.,
it selects some individuals in N that are said to be socially
qualified with respect to f and ϕ. Note that we can restrict
f and ϕ to each subset T ⊆ N by replacing N by T in the
definition of a social rule. In the following, we will define the
social rules considered in this paper. We can roughly divide
them into consent rules and procedural rules. The former
class is specified by two parameters and is directly applied
to an instance (N,ϕ). The latter rules iteratively amplify
the set of socially qualified individuals and stop as soon as
the socially qualified individuals do not change anymore.

• Consent Rule (f (s,t)): Each consent rule is specified
by two parameters s, t ∈ N such that for an individual
set N and individual a ∈ N :

– If ϕ(a, a) = 1, then a ∈ f (s,t)(ϕ,N) if and only if
|{a′ ∈ N : ϕ(a′, a) = 1}| ≥ s.

– If ϕ(a, a) = 0, then a /∈ f (s,t)(ϕ,N) if and only if
|{a′ ∈ N : ϕ(a′, a) = 0}| ≥ t.

The two parameters s and t are called consent quo-
tas. For s = t = 1, we obtain the Liberal Rule fL

where an individual is socially qualified if and only if
he qualifies himself, i.e., we have fL(ϕ,N) = {a ∈
N : ϕ(a, a) = 1}. The Liberal Rule is the only con-
sent rule with the property that it only depends on a’s
self-evaluation and is independent on the others’ valu-
ations whether a is socially qualified or not. Note that
for our complexity analysis, s and t are always con-
stant and do particularly not depend on the number
of individuals.

• Consensus-Start-Respecting Rule (fCSR). This
rule is defined recursively by first determining a start-
ing set of socially qualified individuals and then itera-
tively extending the set of socially qualified individuals
until there is no change anymore. Formally, fCSR is
defined as follows. Let KC

0 (ϕ,N) be the set of initially
qualified alternatives defined as:

KC
0 (ϕ,N) := {a ∈ N : ∀a′ ∈ N : ϕ(a′, a) = 1}.

Then we successively compute for nonnegative inte-
gers i:

KC
i (ϕ,N) =

{a ∈ N : ∃a′ ∈ KC
i−1(ϕ,N) : ϕ(a′, a) = 1}∪KC

i−1(ϕ,N).

We obtain fCSR(ϕ,N) = KC
i (ϕ,N) for some i with

KC
i (ϕ,N) = KC

i+1(ϕ,N).

• Liberal-Start-Respecting Rule (fLSR). Again, we
have a social rule iteratively defined as follows:

KL
0 (ϕ,N) := {a ∈ N : ϕ(a, a) = 1}.

The remaining iterations are computed as for fCSR,
i.e., via

KL
i (ϕ,N) = {a ∈ N : ∃a′ ∈ KL

i−1(ϕ,N) : ϕ(a′, a) = 1}

∪KL
i−1(ϕ,N) (i ∈ N).

Likewise, we obtain fLSR(ϕ,N) = KL
i (ϕ,N) for some

i with KL
i (ϕ,N) = KL

i+1(ϕ,N).

Note that the starting set of fLSR includes all individuals
that qualify themselves whereas fCSR contains only indi-
viduals qualified by each individual. In particular, we have
KL

0 (ϕ,N) ⊇ KC
0 (ϕ,N) for an instance (ϕ,N). When N

and ϕ are clear from the context, we will write KL
0 and KC

0

instead of KL
0 (ϕ,N) and KC

0 (ϕ,N), respectively.

3. PROBLEM SETTINGS
In this section we introduce the formal definitions of the

problems considered in this paper. In control an external
agent—called the chair—makes some structural changes to
the election in order to tamper with the outcome of it. Con-
structive control by adding, deleting, and partitioning indi-
viduals in the context of group identification was introduced
and studied in [28]. We will extend their work by defining
the destructive versions of these problems. In the destruc-
tive version of adding individuals the chair’s goal is to so-
cially disqualify a distinguished set of agents by adding some
individuals to the election.
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Destructive Group Control by Adding Individuals

Given: A 6-tuple (f,N, ϕ, S, T, `) of a social rule f , a
set N of individuals, a profile ϕ over N , two
nonempty subsets S and T , such that S ⊆ T ⊆ N
and S ∩ f(ϕ, T ) 6= ∅, and a positive integer `.

Question: Is there a subset U ⊆ N \ T such that |U | ≤ `
and S ∩ f(ϕ, T ∪ U) = ∅?

We will write f-DGCAI, for short. In the destructive
version of deleting individuals the chair is removing some
individuals from the election in order to socially disqualify
a distinguished set of agents. Note that the chair is not
allowed to remove agents from the distinguished set.

Destructive Group Control by Deleting Individuals

Given: A 5-tuple (f,N, ϕ, S, `) of a social rule f , a set
N of individuals, a profile ϕ over N , a nonempty
subset S ⊆ N such that S ∩ f(ϕ,N) 6= ∅, and a
positive integer `.

Question: Is there a subset U ⊆ N \ S such that |U | ≤ `
and S ∩ f(ϕ,N \ U) = ∅?

We will write f-DGCDI, for short. Our final destructive
control model is partitioning the set of individuals.

Destructive Group Control by Partition of Individuals

Given: A 4-tuple (f,N, ϕ, S) of a social rule f , a set N
of individuals, a profile ϕ over N , a nonempty
subset S ⊆ N such that S ∩ f(ϕ,N) 6= ∅.

Question: Is there a subset U ⊆ N such that S∩f(ϕ, V ) = ∅
with V = f(ϕ,U) ∪ f(ϕ,N \ U)?

We will write f-DGCPI, for short. In contrast to con-
trol, in bribery, an external agent is allowed to change some
individuals’ opinions over N in a way he desires.

Constructive Group Bribery (CGB)

Given: A 5-tuple (f,N, ϕ, S, `) of a social rule f , a set
N of individuals, a profile ϕ over N , a nonempty
subset S ⊆ N with S 6⊆ f(ϕ,N), and a positive
integer `.

Question: Is there a way to change at most ` rows of the
matrix ϕ such that S ⊆ f(ϕ′, N) where ϕ′ ∈
{0, 1}n×n is the resulting new profile?

We will write f-CGB, for short. By replacing S 6⊆ f(ϕ,N)
by S∩f(ϕ,N) 6= ∅ and S ⊆ f(ϕ′, N) by S∩f(ϕ′, N) = ∅, we
obtain the definition of Destructive Group Bribery (f-
DGB, for short) which asks whether the briber can change
` individuals’ valuations in a way that all individuals in sub-
group S are socially unqualified after the bribery.

We say that a social rule f is immune to a constructive
(destructive) problem defined above if it is impossible to
make every individual in S socially qualified (not socially
qualified) by performing the corresponding manipulative ac-
tion, i.e., the problem has only NO-instances. Otherwise,
the social rule f is said to be susceptible to the problem.

Note that in case of NP-completeness results we will only
show NP-hardness. It is easy to see that all our problems
are in NP.

4. CONSTRUCTIVE GROUP BRIBERY
Throughout this section, we let (f,N, ϕ, S, `) denote a

bribery instance where N is the set of individuals, ϕ the

profile, S ⊆ N the set of distinguished individuals the briber
wants to make socially qualified, and ` be a nonnegative in-
teger representing the maximum number of individuals the
briber may bribe. ϕ′ denotes the profile after the bribery.
Our results on constructive group bribery are summarized
in Table 1. Our first result indicates that bribery in consent
rules is easy given t = 1.

Theorem 4.1. f (s,1)-CGB is in P for all constants s.

Proof. Given (f (s,1), N, ϕ, S, `), first we compute S0 :=
{a ∈ S : ϕ(a, a) = 0} and S1 := S \ S0. Our algorithm
checks the following cases:

• ` < |S0|. Then our instance is a NO instance as there
is an a ∈ S disqualifying himself after the bribery and
consequently a /∈ f(ϕ′, N) after the bribery.

• ` ≥ |S0|. In this case, the briber bribes all agents in
S0 and makes all of them qualify all agents (at least
they all must qualify all agents in S). For s = 1,
our instance is a YES instance because each agent in
S qualifies himself and this is sufficient for S being
socially qualified. For s > 1, we must ensure that
each agent qualifying himself has s qualifications in
total. As there are still `− |S0| bribes left and S = S1

currently holds (i.e., each agent in S qualifies himself),
we may w.l.o.g. restrict ourselves to a (transformed)
bribery problem with S0 = ∅ (where all already bribed
agents qualify all agents). There are still two cases left
to differentiate between:

– ` ≥ s. Then the briber bribes arbitrary s individ-
uals and makes them all qualify all individuals.
Thus – due to our assumption ϕ(a, a) = 1 ∀a ∈ S
– it holds S ⊆ f(ϕ′, N) after the bribery as each
a ∈ S has s qualifications in total.

– ` < s. Now ` is bounded from above by the con-
stant s. It suffices to check for all

(|N|
`

)
ways to

bribe ` agents (there are O(|N |s−1) such possibil-
ities to check) if all individuals in S are qualified
provided that the briber makes each bribed indi-
vidual qualify all individuals (in S).

q

In contrast, we cannot preserve easiness by fixing s = 1
and permitting t to be an arbitrary nonnegative integer.
We will show hardness via reduction from the NP-complete
problem Restricted Exact Cover By 3-Sets [16].

Restricted Exact Cover By 3-Sets (RX3C)

Given: A set B = {b1, . . . , b3m} and a collection S =
{S1, . . . , Sn} of 3-element subsets of B such that
each bj ∈ B occurs in exactly three subsets Si ∈
S.

Question: Does S contain an exact cover for B (i.e., a sub-
collection S′ ⊆ S such that every element of B
occurs in exactly one member of S′)?

Theorem 4.2. f (s,t)-CGB is NP-complete for each s ≥ 1
and t ≥ 3.
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f f (s,1) f (s,2) f (s,t), where s ≥ 1 and t ≥ 3 fCSR fLSR

f -CGB P (Theorem 4.1) NPC (Theorem 4.2) P (Theorem 4.3)

Table 1: Results for constructive group bribery. Here, “P” stands for “polynomial-time solvable” and “NPC”
for “NP-complete”.

Proof. We will prove our theorem for s = 1 and t = 3 and
argue later how to adjust the proof for higher values s and t.
Given an RX3C instance by a pair (B,S) defined as in the

RX3C definition, we will construct the following f (1,3)-CGB
instance (f (1,3), N, ϕ, S, `) with distinguished subgroup S =
B, bribery limit ` = n−m = 2m and individuals N = B∪S.
The profile ϕ is defined as follows:

• Each bj ∈ B disqualifies himself and qualifies all other
individuals.

• Si disqualifies bj if and only if bj ∈ Si.

Each element in B has four disqualifications in total. In
order to be socially qualified, an individual in B must either
qualify himself or have at most two disqualifications after the
bribery, i.e., (at least) two disqualifications must fall away
by the bribery. Obviously, a bribed individual qualifies all
individuals including himself (at least the individuals in S).
We claim that there is an exact cover of B if and only if
there exists a successful bribery.

(⇒:) Assume that S ′ ⊆ S is an exact cover of B. Then the
briber bribes all individuals in S \ S ′ such that they qualify
all individuals. Thus one disqualification remains for each
b and consequently each b has 2 disqualifications in the end
and so S ⊆ f (1,3)(ϕ′, N).

(⇐:) Now assume that there is a successful bribery. First
we show that the briber could not bribe any individuals in
B. Second, we prove that a successful bribery in S requires
the existence of an exact cover of B.

Suppose that the briber bribes α individuals in B and
2m− α individuals in S. Clearly, as mentioned above, each
bribed individual qualifies all individuals after the bribery.
The bj bribed are socially qualified (as they qualify them-
selves after the bribery) and can be ignored for the remain-
ing bribes. To successfully bribe, the briber must take away
at least two disapprovals from each remaining b ∈ B, i.e.,
2(3m − α) disapprovals in total. As there are only 2m − α
bribes left and three disapprovals are met by each bribe (i.e.,
3(2m − α) in total), a necessary condition for a successful
bribery is that 2(3m − α) ≤ 3(2m − α), this implies that
α ≤ 0 or—as α is non-negative—α = 0, i.e., we can deduce
that the briber bribes only individuals in S.

As he must take away at least two disapprovals from all
3m individuals in B, and 2m bribes take away 2m · 3 = 6m
disapprovals in total, this implies that each b ∈ B loses
exactly two disapprovals and this in turn means that exactly
one disapproval remains in the unbribed individuals in S for
each b ∈ B. Thus the individuals in S not bribed form an
exact cover of B.

For t ≥ 4, we set ` = 2m+(t−3) and add t−3 dummy in-
dividuals disqualifying each individual. These dummy indi-
viduals are bribed with the highest priority. The remainder
of the proof remains identical.

For s ≥ 2, the same reasoning as for s = 1 can be used: s
as a parameter is only relevant when b ∈ B is qualified after
the bribery. As bribing b and making him qualify himself is

too costly given our construction (i.e., bribing only one b ∈ B
makes it impossible that all other individuals in B lose their
disqualifications), for s ≥ 2, our focus lies on making each
element in B falling below the threshold t, too. q

In contrast, constructive group bribery is easy for proce-
dural rules.

Theorem 4.3. Both fLSR-CGB and fCSR-CGB are solv-
able in polynomial time.

Proof. For fLSR, our instance is always a YES instance:
The briber simply bribes an arbitrary agent â and makes â
qualify himself and all individuals in S. This ensures that
â is in the starting set and each individual a ∈ S is socially
qualified, as a is qualified by â, i.e., we have KL

0 (ϕ′, N) ⊇
{â}, KL

1 (ϕ′, N) ⊇ {â} ∪ S.
Given fCSR, we first check if KC

0 6= ∅ (which requires
O(|N |2) time). If yes, we bribe any a ∈ KC

0 and make a
qualify all agents including himself. This makes all individ-
uals (and in particular the agents in S) socially qualified. If
no, we distinguish the following cases:

• Let y(a) be the number of individuals a′ with ϕ(a′, a) =
1. If maxa∈N y(a) + ` < |N |, there is no way to make
any a ∈ S socially qualified as even the individual
with the highest number of qualifications in the orig-
inal election cannot reach KC

0 after the bribery (even
if all bribed agents disqualify this individual before
and qualify him after the bribery). As KC

0 = ∅ after
the bribery, there is no way for the briber to reach
his goal since due to the definition of the fCSR rule,
KC

0 = KC
i = ∅ for all positive integers i holds.

• For maxa∈N y(a) + ` > |N |, the briber chooses an
individual â with y(â) = maxa∈N y(a), bribes â and
all remaining individuals initially not qualifying â and
makes each bribed individual qualify w.l.o.g. all indi-
viduals in N . This makes all individuals in S socially
qualified.

• If maxa∈N y(a) + ` = |N | (i.e., an individual with the
maximum number of qualifications can barely reach
the starting set KC

0 after the bribery), we check for
each â maximizing this expression (there may be more
than one maximum individual) if making â reach KC

0

implies that all individuals in S belong to some KC
i

(i ∈ N0). The briber makes each bribed individual
qualify all individuals. As the individuals to bribe
are fixed, our problem reduces to evaluating the fCSR

rule. This subcase requires at most O(|N |4) time: We
bribe the remaining agents initially not qualifying a
(quadratic time) by filling the corresponding rows of
the matrix ϕ with ones, then we check by computing
the socially qualified individuals for fCSR if all indi-
viduals in S are socially qualified (fCSR can clearly be
valuated in cubic time in |N |).

q
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Note that the complexity of f (s,2)-CGB is still open. One
can easily verify that the problem is easy unless s < ` < |S0|
with S0 = {a ∈ S : ϕ(a, a) = 0}, i.e., to show hardness one
needed to regard this open subcase.

5. DESTRUCTIVE GROUP ACTIONS
In this section, we are dealing with destructive influences

on group identification, i.e., the briber or the chair seeks to
prevent all individuals in a certain group S ⊆ N from being
socially qualified. Our results are summarized in Table 2.
The first result gives a connection between the constructive
and destructive variants of our problems for consent rules.
We point out that Theorems 5.1 and 5.2 only hold for con-
stant s and t.

Theorem 5.1. f (s,t)(ϕ,N) = N \ f (t,s)(−ϕ,N), where
−ϕ is obtained from ϕ by reversing the values (i.e., ϕ(a, b) =
1 if and only if −ϕ(a, b) = 0).

Proof. If there is an a ∈ N such that ϕ(a, a) = 1, then
there are at least s individuals qualifying a with respect to ϕ.
Hence, there are at least s individuals disqualifying a with
respect to −ϕ. As −ϕ(a, a) = 0, a 6∈ f (t,s)(−ϕ,N). We can
show in a similar manner that in the case of ϕ(a, a) = 0,

it still holds that a 6∈ f (t,s)(−ϕ,N). Moreover, with similar

argument, we can show that if a 6∈ f (t,s)(−ϕ,N), then a ∈
f (s,t)(ϕ,N). q

As a direct consequence of Theorem 5.1, we can reduce
constructive group bribery/control problems to destructive
group bribery/control problems. As an example, if the chair
tries to make a socially qualified individual a by adding some
individuals for the f (10,4) rule, he faces exactly the same
problem as for the case where he wants to prevent a from
being socially qualified for the f (4,10) rule and reversed ϕ
function. Let AI, DI, and PI denote adding individuals,
deleting individuals, and partitioning of individuals, respec-
tively. In general, the following link between destructive and
constructive group control/bribery holds.

Theorem 5.2. Suppose that X ∈ {AI,DI, PI}. Then(
f (s,t)-CGCX

f (s,t)-CGB

)
is

 in P
NP-complete

immune

 if and only if

(
f (t,s)-DGCX

f (t,s)-DGB

)
is

 in P
NP-complete

immune

.

For the corresponding results, we refer to Table 2, the
results are displayed in italic. Note that for s = t, the
complexities for the constructive and destructive variants
coincide. Theorems 5.1 and 5.2 do not apply to fCSR and
fLSR as we will see in the following section.

5.1 Destructive Group Control
Our first result shows that adding individuals in the de-

structive case for the consensus-start-respecting rule is com-
putationally hard. We will prove the theorem via reduction
from the NP-complete problem Exact Cover By 3-Sets
(X3C), a generalization of RX3C, where there is no restric-
tion regarding in how many subsets each bj ∈ B occurs [14].

Theorem 5.3. fCSR-DGCAI is NP-complete.

Proof. Given an X3C instance (B,S), we construct an
instance (fCSR, N, ϕ, S, T, `) of fCSR-DGCAI with N =
S ∪B, T = S = B, ` = m and ϕ defined as follows:

• For all r, j ∈ {1, . . . , 3m}, let ϕ(br, bj) = 1.

• For all i, h ∈ {1, . . . , n}, let ϕ(Si, Sh) = 0.

• If bj ∈ Si, for all 1 ≤ i ≤ n and 1 ≤ j ≤ 3m, let
ϕ(Si, bj) = 0, otherwise let ϕ(Si, bj) = 1.

The values ϕ(bj , Si) may be arbitrary. Note that each
b ∈ B is qualified by each element in B. Thus all individuals
in B are qualified at the beginning. We claim that an exact
cover of B exists if and only if there is a successful control.

(⇒:) Suppose that there is an exact cover for B, i.e., there
is a subset S ′ ⊆ S so that each b ∈ B is in precisely one
Si ∈ S ′. By adding the individuals in S ′, we achieve KC

0 = ∅
and thus f(ϕ,B ∪ S ′) = ∅. Each added Si disqualifies itself
and is thus not qualified by each individual. The same holds
for each b ∈ B as we have added an Si according to the exact
cover with ϕ(Si, b) = 0.

(⇐:) Suppose that each individual b ∈ B can be prevented
from being socially qualified. As all individuals in B qual-
ify themselves and KC

0 = B holds in the original situation,
we must add a subset Si with ϕ(Si, b) = 0 to throw b out
of the starting set. As 3m individuals require at least one
disqualification from added individuals, and m added indi-
viduals mean 3m disqualifications, this in turn implies that
all b ∈ B are disqualified by exactly one Si added. Conse-
quently the added Si form an exact cover of B. q

The following theorem says that group control by adding
individuals in fLSR is never possible.

Theorem 5.4. fLSR is immune to destructive group con-
trol by adding individuals.

Proof. First suppose that there is an a ∈ S with ϕ(a, a) =
1. Then a ∈ KL

i , for each nonnegative integer i, and this
can obviously not be changed by adding additional individ-
uals. Thus the only chance for the chair to reach his goal
at all is when ϕ(a, a) = 0 holds for all a ∈ S at the be-
ginning. a ∈ fLSR(ϕ,N) implies that there are individuals
ai0 , ai1 , . . . , air where r is a nonnegative integer, ai0 ∈ KL

0 ,
aij ∈ N for 0 ≤ j ≤ r, ϕ(aij , aij+1) = 1 for 0 ≤ j ≤ r − 1,
and ϕ(air , a) = 1, i.e., there is a sequence of individuals
qualifying the respective successors with starting point in
KL

0 and endpoint in a. Such sequences exist for each a ∈ S
and do not change no matter which additional individuals
are added. Thus we have immunity for this case. q

In contrast, destructive group control by deleting individ-
uals in both fCSR and fLSR is solvable in polynomial time.
In order to show membership in P, we give a reduction from
our problems to the Minimum (u, u′)-separator problem,
which is known to be in P [25].

For a digraph G = (V (G), E(G)) and V ′ ⊆ V (G), let
ΓG(V ′) be the set of all vertices reachable via edges from a
vertex in V ′, i.e., for every v ∈ ΓG(V ′) there is a directed
path from a vertex in V ′ to v in G. Notice that a loop on
a vertex is also considered as a directed path. For two non-
adjacent vertices u, u′ ∈ G, an (u, u′)-separator is a subset
of vertices in V (G) \ {u, u′} whose removal destroys all di-
rected paths from u to u′. A minimum (u, u′)-separator is
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f
f (s,t)

fLSR fCSRs = 1 s = 2 s ≥ 3
t = 1 t ≥ 2 t = 1 t = 2 t ≥ 3 t = 1 t ≥ 2

f- DGCAI I NPC I NPC NPC I NPC I (Theorem 5.4) NPC (Theorem 5.3)
f- DGCDI I I P P P NPC NPC P (Theorem 5.5)
f- DGCPI I I NPC NPC NPC NPC NPC P (Theorem 5.6)
f- DGB P P NPC NPC P (Theorem 5.8)

Table 2: Results for destructive group control and destructive group bribery. Results for destructive group
control for consent rules follow from Theorems 5.1 and 5.2, and the results in [28]. Results for destructive
group bribery for consent rules follow from Theorem 5.1 and Table 1. In the table, “I” stands for “immune”,
“P” for “polynomial-time solvable” and “NPC” for “NP-complete”.

a (u, u′)-separator with minimum cardinality. For a subset
A ⊆ V , merging vertices in A is the operation which (1)
creates a new vertex denoted by v(A); (2) for v ∈ V \A such
that there is an edge from v to some vertex in A, create an
edge from v to v(A); (3) for v ∈ V \A such that there is an
edge from some vertex in A to v, create an edge from v(A)
to v; and (4) remove all vertices in A and edges incident to
them. With these preconsiderations, we can give the formal
definition.

Minimum (u, u′)-separator

Given: A digraph G = (V (G), E(G)), two designated
vertices u, u′ ∈ V (G), and a non-negative inte-
ger `.

Question: Is it possible to find a (u, u′)-separator with car-
dinality of at most ` ∈ N0?

For each pair of vertices (u, u′), a minimum (u, u′)-separa-
tor can be calculated in polynomial time [25].

Theorem 5.5. Both fLSR-DGCDI and fCSR-DGCDI
are in P.

Proof. Let (fLSR, N, ϕ, S, `) be a given instance. We
construct the following auxiliary digraph G. An individ-
ual a ∈ N yields vertex v(a). There is an edge from vertex
v(a) to vertex v(a′), a, a′ ∈ N if and only if a qualifies a′.
Note that there may be loops, i.e., ϕ(a, a) = 1 yields a loop
on vertex v(a). Let V LSR be the set of all vertices with
loops on them and let ΓG(V LSR) be the set of all vertices
reachable from a vertex in V LSR. Then the socially qualified
individuals with respect to fLSR are the ones corresponding
to vertices in ΓG(V LSR) . Due to this observation, we can
solve the instance as follows. If v(a) ∈ V LSR for a ∈ S,
the given instance is a NO instance. Otherwise, merge all
vertices corresponding to individuals in S into v(S), create a
new vertex w and an edge from w to each node in V LSR. Let
V ′ be a minimum (w, v(S))-separator. If |V ′| ≤ `, the given
instance is a YES instance; otherwise, it is a NO instance.
Clearly, this problem is in P as the computation of the help
graph and all decisions require O(|N |2) time. Moreover, we
know from [25] that computing a minimum separator can be
done in polynomial time.

In the case of consensus-start-respecting rules, let (fCSR, N,
ϕ, S, `) be a given instance. Again, we create an auxiliary
digraph G identical to the graph in the first part of the
proof. Let V CSR be the set of all vertices with indegree
|N |. Then, the socially qualified individuals with respect to
fCSR are the ones corresponding to vertices in ΓG(V CSR).
Due to this observation, we can solve the instance as follows.

If there is an a ∈ S such that v(a) ∈ V CSR, our instance
is a NO instance. Otherwise we merge all vertices corre-
sponding to individuals in S into v(S), create a new vertex
w and an edge from w to every vertex in V CSR. Let V ′

be a minimum (w, v(S))-separator. If |V ′| > `, the given
instance is a NO instance. If |V ′| ≤ ` and |V CSR| > |V ′|,
our instance is a YES instance. In fact, deleting the indi-
viduals according to vertices in V ′ makes all a ∈ S socially
disqualified. The reason is as follows. First, V CSR \V ′ 6= ∅.
Assume for the sake of contradiction that after deleting all
individuals standing for vertices in V ′, some a ∈ S is still
socially qualified. Due to the definition of the graph, the
vertex v(S) is still reachable from some vertices in a set U
whose corresponding individuals are in the starting set of
socially qualified individuals after deleting individuals cor-
responding to vertices in V ′. Moreover, all individuals in
V CSR \ V ′ qualify individuals corresponding to U . Thus
there are edges from V CSR \ V ′ to U , and hence there are
edges from w to v(S) which is a contradiction. On the other
hand, if |V ′| ≤ ` but |V CSR| ≤ |V ′|, we distinguish two
cases. If there is a minimum (w, v(S))-separator V ′ such
that V CSR \V ′ 6= ∅, the given instance is a YES instance, as
the individuals corresponding to V ′ is a solution. If V CSR is
the unique minimum (w, v(S))-separator, we delete all indi-
viduals according to vertices in V CSR, reset ` := `−|V CSR|
and repeat the algorithm with the new instance after the
deletion of the individuals. If after several repetitions only
individuals in S are left, our instance is a NO instance. q

We now turn to the partition of individuals cases.

Theorem 5.6. fLSR-DGCPI is in P.

Proof. We let (fLSR, N, ϕ, S) be a fLSR-DGCPI instance.
First, in case there is an a ∈ S with ϕ(a, a) = 1, our instance
is a NO instance: a ∈

⋃
i∈N0

KL
i and this holds for each sub-

set of N containing a. Thus a survives – qualifying himself –
both the preliminary and the final round and is thus socially
qualified being in the starting set independent on the other
individuals’ decisions. Thence the only case worth studying
is ϕ(a, a) = 0 for all a ∈ S. In this case, our instance is a
YES instance: The partition (U,W ) of N with U = S and
W = N\S ensures that neither in S survives the preliminary
round (due to K0(ϕ, S) = ∅) and thus no individual from S
is socially qualified. As our problem merely reduces to the
question whether there exists an a ∈ S such that ϕ(a, a) = 1
(which can be checked in linear time in |N |), it is apparently
in P. q

The problem fCSR-DGCPI is still open, however, we can
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show easiness under the restriction ϕ = ϕT (i.e., a qualifies
a′ if and only if a′ qualifies a).

Theorem 5.7. fCSR-DGCPI is in P if ϕ = ϕT holds.

Proof. We are given an instance (fCSR, N, ϕ, S) with ϕ =
ϕT . Our algorithm checks the following cases:

• If for all a ∈ N there is an a′ ∈ N such that ϕ(a′, a) =
0, then KC

0 = ∅ and there are no socially qualified
individuals. The trivial partition U := N and W :=
N \ U = ∅ does as desired.

• KC
0 ∩S 6= ∅. Then a ∈ KC

0 ∩S is in the starting set for
each subset of N , reaches the final round and is hence
socially qualified. Thus we reject in this case.

• KC
0 ∩S = ∅, KC

0 6= ∅. Thus there is some a0 ∈ KC
0 \S,

i.e., a0 is qualified by each individual in N . This im-
plies that a0 is in the starting set for each subgroup
N ′ ⊆ N . Due to ϕ = ϕT , we have ϕ(a0, a) = 1 for each
a ∈ N and especially each a ∈ S. One can easily verify
that each a0 ∈ KC

0 must be in a partition set differ-
ent from each individual in S. Otherwise a0—socially
qualified in his partition set—ties all S individuals be-
longing to the same partition set to the final round
which makes them socially qualified, too (as a0 is in
the starting set in the final round, too). Consequently
we w.l.o.g. set S ⊆ U and KC

0 ⊆ W . Now we check
if there is some a ∈ S qualified by each a′ ∈ S. If
no, we may set U = S and W = N \ S and—as no S
individual survives the prelim—are done and accept.
If yes, we do the following. Check if there is currently
some a ∈ N \ (U ∪W ) being qualified by each individ-
ual in N \W . Such individuals are approved by each
subgroup of N \W (and thus by each individual in U
including all a ∈ S), reach the final round and—as ϕ is
symmetric—each other element in U including S, too.
Thus the chair must successively set these individuals
into W . In each iteration, we therefore check if there
is some agent not yet assigned to U or W which is
qualified by each individual not in the present set W .
If yes, we fix this element in W and proceed with the
next iteration. If no, we are done and put all still unas-
signed individuals (if any) in U . For these individuals,
we know that they are not qualified by all individuals
in N \ W = U . Thus they all do not belong to the
starting set in U . If there is a chance at all to get each
a ∈ S out of the starting set in U (and thus make all
individuals in S socially disqualified), this procedure
is the best strategy for the chair as he adds as many
individuals from N \ S as possible to the partition set
U (i.e., the chance that for each a ∈ S an agent dis-
qualifying a belongs to the same partition set is thus
maximized). After putting each individual in N either
in U or W , it hence suffices to check if the starting set
in U is empty or not (note that at most elements in
S can belong to the starting set in U after applying
this algorithm). If yes, our instance is a YES instance.
If no, we are dealing with a NO instance as all agents
but S are set into W , and hence some a ∈ S and (due
to the symmetry of ϕ) all individuals in S reach the fi-
nal round and are socially qualified (as some a0 ∈ KC

0

survives the partition set W , reaches the final round
and in turn makes all agents in S socially qualified

in the final round). Note that this algorithm requires
O(|N |3) time as we regard O(|N |) pivotal individuals
in N \ (KC

0 ∪ S) one by one and verify in each step if
all remaining O(|N |) individuals not yet regarded are
qualified by all O(|N |) agents in N \W .

Observe that the problem (especially the algorithm in the
last subcase) takes no more than O(|N |3) time as the first
two cases (mainly computing the starting set) are in O(|N |2)
and the algorithm in the third case works in cubic time. q

The assumption ϕ = ϕT makes sense in practice and in-
duces several interesting substructures. Agents may build
coalitions and hence there is mutual support (or rejection).
Another, possibly more restrictive interpretation of a sym-
metric ϕ is that similar agents (or agents within a certain
distance threshold) qualify each other.

5.2 Destructive Group Bribery
Due to Theorem 5.1, we directly obtain the complexities

of group bribery in consent rules. We refer the reader to Ta-
ble 2. Thus only the results for procedural rules are missing.

Theorem 5.8. fCSR-DGB and fLSR-DGB are in P.

Proof. Destructive group bribery in fCSR is always pos-
sible. The briber simply bribes an arbitrary individual and
makes him disqualify each individual. By this, we obtain
KC

0 = ∅.
For fLSR, our input is an instance (fLSR, N, ϕ, S, `). We

let S1 := {a ∈ S : ϕ(a, a) = 1} and S0 := S \ S1 = {a ∈
S : ϕ(a, a) = 0}. A necessary condition for the briber to
reach his goal is obtaining S1 = ∅ after the bribery. We
may assume that each bribed individual disqualifies all in-
dividuals after the bribery in order to keep the number of
qualifications as low as possible in the final election. Our
algorithm checks the following cases:

• |S1| > `. Then our instance is a NO instance as the
briber cannot reach KL

0 ∩ S 6= ∅ after the bribery.

• |S1| = `. Then the briber bribes all S1 individuals,
each bribed individual disqualifies all individuals after
the bribery, and it remains to validate if some a ∈ S
is socially qualified or not in the final election.

• |S1| < `. The briber then bribes all individuals in S1

(these bribes are fixed) and `−|S1| further individuals.
Thus w.l.o.g. we regard an instance with S0 = S.
Similar to the proof of Theorem 5.5, we define the
same help graph.

It remains to argue that there is a minimum (w, v(S))-
separator of size less or equal ` if and only if there is
a successful bribery of at most ` agents. Bribing an
individual and making him disqualify each individual
can be interpreted as deleting this individual: Let a ∈
N \(KL

0 ∪S), then, after the bribery, all edges outgoing
from v(a) are deleted (as the briber makes a disqualify
all individuals after the bribery). Although there may
be some ingoing edges left, they are worthless as v(a)
is a dead end and no other node is reached by v(a).
Thus a can be treated as if deleted. Obviously the
briber does not bribe agents in S in doubt as his aim
is to destroy all ingoing edges with higher priority than
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edges between some element in S and other elements
(possibly in S). The reason is that it does not matter
if one or more individuals in S are reached, i.e., we
want to cut off the ”first” connection to agents in S.

The algorithm clearly takes polynomial time as all compu-
tations and decisions except the last subcase require O(|N |2)
time and computing a minimum separator is in P, too. q

6. CONCLUSION
We have investigated the complexity of destructive group

control and constructive and destructive group bribery in
the context of group identification. Constructive group con-
trol was previously considered in the work by Yang and Dim-
itrov [28]. We have found a direct connection between de-
structive and constructive problems for consent rules and
could thus derive all complexities for the destructive prob-
lems of consent rules. According to our results and the re-
sults obtained in [28], every consent rule f (s,t) with s, t ≥ 3
resists all group control and bribery problems studied so
far in the literature. In contrast, many group control and
bribery problems for the liberal-start-respecting rule and
consensus-start-respecting rule turned out to be polynomial-
time solvable. Hence, our results suggest that consent rules
outperform the liberal-start-respecting and consensus-start-
respecting rules in terms of the resistance to strategic be-
havior.

We have not considered manipulation [2, 27] (i.e., some
strategic individuals report insincere preferences in order
to make a desired group of individuals socially qualified).
Given constructive group manipulation, the best a manipu-
lator can do is qualifying all individuals. Likewise, the ma-
nipulators disqualify all agents in the destructive version.
These problems all are in P.

For future research, we refer to the open problems in
this paper. As an example, we mention constructive group
bribery in f (s,2) respectively the “mirrored” problem in de-
structive group bribery. One could further extend the model
to other social rules or other strategical influences on groups
such as runoff partition of individuals or other control mod-
els [11].

Another direction for future research would be to consider
some variants of the group bribery problems studied in this
paper. For instance, the briber has to pay 1 dollar for an
individual to change his opinion over an individual, and the
briber wants to pay in total k dollars in order to reach his
goal. In addition, it is natural to assume in some setting
that all individuals do not want to deviate much from their
true opinions. In this setting, a bribed individual only flips
at most t of his qualifications or disqualifications over the
individuals, where t is a small number.
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