
The Complexity of Control and Bribery in Majority
Judgment

Yongjie Yang
1School of Information Science and Engineering, Central South University, Changsha, China

2Chair of Economics, Saarland University, Saarbrücken, Germany
yyongjiecs@gmail.com

ABSTRACT
We study strategic voting problems for majority judgment, in which
each voter assigns to every candidate a grade and the winners are
determined by their majority-grades. We first study the construc-
tive/destructive control by adding/deleting votes/candidates prob-
lems. Then we study the bribery problem, where an external agent
wants to change the result by asking a limited number of voters to
change their votes. In addition, we study the variant of the bribery
problem where each voter has a price for changing her grade as-
signed to a candidate and the external agent has a limited budget.
Finally, we propose and study the constructive/destructive control
by adding & deleting grades problem where an external agent aims
to change the result by adding and deleting some grades simultane-
ously. We show that majority judgment is immune to constructive
control by adding candidates and destructive control by deleting
candidates. Moreover, for each other problem, we either derive a
polynomial-time algorithm or show it is NP-hard.

Keywords
majority judgment; control; bribery; complexity

1. INTRODUCTION
Voting has significant applications in multi-agent systems, polit-

ical elections, web spam reduction, pattern recognition, etc. For
instance, in multiagent systems, it is often necessary for a group of
agents to make a collective decision by means of voting in order to
reach a joint goal. However, according to numerous impossibility
theorems, there are no voting systems which simultaneously satisfy
a set of desirable properties when more than two candidates are in-
volved, see, e.g., [1, 22, 33]. This mainly attributes to the fashion
of voting that asks voters to rank all candidates in linear orders.

Recently, Balinski and Laraki [4] introduced a new voting sys-
tem named majority judgment, which completely discards the fash-
ion of traditional voting where voters are asked to rank candidates
in linear orders, and consequently escapes many impossibility the-
orems [4]. In particular, in majority judgment, each voter measures
each candidate by assigning a grade from a common language of
grades (e.g., {bad, good, excellent} or {0, 1, ..., 100}). The win-
ners are then selected according to their majority-grades. In gen-
eral, the majority-grade of a candidate is the grade assigned by the
middlemost voter to the candidate, where the middlemost voter is

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

with respect to an order of the voters according to the grades they
assign to the candidate. For instance, if five voters respectively
assign the grades average, average, good, good, classic to a
wine, then the majority-grade of the wine is good. In a series
of papers [3, 4, 5, 6], Balinski and Laraki showed that majority
judgment not only satisfies many desirable properties and escapes
many impossibility theorems in theory, but also performs well in
practice. As a matter of fact, when the number of candidates is
not small, seldom real-world voting asks voters to rank candidates
in linear orders. Instead, letting voters assign grades to candidates
seems more efficient. For instance, many websites offer the op-
portunity for internet users to grade hotels, online shops, movies,
etc. Since the publication of the first paper on majority judgment,
there have been many papers investigating problems pertaining to
majority judgment [3, 20, 30, 40]. It should be pointed out that
there are other non rank-based voting systems, such as the range
voting and majority voting (see [34] for further details). However,
as argued by Balinski and Laraki [4], majority judgment performs
well enough in real-world elections to distinguish itself from those
voting systems.

Unfortunately, no matter how perfect a voting system is, it un-
avoidably suffers from strategic behavior. For instance, some voters
may cast votes that do not reflect their real preferences, a powerful
agent may add some new voters or candidates, some voters may
change their votes if they are bribed. Fortunately, there exist promi-
nent approaches to address such issues. In particular, using com-
plexity as a barrier against strategic behavior has been suggested
by many researchers, see, e.g., [2, 8, 10, 11, 16, 26, 28, 29, 35,
36]. The key point is that if it is NP-hard for the strategic agent
to successfully find out how to change the results, he may refrain
from attacking the voting. Therefore, whether a voting system is
resistant to attacks has been recognized by many researchers as a
significant property to measure the voting systems [8]. In addi-
tion, complexity analysis helps practitioners decide what kind of
solution method is appropriate. For polynomial-time solvability re-
sults, we directly provide efficient algorithms. On the other hand,
hardness results suggest that finding an exact solution is apt to be
costly or impractical, and resorting to approximation or heuristic
algorithms may be a necessary choice.

In this paper, we are mainly concerned with the complexity of
various strategic voting problems for majority judgment, where
an external agent wants to change the result by reconstructing the
election. There would be two goals that the external agent wants
to reach: making a non-winning candidate p win the election, or
making a winning candidate p lose the election. The former case
is indicated by the term constructive and the latter case by the
term destructive. The candidate p is often referred to as the dis-
tinguished candidate in the literature. We first study several stan-

1169

dard control problems, namely constructive/destructive control by
adding/deleting votes/candidates. In these problems, a construc-
tive/destructive external agent aims to reach his goal by either adding
some votes (CCAV/DCAV), deleting some votes (CCDV/DCDV),
adding some candidates (CCAC/DCAC) or deleting some candi-
dates (CCDC/DCDC). In particular, we show that CCAV and CCDV
for majority judgment are NP-hard even when there are only two
grades. In addition, we show that majority judgment is immune to
CCAC and DCDC, i.e., it is impossible for the external agent to
reach his goal by carrying out corresponding strategic operations.
On the other hand, we show that all the remaining problems are
polynomial-time solvable.

In addition, we study the bribery problem where an external
agent (briber) has an incentive to change the results by bribing some
voters. A bribed voter is asked to recast a new vote. We show that
the problem is NP-hard if the briber has a constructive goal, and is
polynomial-time solvable if the briber has a destructive goal. We
also study a variant of the bribery problem where it costs 1 dol-
lar for a voter to change a grade she assigned to some candidate,
and the briber has a limited budget. We show that this problem is
polynomial-time solvable no matter whether the briber has a con-
structive or a destructive goal.

Finally, we propose and study a problem where an external agent
aims to change the results by adding and deleting some grades. In
this problem, we assume that each voter has a linear order prefer-
ence over the grades for each candidate, and the voter assigns the
most preferred grade existing in the current voting to the candidate.
In particular, we assume that each voter has an ideal grade to each
candidate, and the further a grade is from the ideal grade the less
it is preferred. We show that this problem is polynomial-time solv-
able, no matter whether the external agent has a constructive or a
destructive goal.

2. PRELIMINARIES
Majority Judgment. Throughout this paper, we interchange-

ably use the terms “voter” and “vote”. In majority judgment, we
have a set C of candidates, a multiset V of votes (voters), and a
common language of grades G associated with a linear order �

used to compare the grades. Such a 4-tuple (C, G,�,V) is called
an election. For g, g′ ∈ G, g � g′ means g � g′ or g = g′. Each
voter assigns to each candidate a grade from G. We denote by
v(c) the grade a voter v ∈ V assigns to a candidate c ∈ C. For a
vote v, a subset C of candidates and a grade g, v(C) = g means
v(c) = g for every c ∈ C. The majority-grade of a candidate
c ∈ C is the middlemost grade in (v1(c), v2(c), ..., vn(c)), where
(v1(c), v2(c), ..., vn(c)) is an order of all votes such that for every
1 ≤ x < y ≤ n it holds that vx(c) � vy(c). More precisely, the
majority-grade of c is vj(c), where j = bn

2
c. For a g ∈ G, if a

candidate c has a majority-grade g′ such that g′ � g (resp. g � g′),
we say c has a majority-grade at most g (at least g). Moreover, if
c has a majority-grade g′ such that g′ � g (resp. g � g′), we say c
has a majority-grade less than g (more than g). The candidates with
the highest majority-grade are called the winners of (C, G,�,V).
If there is only one winner, we call the winner the unique winner;
otherwise, we call them co-winners.

Example. Consider the scenario where a website wants to se-
lect the most popular movie among Zootopia, Finding Dory and
Weiner, and invites movie fans to vote. Assume that there are 100
voters and each voter evaluates the movies by assigning a grade
ranging from 0 to 5 to the movies. The larger the grade a voter
assigns to a movie, the more the voter prefers it. The assignments
are summarized in Table 1.

Now we formulate the problems studied in the paper.

0 1 2 3 4 5
Zootopia 15 13 10 32 23 7

Finding Dory 30 19 21 15 15 0
Weiner 5 10 0 25 50 10

Table 1: The majority-grades of Zootopia, Finding Dory and
Weiner are 3, 2 and 4, respectively.

Control. We study 8 control problems, each of which is a special
case of the following problem.

Constructive/Destructive Multimode Control
Input: A set C of candidates, a common language of grades
G associated with a linear order �, a multiset V of votes, a
subset D ⊆ C, a distinguished candidate p ∈ C \ D, a submul-
tiset U ⊆ V , and four nonnegative integers kAV ≤ |U|, kDV ≤
|V \ U|, kAC ≤ |D| and kDC ≤ |C \ D|.
Question: Are there D ⊆ D, C ⊆ C \ (D ∪ {p}), V ⊆ V \
U , U ⊆ U such that |D| ≤ kAC, |C| ≤ kDC, |U | ≤ kAV, |V | ≤
kDV and p wins/loses (B,G,�,W), where B = ((C \ D) \
C) ∪D and W = ((V \ U) \ V) ∪ U?

In the definition, candidates in D and votes in U are called un-
registered candidates and unregistered votes, respectively. Accord-
ingly, candidates in C \ D and votes in V \ U are called registered
candidates and registered votes, respectively. We study 8 special
cases of the above problem. Precisely, we study CCAV, CCDV,
CCAC, CCDC, DCAV, DCDV, DCAC and DCDC, where the first
two characters “CC|DC” stand for “constructive control|destructive
control”, and the last two characters “AV|DV|AC|DC” stand for
“adding votes|deleting votes|adding candidates|deleting candidates”.
For X ∈ {AV, DV, AC, DC}, CCX (DCX) is the special case of
Constructive (Destructive) Multimode Control, such that kY = 0
for every Y ∈ {AV, DV, AC, DC} \ {X}. In addition, for X ∈
{AV, DV, DC}, D = ∅ and for X ∈ {AC, DC, DV}, U = ∅. For
simplicity, when we mention an instance of a problem, we ignore
the components with values 0 or ∅.

Bribery. In the bribery problem, an external agent bribes vo-
ters and asks them to change their votes. The external agent has a
limited budget. The formal definition is as follows.

Constructive/Destructive Bribery (CB/DB)
Input: A set C of candidates, a common language of grades
G associated with a linear order �, a multiset V of votes, a
distinguished candidate p ∈ C, and a nonnegative integer k ≤
|V|.
Question: Can we change at most k votes in V to make p
win/lose (C, G,�,V)?

In addition, we study a variant of the bribery problem, where it
costs 1 dollar for a voter to change a grade, and the briber has k
dollars to pay.

Constructive/Destructive Grade Bribery (CGB/DGB)
Input: A set C of candidates, a common language of grades
G associated with a linear order �, a multiset V of votes, a
distinguished candidate p ∈ C, and an integer 0 ≤ k ≤ |C|·|V|.
Question: Can we change at most k grades assigned to the can-
didates to make p win/lose (C, G,�,V)?

Grade Control. We study the scenario where an external agent
wants to change the result by adding and deleting some grades. Be-
fore giving the formal definition of the problem, we discuss how the

1170

grade of a candidate assigned by a voter changes if some grades are
deleted or added. Assume that voter v assigned a grade g to a can-
didate c. If g is deleted, then a very natural stipulation is that v will
assign to c a new grade that is close to g. On the other hand, if some
new grade is added, only voters who assigned grades very close to
the new grade have an incentive to change their grades. To capture
both cases, we assume that for each voter v and each candidate c,
the voter v has a strict preference over the grades and v assigns
to c the most-preferred grade existing in the current voting. More
importantly, we assume that each voter has an ideal grade to every
candidate, and the further a grade to the ideal grade with respect
to �, the less it is preferred. This is reminiscent of single-peaked
preferences (more precisely, 1-dimensional Euclidean preferences),
where � serves as the societal axis. Clearly, the definition of vote
here is compatible with the previous definition. For a set A, let
L(A) be the set of all linear orders over A.

Constructive/Destructive Control by Adding & Deleting
Grades (CCADG/DCADG)
Input: A set C of candidates, a common language of grades G
associated with a linear order �, a multiset of votes V where
each v ∈ V is a function v : C 7→ L(G) such that for every
c ∈ C and every three grades gx, gy, gz ∈ G with gx�gy�gz ,
gz v(c) gy implies gy v(c) gx, a distinguished candidate p ∈ C,
a subsetG′ ⊆ G, and two nonnegative integers kAG ≤ |G′| and
kDG ≤ |G \G′|.
Question: Are there H ⊆ G \ G′ and H ′ ⊆ G′ such that
|H| ≤ kDG, |H ′| ≤ kAG, and p wins/loses the election

(C, (G \ (G′ ∪H)) ∪H ′,�,V)?

Example. The following example shows how adding and delet-
ing grades affects the majority-grade of a candidate. Imagine that
7 experts are invited to evaluate a wine. There are five poten-
tial grades namely, extremely flawed, below average, average,
good and classic. The preferences of the experts are shown in
Figure 1. If the organizer asks the experts to evaluate the wine only
with the grades extremely flawed, average and classic, then the
majority-grade of the wine is average. If the organizer adds the
grade below average, then the majority-grade of the wine will
be below average. Moreover, if the given grades are extremely
flawed, good, classic, the majority-grade of the wine is good.
See the table below for the details.

{E, A, C} {E, B, A, C} {E, G, C}

3 : (blue) E B E
3 : (red) A A G
1 : (green) A B G

majority-grade: A B G

In all problems with the constructive goal defined above, we as-
sume that the distinguished candidate p does not win the election in
advance, i.e., each instance with all integers in the input being 0 is
a NO-instance. Moreover, in all problems with the destructive goal,
we assume that p wins the election in advance, i.e., each instance
with all integers in the input being 0 is a NO-instance. Throughout
this paper, m = |C|, n = |V| and t = |G|.

Our NP-hardness results are mainly based on reductions from
the following NP-hard problem [21].

Exact 3-Set Cover (X3C)
Input: A universal set H = {c1, c2, ..., c3κ} and a

E B A G C

Figure 1: An illustration of how adding and deleting grades af-
fects the majority-grade of a candidate. Here, “E, B, A, G, C”
stand for “extremely flawed, below average, average, good,
classic”, respectively. There are three experts with the prefer-
ence B � E � A � G � C (blue line), three experts with the
preference G � A � B � C � E (red line), and one expert
with the preference B � A � G � E � C (green line).

collection S = {s1, s2, ..., sλ} of 3-subsets of H .
Question: Is there an S′ ⊆ S such that |S′| = κ and
each ci ∈ H appears in exactly one set of S′?

We assume that each element ci ∈ H occurs in exactly 3 sub-
sets of S. This assumption does not affect the NP-hardness [23].
Observe that under this assumption, we have that λ = 3κ.

Remarks. Following the convention [19, 37], for each problem
we distinguish between the unique-winner model and the nonunique-
winner model. In the unique-winner model, winning an election
means to be the unique winner, while in the nonunique-winner
model, winning an election means to be the unique winner or to
be a co-winner. All our results hold for both the unique-winner
model and the nonunique-winner model, and we will not state this
explicitly in the theorems. Due to space limitations, unless stated
otherwise, our proofs are solely based on the unique-winner model.

It should be pointed out that majority judgment was proposed as
a single-winner voting system. In particular, Balinski and Laraki [4]
put forward two schemes to break the tie when several candidates
have the same highest majority-grade. However, as shown in [20,
40], both schemes lead to undesirable results. This is one of the rea-
sons that we discard tie-breaking schemes in our discussions, and
instead study both the unique-winner model and the nonunique-
winner model of each problem.

Finally, we would like to point out that in the analysis of the run-
ning times of all our polynomial-time algorithms for the problems
studied in this paper, we ignore the time to read the input. Never-
theless, all results in Table 2 do not change if we take into account
the time to read the input. The reason is that the sizes of the in-
puts of all problems in this table are asymptotically smaller than
the running times of the corresponding algorithms.

3. MAJORITY CONTROL
In this section, we study the complexity of constructive/destructive

control by adding/deleting votes/candidates for majority judgment.
A motivation is that the issues of adding/deleting votes/candidates
occur in many electoral settings, see, e.g., [12, 18] for some con-
crete examples. In addition, as argued in [18], adding votes pertains
to simply encouraging some agents to vote, multiplying the exist-
ing agents, or performing false-name attacks. We first show that
CCAV and CCDV for majority judgment are NP-hard, even when
there are only two grades.

THEOREM 1. CCAV and CCDV for majority judgment are NP-
hard even when there are only two grades.

1171

Control Bribery
Constructive (CC) Destructive (DC) Constructive Destructive

AV DV AC DC ADG AV DV AC DC ADG CB CGB DB DGB
NP-h I O(m2n log t) O(mnt2) O(n3mt) O(mn log t) I O(mnt2) NP-h O(mnt) O(mnt)

Thm 1 Thm 2 Thm 4 Thm 11 Thm 5 Thm 7 Thm 2 Thm 11 Thm 8 Thm 9 Thm 10

Table 2: A summary of our results. Here, “NP-h” stands for “NP-hard” and “I” stands for “immune”. The running times of the
polynomial-time algorithms ignore the time to read the input. See our remarks in the end of Preliminaries for further details.

PROOF FOR CCAV. Let I = (H,S) be an instance of X3C.
We create an instance EI = (C, G,�,V, p ∈ C,U ⊆ V, kAV = κ)
as follows. For each ci ∈ H , we create a candidate. For simplicity,
we still use ci to denote the corresponding candidate. In addition,
we have a distinguished candidate p. Hence, in total there are 3κ+1
candidates. We have two grades denoted by bad and good such that
bad � good. We have in total κ − 2 registered votes v such that
v(p) = bad and v(H) = good. The unregistered votes are created
as follows. For each s ∈ S, we create a vote vs such that (1)
vs(p) = good; and (2) for every c ∈ H , vs(c) = good if and only
if c ∈ s. It remains to prove the correctness.

(⇒:) Assume that there is an exact 3-set cover S′ of I. Let
U = {vs | s ∈ S′} be the set of unregistered votes corresponding
to S′. Consider the election (C, G,�, (V \ U) ∪ U). Due to the
construction, there are in total κ− 2 votes v such that v(p) = bad
and κ votes v such that v(p) = good. Hence, the majority-grade of
p is good. For each c ∈ H , there are κ−1 votes v such that v(c) =
bad and κ− 2+1 = κ− 1 votes v such that v(c) = good. Hence,
the majority-grade of each c ∈ H is bad. Clearly, p uniquely wins
the final election.
(:⇐) Assume that there is a solution U of EI . Observe first that

U must contain exactly κ votes . Therefore, there are κ votes v such
that v(p) = good and κ − 2 votes v such that v(p) = bad in the
final election, implying p has a majority-grade good. If for some
c ∈ H , there are at least two votes v ∈ U such that v(c) = good,
then c has the majority-grade good as well. Therefore, for each
c ∈ H there must be at most one v ∈ U such that v(c) = good.
Due to the construction, this means that S′ = {s ∈ S | vs ∈ U} is
an exact 3-set cover of I.

Majority judgment with two grades is similar to Approval where
each voter either approves (assigns the grade good to) or disap-
proves (assigns the grade bad to) each candidate and candidates
with the most approvals win. However, they are different. Con-
sider three candidates a, b, c and three voters v1, v2, v3, where v1
approves all candidates, v2 approves a and b, and v3 approves a.
Then, a is the unique Approval winner. However, both a and b are
the winners with respect to majority judgment.

Now we study CCAC and DCDC. The Weak Axiom of Revealed
Preference (WARP) means that a winner among a subset of candi-
dates always remains a winner among every subset of candidates
that includes her. The “unique” version of the Weak Axiom of Re-
vealed Preference (Unique-WARP) means that the unique winner
among a subset of candidates always remains the unique winner
among every subset of candidates that includes her. Hemaspaan-
dra et al. [24] studied the unique-winner model of several construc-
tive control and destructive control problems, and showed that if
a voting system satisfies Unique-WARP, then it is immune to the
unique-winner model of CCAC and DCDC. Recall that a voting
system is immune to CCAC if it is impossible to make some can-
didate who does not win the election in advance wins the election
by adding at most kAC candidates, and is immune to DCDC if it is
impossible to prevent a winner from winning by deleting at most

kDC candidates. For the nonunique-winner model, it is easy to see
that if a voting system satisfies WARP, then the voting system is
immune to the nonunique-winner model of CCAC and DCDC. It
is fairly easy to verify that majority judgment satisfies both WARP
and Unique-WARP. Then, we have the following theorem.

THEOREM 2. Majority judgment is immune to CCAC and DCDC.

CCDC has been shown to be polynomial-time solvable for nu-
merous voting systems such as Approval and Condorcet in the lit-
erature. We prove that CCDC is polynomial-time solvable for all
voting systems that satisfy some properties. Our result generalizes
the polynomial-time algorithms for CCDC for Approval and Con-
dorcet studied in [8, 17, 24], and implies that CCDC for majority
judgment is polynomial-time solvable.

The WINNER DETERMINATION problem (WD) for a voting sys-
tem φ is to calculate all winners with respect to φ and a given elec-
tion.

THEOREM 3. Let φ be a voting system that satisfies WARP. The
unique-winner model of CCDC for φ can be solved in O(m · f(`))
time, where f is a computable function, ` is the size of an instance
of WD for φ and O(f(`)) is the complexity of WD for φ.

PROOF. Let p be the distinguished candidate. Assume that there
is a candidate q 6= p which is a current winner. If q is still in the
final election, then due to the definition of WARP, q is still a winner
in the final election. Hence, to make p uniquely win the election, q
has to be deleted. Due to this observation, the following algorithm
correctly solves the unique-winner model of CCDC for a voting
system satisfying WARP:

for each i = 1 to kDC

if p does not uniquely win the current election, then
delete one arbitrary current winner except p;

else return “YES”;
return “NO”;

Clearly, there are at most kDC ≤ m loops, and the running time
of each loop is dominated by the complexity of WD for φ. Hence,
if the winners can be calculated in O(f(`)) time, the running time
of the above algorithm is bounded by O(m · f(`)).

The winners with respect to many voting systems can be calcu-
lated in polynomial time. Due to Theorem 3, the unique-winner
model of CCDC for these voting systems is polynomial-time solv-
able. Regarding majority judgment, it is easy to see that the win-
ners can be calculated in polynomial-time. Nevertheless, the ex-
act running times of algorithms to solve WD for majority judg-
ment have not been mentioned in the literature so far. As several
of our polynomial-time algorithms call an algorithm to solve WD
for majority judgment, we study two algorithms for WD for major-
ity judgment. The first algorithm runs inO(mn logn) time and the
second one runs inO(mn log t) time. In particular, in the first algo-
rithm, we calculate the majority-grades of all candidates first, based

1172

on some sorting algorithms, and then, based on the majority-grades
we calculate the winners. In the second algorithm, we guess the
highest majority-grade g of the candidates and determine whether
each candidate has majority-grade at least g. Let (C, G,�,V) be
an election with respect to which we want to calculate the winners.
We first study the complexity of comparing the majority-grade of
a candidate and a given grade g. Several of our polynomial-time
algorithms also call this procedure.

LEMMA 1. It takes O(n) time to compare the majority-grade
of a candidate c and a grade g ∈ G.

PROOF. Let y be the number of voters who assign a grade at
most g to c, with respect to �. Clearly, y can be calculated in
O(n) time. Then, due to the definition of majority judgment, if
y < bn/2c, the majority-grade of c is at least g; otherwise, the
majority-grade of c is at most g. Moreover, if y ≥ bn/2c and there
is at least one voter who assigns the grade g to c, then the majority-
grade of c is g.

Now we are ready to give the algorithms for WD for majority
judgment.

LEMMA 2. WD for majority judgment is solvable inO(mn logn)
time or in O(mn log t) time.

PROOF. Consider first the following algorithm. To calculate the
majority-grade of a candidate c, we sort the grades assigned by the
voters to c (based on �). This can be done in O(n logn) time by
many sorting algorithms such as the Merge sorting algorithm [27].
As we have in totalm candidates, it takesO(mn logn) time to cal-
culate the majority-grades of all candidates. Given these majority-
grades, it takes O(m) time to calculate the candidates with the
highest majority-grade, i.e., the winners. This algorithm terminates
in O(mn logn) +O(m) = O(mn logn) time.

Consider now another algorithm. Let (g1, ..., gt) be the order
of G such that gx � gx+1 for every 1 ≤ x ≤ t − 1. For each
` ∈ {1, 2, ..., t}, let S` be the set of all candidates whose majority-
grades are at least g`. The algorithm aims to find the largest ` such
that S` 6= ∅. Clearly, candidates in such an S` are exactly the win-
ners. By using binary search with respect to (g1, ..., gt), we need
only to calculate at mostO(log t) many S`. Due to Lemma 1, given
g` for some ` ∈ {1, 2, ..., t} we can calculate S` in m · O(n) =
O(mn) time. As we consider at most O(log t) different values of
`, the whole running time of the algorithm is O(mn log t).

Notice that if we take into account the time to read the input, the
running time of the first algorithm shown in the proof of Lemma 2
isO(mn logn+ t). The reason that the number of grades does not
occur in the running time of the first algorithm is that no matter how
many grades we have, we need only the n grades assigned by the
voters to calculate the majority-grade of a candidate. Lemma 2 sug-
gests that when t is considerably larger than n, we should use the
first algorithm to determine the winners; otherwise, we should turn
to the second algorithm. The following analysis is purely based on
the second algorithm presented in the proof of Lemma 2.

According to Theorem 3 and Lemma 2, the unique-winner model
of CCDC for majority judgment can be solved in O(m2n log t)
time. For the nonunique-winner model of CCDC for majority judg-
ment, observe that to make a candidate p a winner by deleting can-
didates, all candidates having a greater majority-grade than that of
p have to be deleted. Hence, we can solve it in polynomial-time
with an algorithm similar to the one in the proof of Theorem 3.
The following theorem summarizes our results for CCDC.

THEOREM 4. CCDC for majority judgment can be solved in
O(m2n log t) time.

Now we study DCAV and DCDV for majority judgment. In par-
ticular, we show that both problems are polynomial-time solvable.

THEOREM 5. DCAV and DCDV for majority judgment can be
solved in O(n3mt) time.

PROOF. We prove the theorem by deriving polynomial-time al-
gorithms for DCAV and DCDV for majority judgment as follows.

DCAV. Let I = (C, G,�,V, p ∈ C,U ⊆ V, kAV) be a given
instance. The algorithm breaks down I into (m−1)·t subinstances,
each of which takes I , a candidate q ∈ C \ {p} and a grade g ∈ G
as the input, and asks if we can add at most kAV unregistered votes
such that the majority-grade of p is at most g and the majority-grade
of q is at least g. Clearly, I is a YES-instance if and only if at least
one of the subinstances is a YES-instance. Let I ′ = (I, q, g) be a
subinstance. Now, we illustrate how to solve I ′. We first calculate
the following submultisets.

U↓,↑: all votes v ∈ U such that v(p)� g � v(q).

U↑,↑: all votes v ∈ U such that g � v(p) and g � v(q).

U↓,↓: all votes v ∈ U such that v(p)� g and v(q)� g.

Clearly, these three sets can be calculated inO(n) time. Letm∗,? =
|U∗,?| for ∗, ? ∈ {↑, ↓}. Then, we add arbitrary min{kAV,m↓,↑}
votes v in U↓,↑ and decrease kAV by min{kAV,m↓,↑}. Clearly, this
can be done in O(kAV) = O(n) time. If after doing so p has
majority-grade at most g and q has majority-grade at least g, I ′

is a YES-instance; otherwise, if kAV = 0, I ′ is a NO-instance. Due
to Lemma 1, this can be done in O(n) + O(n) = O(n) time.
Assume that none of the above cases occurs. Then, if there are
two nonnegative integers k1 and k2 such that k1 + k2 ≤ kAV, and
after adding arbitrary min{k1,m↑,↑} votes in U↑,↑ and arbitrary
min{k2,m↓,↓} votes in U↓,↓, p has majority-grade at most g and
q has majority-grade at least g, I ′ is a YES-instance; otherwise,
I ′ is a NO-instance. As there are O(k2AV) = O(n2) combina-
tions of k1 and k2 to consider, the above procedure can be done
in O(n2) · O(n) = O(n3) time, where O(n) is the time to com-
pare the majority grades of p and q with g (the complexity is due
to Lemma 1). In summary, the algorithm to solve I ′ terminates in
O(n3) time, as its running time is dominated by the complexity of
the last case. As we have (m− 1) · t subinstances, we can solve I
in (m− 1) · t ·O(n3) = O(n3mt) time.

DCDV. Let I = (C, G,�,V, p ∈ C, kDV) be a given instance.
The algorithm breaks down I into (m − 1) · t subinstances, each
of which takes I , a candidate q ∈ C \ {p} and a grade g ∈ G as
the input, and asks if we can delete at most kDV votes such that the
majority-grade of p is at most g and the majority-grade of q is at
least g. Clearly, I is a YES-instance if and only if at least one of the
subinstances is a YES-instance. Let I ′ = (I, q, g) be a subinstance.
To solve I ′, we calculate the following submultisets:

V↑,↓: all votes v ∈ V such that v(q)� g � v(p).

V↑,↑: all votes v ∈ V such that g � v(p) and g � v(q).

V↓,↓: all votes v ∈ V such that v(p)� g and v(q)� g.

Let m∗,? = |V∗,?| for ∗, ? ∈ {↑, ↓}. We first delete arbitrary
min{kDV,m↑,↓} votes v in V↑,↓ and decrease kDV by min{kDV,m↑,↓}.
If after doing so p has majority-grade at most g and q has majority-
grade at least g, I ′ is a YES-instance; otherwise, if kDV = 0, I ′

is a NO-instance. Assume that none of the above cases occurs.
Then, if there are two nonnegative integers k1 and k2 such that
k1 + k2 ≤ kDV, and after deleting arbitrary min{k1,m↑,↑} votes

1173

in V↑,↑ and arbitrary min{k2,m↓,↓} votes in V↓,↓, p has majority-
grade at most g and q has majority-grade at least g, I ′ is a YES-
instance; otherwise, I ′ is a NO-instance. Analogous to the analysis
of the algorithm for DCAV, we can conclude that the algorithm to
solve DCDV is bounded by O(n3mt).

Finally, we study DCAC. We first develop a polynomial-time al-
gorithm for DCAC for voting systems φ satisfying some properties.

THEOREM 6. The unique-winner model of DCAC for φ can be
solved in O(m · f(`)) time if φ satisfies Unique-WARP, and the
nonunique winner model of DCAC for φ can be solved in O(m ·
f(`)) time if φ satisfies WARP, where ` is the size of an instance of
WD for φ, f is a computable function in `, andO(f(`)) is the com-
plexity of WD for φ in elections consisting of only two candidates.

PROOF. In an instance of DCAC for φ satisfying Unique-WARP,
to make the distinguished candidate p not the unique winner, there
must be another candidate q 6= p such that q wins the election
restricted to p and q. Hence, the following algorithm correctly
solves the unique-winner model of DCAC: Enumerate all candi-
dates q 6= p and check if q is a winner in the election restricted to
only q and p. If there is such a q, return “YES”; otherwise, return
“NO”. If the winners in elections with only two candidates with re-
spect to φ can be calculated in O(f(`)) time, the above algorithm
terminates in O(m · f(`)) time.

There are voting systems such as Kemeny, Dodgson and Young
for which WD is not polynomial-time solvable [7, 25, 32]. Nev-
ertheless, for almost all widely-studied voting systems the winners
between two candidates are polynomial-time determinable.

It is easy to see that majority judgment satisfies all conditions
stated in Theorem 6. Moreover, if there are only two candidates, the
winners can be calculated inO(n log t) time, according to Lemma 2.
As a result, we have the following theorem.

THEOREM 7. DCAC for majority judgment can be solved in
O(mn log t) time.

4. MAJORITY BRIBERY
In this section, we study the complexity of the bribery problems.

The motivation of the study of bribery problems is that the phe-
nomena of vote changing occurs often in real-world voting. An
example of scenario is when candidate attempts to change the pref-
erences of voters by running a campaign, or in more extreme cases
where this strategy involves paying voters to change their votes, or
bribing election officials to get access to already submitted votes
in order to modify them. We refer to [9, 15, 19, 39] for further
discussions on the bribery problems.

We first prove that the constructive bribery problem for majority
judgment is NP-hard even in a very special case.

THEOREM 8. CB for majority judgment is NP-hard, even when
there are only two grades.

PROOF. Let I = (H = {c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ})
be an instance of X3C. We create an instance EI = (C, G,�,V, p ∈
C, k = κ) as follows.

Candidates. For each ci ∈ H , we create a candidate. For sim-
plicity, we still use ci to denote the corresponding candidate. In
addition, we have a distinguished candidate p. Hence, we have in
total 3κ+ 1 candidates.

Grades. We have two grades denoted by bad and good respec-
tively such that bad� good.

Votes. We have in total 4κ + 1 votes. In particular, for each
s ∈ S, we create a vote vs such that (1) vs(p) = bad; and (2) for
every c ∈ H , vs(c) = bad if and only if c ∈ s. In addition, we
create two votes v such that v(H∪{p}) = good. Finally, we create
κ− 1 votes v such that v(p) = good and v(H) = bad.

It remains to prove the correctness.
(⇒:) Let S′ ⊂ S be an exact 3-set cover of I. For each s ∈ S′,

change vs so that vs(p) = good and vs(H) = bad. After these
changes, there are 2κ votes v such that v(p) = bad and 2κ + 1
votes v such that v(p) = good. So, the majority-grade of p is good.
For each c ∈ H , there are 3 + (κ− 1) + (κ− 1) = 2κ+ 1 votes
v such that v(c) = bad and 2κ votes v such that v(c) = good. So,
the majority-grade of each c ∈ H is bad. Clearly, p uniquely wins
the final election.

(:⇐) Assume that there is a V ⊆ V such that |V | ≤ k and
we can change votes in V to make p uniquely win. Observe that
in the original election, there are κ + 1 votes v such that v(p) =
good. Hence, V must contain κ votes v with v(p) = badwhich are
changed so that v(p) = good. This implies that V contains exactly
k votes corresponding to S. Let S′ = {s | vs ∈ V }. To make
every c ∈ H has the majority-grade bad in the final election, there
must be at least κ − 1 votes vs ∈ V , c ∈ s, with vs(c) = good
which are changed so that v(c) = bad. As |V | = κ, this implies
that S′ is an exact 3-set cover of I.

Now we study the destructive bribery problem. In contrast to the
NP-hardness of the constructive bribery problem, we show that the
destructive bribery problem for majority judgment is polynomial-
time solvable, regardless of the number of grades.

THEOREM 9. DB for majority judgment can be solved inO(mnt)
time.

PROOF (UNIQUE-WINNER MODEL). We prove the theorem by
giving a polynomial-time algorithm for the problem stated in the
theorem. Let I = (C, G,�,V, p ∈ C, k) be a given instance. The
algorithm breaks down I into (m−1)·t subinstances, each of which
takes as input I , a candidate q ∈ C \ {p} and a grade g ∈ G, and
asks whether we can change at most k votes so that q has majority-
grade at least g and p has majority-grade at most g. It is clear that
I is a YES-instance if and only if at least one of the subinstances
is a YES-instance. In the following, we show how to solve each
subinstance. Let I ′ = (I, q, g) be a subinstance. To solve I ′, we
calculate the following three submultisets.

V↑,↓: all votes v ∈ V such that v(q)� g � v(p).

V↑,↑: all votes v ∈ V such that g � v(p) and g � v(q).

V↓,↓: all votes v ∈ V such that v(p)� g and v(q)� g.

It is easy to verify that the above three sets can be calculated in
O(n) time. Let m∗,? = |V∗,?| for ∗, ? ∈ {↑, ↓}. We first change
arbitrary min{k,m↑,↓} votes v in V↑,↓ so that after these changes
v({p, q}) = g, and decrease k by min{k,m↑,↓}. This can be done
in O(n) time. If after doing so p has majority-grade at most g and
q has majority-grade at least g, I ′ is a YES-instance; otherwise, if
k = 0, I ′ is a NO-instance. According to Lemma 1, this can be
checked inO(n) time. If none of the above cases occurs, we do the
following. If p has majority-grade more than g (this can be checked
in O(n) time based on Lemma 1), let k′ be the number of all votes
in V which assign some grade at most g to p. Then, if k < bn

2
c−k′,

I ′ is a NO-instance; otherwise, change arbitrary bn
2
c − k′ votes in

V↑,↑ so that after the change each of the changed vote assigns the
grade g to p, and decrease k by bn

2
c − k′. Clearly, this can be

done in O(n) time. If after doing so q has majority-grade at least

1174

g (this can be checked in O(n) time according to Lemma 1), I ′ is
a YES-instance; otherwise, we need to further change some votes
in V↓,↓. In particular, let k′ be the number of all votes in V which
assign to q a grade less than g. Then, if k ≥ k′ − (bn

2
c − 1),

I ′ is a YES-instance, since we can change arbitrary k′ − (bn
2
c −

1) votes in V↓,↓ so that each of the changed votes assigns q the
grade g to make q has a majority-grade at least g; otherwise, I ′ is
a NO-instance. It is fairly easy to check that this can be done in
O(n) time. Due to the above analysis, the algorithm to solve I ′

terminates in O(n) time. As we have (m− 1) · t subinstances, the
running time of the algorithm to solve I is bounded by (m − 1) ·
t ·O(n) = O(mnt).

Now, we study the variant of the bribery problem where it costs 1
dollar for each voter to change a grade she assigned to a candidate,
and the briber wants to pay at most k dollars in total, i.e., only at
most k grades assigned by the voters can be changed.

THEOREM 10. CGB and DGB for majority judgment can be
solved in O(mnt) time.

PROOF. We first give a polynomial-time algorithm for the unique-
winner model of CGB. Let I = (C, G,�,V, p ∈ C, k) be a given
instance. Moreover, let G = {g1, ..., gt} such that gx � gy for
every 1 ≤ x < y ≤ t and V = {v1, ..., vn}. The algorithm
breaks down I into t subinstances, each of which takes I and a
grade gu ∈ G with 2 ≤ u ≤ t as the input, and asks whether
it is possible to change in total at most k grades of the candidates
assigned by the votes so that p has the majority-grade gu and every
candidate in C \ {p} has majority-grade at most gu−1. Clearly, I
is a YES-instance if and only if at least one of the subinstances is a
YES-instance. Let I ′ = (I, gu) be a subinstance.

We first study some useful properties. Let c be a candidate with
majority-grade g and g′ another grade such that g � g′. Moreover,
let V ′ be the set of all voters who assign a grade less than g′ to c
and y = |V ′|. Then, y − (bn

2
c − 1) is the minimum number of

grades needed to be changed to increase the majority-grade of c to
g′. In fact, we need to change arbitrary y − (bn

2
c − 1) votes in V ′

so that after the changes each changed vote assigns c the grade g′.
For each grade g′ and each candidate c, if c has majority-grade less
than g′, let kc,g′,↑ = y− (bn

2
c−1), where y is as discussed above;

otherwise, if c has majority at least g′, let kc,g′,↑ = 0. Consider
now another case where we want to decrease the majority-grade of
a candidate c from her current majority-grade g to some grade g′

with g′�g. Then, we need to change at least bn
2
c−z grades, where

z is the maximum number of voters who assign a grade at most g′

to c. For a grade g′ and a candidate c who has majority grade more
than g′, let kc,g′,↓ = bn2 c − z, where z is as discussed above.

Due to the above properties, we solve I ′ as follows. LetC be the
set of candidates in C \ {p} who have majority-grades at least gu.
If k ≥ kp,gu,↑+

∑
c∈C kc,gu−1,↓, I

′ is a YES-instance; otherwise,
I ′ is a NO-instance.

It remains to analyze the running time of the algorithm. Due
to Lemma 1, it takes O(n) time to determine if a candidate has
majority-grade at least gu. Therefore, the set C can be calculated
in O(mn) time. Due to the above analysis, it takes O(n) time to
calculate kc′,g′,↑ and kc′,g′,↓ for a candidate c and grade g′. Hence,
it takesO(mn) time to calculate

∑
c∈C kc,gu−1,↓. In summary, the

running time of the algorithm to solve I ′ is bounded by O(mn) +
O(mn) = O(mn). As we have t − 1 subinstances, the running
time of the algorithm to solve I is bounded by O(mnt).

A polynomial-time algorithm with the same running time for the
nonunique-winner model can be derived from the above algorithm
with a slight modification.

Consider now the unique-winner model (nonunique-winner model)
of DGB. To prevent the distinguished candidate p from being the
unique winner (a winner), there must be another candidate q who
has the majority-grade no less than (greater than) that of p, after
changing at most k grades. Due to this, we guess such a candidate
q and a grade gu ∈ G, and ask if we can change at most k grades
so that the majority-grade of p is at most gu and the majority-grade
of q is at least gu (gu+1). Notice that for the nonunique-winner
model, the guessed grade gu should be strictly less than gt, i.e.,
1 ≤ u < t. This leads to at most mt subinstances. Then, if
k ≥ kq,gu,↑ + kp,gu,↓ (k ≥ kq,gu+1,↑ + kp,gu,↓), the subin-
stance under consideration is a YES-instance; otherwise, it is a NO-
instance. This can be done inO(n) time, as calculating kc′,g′,↑ and
kc′,g′,↓ for c′ ∈ C and g′ ∈ G can be done in O(n) time. As we
have mt subinstances, we can solve DGB in O(mnt) time.

5. CONTROL ON GRADES
In this section, we study the problem where an external agent

wants to make a distinguished candidate win/lose the election by
adding and deleting some grades. This problem captures many real-
world scenarios. For instance, the committee chair of a conference
or workshop may choose the grade range {−3,−2,−1, 0, 1, 2, 3}
or {1, ..., 10} for reviewers to evaluate papers. We show that the
problem is polynomial-time solvable regardless whether the exter-
nal agent has a constructive goal or a destructive goal.

Before presenting our main results, let’s first study two proper-
ties. In general, the first property says that if we want to decrease
the majority-grade g′ of a candidate to a grade g�g′, then we have
to delete g′ and all grades between g and g′. A formal description
of the property is summarized in Lemma 3. For v ∈ V, c ∈ C and
H ⊆ G, let v(c,H) be the most-preferred grade of v to c among
the grades in H , i.e., v(c,H) is the grade the voter v assigns to c
if the existing grades in the current voting are exactly the ones in
H . In the following, let I = (C, G,�,V, p ∈ C, G′, kAG, kDG) be a
given instance, and (g1, ..., gt) the order overG such that gx�gx+1

for every 1 ≤ x < t.

LEMMA 3. Let c be a candidate with majority-grade gz where
2 ≤ z ≤ t in (C, G \ G′,�,V). Then, to decrease the majority-
grade of c to some grade gx� gz , all grades gy ∈ G\G′ such that
gx � gy � gz have to be deleted.

PROOF. Let (v1, ..., vn) be an order of the votes in V such that
vi(c,G\G′)�vi+1(c,G\G′) for every 1 ≤ i < t. Let j = bn/2c.
So, vj(c,G\G′) = gz and gz�vh(c,G\G′) for every h ≥ j. Let
H = {gy ∈ G\G′ | gx�gy�gz}. To decrease the majority-grade
of c to some grade gx�gz , there has to be at least one vote vh with
h ≥ j which turns to assign to c a grade at most gx after adding
and deleting some grades. However, if some gy ∈ H is not deleted,
then according to the definition of the votes (precisely, according to
the single-peakedness of the votes over the grades), every vote vh
with h ≥ j must assign to c a grade at least gy .

The second property states that to increase the majority-grade gx
of a candidate to a grade gz , the grade gx and all grades between
gx and gz have to be deleted.

LEMMA 4. Let c be a candidate with majority-grade gx where
1 ≤ x ≤ t − 1 in (C, G \ G′,�,V). Let gz ∈ G \ G′ be a grade
such that gx � gz . Then, to increase the majority-grade of c to gz ,
all grades gy ∈ G \G′ such that gx � gy � gz have to be deleted.

PROOF. Let (v1, ..., vn) and j be as defined in the proof of
Lemma 3. So, vj(c,G \ G′) = gx and vh(c,G \ G′) � gx for

1175

every h ≤ j. Let H = {gy ∈ G \ G′ | gx � gy � gz}. To in-
crease the majority-grade of c to gz , there has to be at least one vote
vh with h ≤ j which turns to assign to c a grade at least gz after
adding and deleting some grades. However, if some grade gy ∈ H
is not deleted, then according to the definition of the votes, every
vote vh with h ≤ j must assign to c a grade at most gy � gz .

Now we are ready to show our polynomial-time algorithms for
CCADG and DCADG based on the above lemmas.

THEOREM 11. CCADG and DCADG can be solved inO(mnt2)
time.

PROOF. We first give a polynomial-time algorithm for the unique-
winner model of CCADG. In the first step, we check if we can add
at most 1 grade in G′ to make p the winner. If this is the case,
we solve the instance in polynomial time. This can be done in
t · O(mn log t) = O(mnt log t) time, where O(mn log t) is the
time to calculate the winners (see Lemma 2). Assume now that this
is not the case. Then, we break down I into t subinstances, each of
which takes I together with a grade gz ∈ Gwhere 2 ≤ z ≤ t as the
input, and asks if we can add at most kAG grades in G′ and delete
at most kDG grades in G \ (G′ ∪ {gz}) so that the majority-grade
of p is at least gz and the majority-grade of every other candidate
is less than gz . Clearly, I is a YES-instance if and only if at least
one of the subinstances is a YES-instance. Let I ′ = (I, gz) be
a subinstance. If gz ∈ G′, we remove gz from G′ (i.e., we add
gz) and decrease kAG by one. If after doing so, kAG < 0, we im-
mediately conclude that I ′ is a NO-instance. Now we distinguish
between the following cases. Notice that at this moment, it cannot
be the case that p has majority-grade at least gz and everyone else
has majority-grade less than gz , since this case has been dealt with
in the first step of the algorithm. Hence, we have only the following
two cases to consider.

Case 1. There is a candidate q 6= p whose majority-grade is at
least gz at the moment.

In this case, according to Lemma 3, gz has to be deleted to de-
crease the majority-grade of q to a grade less than gz . Therefore,
we immediately conclude that I ′ is a NO-instance.

Case 2. All candidates have majority-grades less than gz .
Let gx�gz be the majority-grade of p at the moment. Then, due

to Lemma 4, to increase the majority-grade of p to gz , we delete
gx, and accordingly decrease kDG by one (if kDG < 0 after this,
we conclude that I ′ is a NO-instance). Then, either we are back in
Case 1, or stay in Case 2, or p has majority-grade gz and every other
candidate has majority-grade less than gz . If we are in Case 1 or
Case 2, we call the procedure as described above in the correspond-
ing Case; otherwise, we conclude that I ′ is a YES-instance. Note
that, due to Lemma 4, after deleting gx in Case 2, no candidate can
have a majority-grade greater than gz .

The running time of the algorithm to solve I ′ is O(tmn) (hint:
As we delete in total at most kDG ≤ t grades, we call the procedure
in Case 2 at most t times. Moreover, after each deletion we use
O(mn) time to compare the majority-grades of all candidates with
gz . See Lemma 1 for the time to compare the grades).

As we have t subinstances, the algorithm to solve I terminates in
O(mnt log t)+t·O(mnt) = O(mnt2) time, whereO(mnt log t)
is the time used in the first step of the algorithm.

A polynomial-time algorithm for the nonunique-winner model
of CCADG with the same time complexity can be obtained from
the above algorithm by a slight modification.

Consider now the unique-winner (nonunique-winner) model of
DCADG. To prevent p from being the unique-winner (a winner),
there must be a candidate q ∈ C \ {p} who has a majority-grade

at least the same as (more than) that of p. Hence, we guess such
a candidate q and a grade gz ∈ G. Analogous to the algorithm
above, if gz ∈ G′, we remove gz from G′ and decrease kAG by
one. This leads to (m − 1) · t subinstances. Let I ′ = (I, q, gz)
be a subinstance. Observe that the majority-grade of a candidate
in an election is completely independent of the majority-grades of
other candidates. As a result, we can remove all candidates in C \
{p, q} without changing the answer to I ′. After removing all these
candidates, we reduce I ′ to a subinstance of the nonunique-winner
(unique-winner) model of CCADG discussed above, by resetting q
as the distinguished candidate (p is not the distinguished candidate
now). As we have only two candidates now, the subinstance of
CCADG in our case can be solved in O(nt) time. As we have
in total (m − 1) · t subinstances, the whole running time of the
algorithm is bounded by (m− 1) · t ·O(nt) = O(mnt2).

6. CONCLUSION
Since the proposal of majority judgment there have been both en-

dorsements and criticisms appearing in the literature [3, 4, 20, 30].
For instance, on the positive side, majority judgment allows voters
to express their opinions more accurate. In addition, majority judg-
ment escapes many traditional impossibilities. Moreover, majority
judgment encourages voters to be honest, in the sense that if a voter
wants some candidate to have a majority-grade g, then a best strat-
egy for the voter is to assign g to the candidate. On the negative
side, the two tie-breaking schemes proposed in [4] may both lead
to undesirable results [20]. However, to use majority judgment as
a single-winner voting system, a tie-breaking scheme is necessary.
In addition, majority judgment is vulnerable to manipulation, i.e.,
voters can efficiently figure out a best strategy in order to make
someone win even without the evaluations of other voters on the
candidates: assign to the candidate who they want to win the best
grade and assign to other candidates the worst grade [4].

In this paper, we studied the complexity of several strategic vot-
ing problems for majority judgment. In all these problems, we as-
sume that voters honestly assign grades to candidates. However, an
external agent has an incentive to change the result by reconstruct-
ing the election such as adding/deleting votes/candidates/grades, or
bribing voters to change their votes or grades. Our results reveal
that majority judgment is vulnerable to many of these strategic be-
havior (see Theorems 4, 5, 7, 9, 10, 11). Nevertheless, it is impor-
tant to point out that almost all of our polynomial-time algorithms
require a full access to the grades assigned by all voters. In prac-
tice, however, it is not always the case that an external agent is able
to access the full information of the election. It is an intriguing
topic to investigate the complexity of these strategic voting prob-
lems when only partial information of the election is known. Re-
cently, the complexity of voting problems with partial information
has received a considerable attention, see, e.g., [13, 14, 31, 38]. On
the other hand, we prove that some strategic voting problems for
majority judgment are NP-hard (see Theorems 1 and 8). Again, it
should be pointed out that these results are only worst-case based,
and whether these NP-hard strategic voting problems for majority
judgment are difficult to solve in practice deserves further investi-
gations.

Acknowledgments
The author would like to thank the anonymous AAMAS referees
for their helpful comments and Laura Kasper for her careful proof-
reading of the paper.

1176

REFERENCES
[1] K. J. Arrow. A difficulty in the concept of social welfare. J.

Polit. Econ., 58(4):328–346, 1950.
[2] H. Aziz, S. Gaspers, J. Gudmundsson, S. Mackenzie,

N. Mattei, and T. Walsh. Computational aspects of
multi-winner approval voting. In AAMAS, pages 107–115,
2015.

[3] M. Balinski and R. Laraki. Election by majority judgment:
Experimental evidence. In Bernard Dolez, Bernard Grofman,
and Annie Laurent, editors, In Situ and Laboratory
Experiments on Electoral Law Reform: French Presidential
Elections, chapter 2, pages 13–54. Springer New York, New
York, NY, 2011.

[4] M. Balinski and R. Laraki. Majority Judgment: Measuring,
Ranking, and Electing. MIT Press, Cambridge, MA, 2011.

[5] M. Balinski and R. Laraki. How best to rank wines: Majority
judgment. In Eric Giraud-Héraud and Marie-Claude Pichery,
editors, Wine Economics: Quantitative Studies and
Empirical Applications, chapter 8, pages 149–172. Palgrave
Macmillan UK, London, 2013.

[6] M. Balinski and R. Laraki. Judge: Don’t vote! Oper. Res.,
62(3):483–511, 2014.

[7] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. Voting
schemes for which it can be difficult to tell who won the
election. Soc. Choice. Welfare., 6(2):157–165, 1989.

[8] J. J. Bartholdi III, C. A. Tovey, and M. A. Trick. How hard is
it to control an election? Math. Comput. Model.,
16(8-9):27–40, 1992.

[9] D. Baumeister, G. Erdélyi, O. J. Erdélyi, and J. Rothe.
Complexity of manipulation and bribery in judgment
aggregation for uniform premise-based quota rules. Math.
Social. Sci., 76:19–30, 2015.

[10] D. Baumeister, G. Erdélyi, E. Hemaspaandra, L. A.
Hemaspaandra, and J. Rothe. Computational Aspects of
Approval Voting, chapter 10, pages 199–251. Handbook on
Approval Voting. Springer Berlin Heidelberg, 2010.

[11] F. Brandt, M. Brill, E. Hemaspaandra, and L. A.
Hemaspaandra. Bypassing combinatorial protections:
Polynomial-time algorithms for single-peaked electorates. J.
Artif. Intell. Res., 53:439–496, 07 2015.

[12] F. Brandt, V. Conitzer, U. Endriss, J. Lang, and A. Procaccia,
editors. Handbook of Computational Social Choice.
Cambridge University Press, 2016.

[13] D. Briskorn, G. Erdélyi, and C. Reger. Bribery in k-Approval
and k-Veto under partial information: (extended abstract). In
AAMAS, pages 1299–1300, 2016.

[14] P. Dey, N. Misra, and Y. Narahari. Complexity of
manipulation with partial information in voting. In IJCAI,
pages 229–235, 2016.

[15] E. Elkind, P. Faliszewski, and A. M. Slinko. Swap bribery. In
SAGT, pages 299–310, 2009.

[16] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
How hard is bribery in elections? J. Artif. Intell. Res. (JAIR),
35:485–532, 2009.

[17] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
Multimode control attacks on elections. J. Artif. Intell. Res.
(JAIR), 40:305–351, 2011.

[18] P. Faliszewski, E. Hemaspaandra, and L. A. Hemaspaandra.
Weighted electoral control. J. Artif. Intell. Res. (JAIR),
52:507–542, 2015.

[19] P. Faliszewski, E. Hemaspaandra, L. A. Hemaspaandra, and
J. Rothe. Llull and Copeland voting computationally resist
bribery and constructive control. J. Artif. Intell. Res. (JAIR),
35:275–341, 2009.

[20] D. S. Felsenthal and M. Machover. The majority judgement
voting procedure: A critical evaluation. Homo
Oeconomicus., 25:319–334, 2008.

[21] M. R. Garey and D. S. Johnson. Computers and
Intractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman, New York, 1979.

[22] A. Gibbard. Manipulation of voting schemes: A general
result. Econometrica., 41(4):587–601, 1973.

[23] T. F. Gonzalez. Clustering to minimize the maximum
intercluster distance. Theoret. Comput. Sci., 38:293–306,
1985.

[24] E. Hemaspaandra, L. A. Hemaspaandra, and J. Rothe.
Anyone but him: The complexity of precluding an
alternative. Artif. Intell., 171(5-6):255–285, 2007.

[25] E. Hemaspaandra, H. Spakowski, and J. Vogel. The
complexity of Kemeny elections. Theor. Comput. Sci.,
349(3):382–391, 2005.

[26] E. Ianovski, L. Yu, E. Elkind, and M. C. Wilson. The
complexity of safe manipulation under scoring rules. In
IJCAI, pages 246–251, 2011.

[27] J. Katajainen and J. L. Träff. A meticulous analysis of
mergesort programs. In CIAC, pages 217–228, 1997.

[28] A. P. Lin. Solving Hard Problems in Election Systems. PhD
thesis, Rochester Institute of Technology, 2012.

[29] R. Meir, A. D. Procaccia, J. S. Rosenschein, and A. Zohar.
Complexity of strategic behavior in multi-winner elections.
J. Artif. Intell. Res. (JAIR), 33:149–178, 2008.

[30] H. K. Mohajan. Majority judgment in an election with Borda
majority count. Int. J. Manag. Trans., pages 19–31, 2012.

[31] N. Narodytska and T. Walsh. The computational impact of
partial votes on strategic voting. In ECAI, pages 657–662,
2014.

[32] J. Rothe, H. Spakowski, and J. Vogel. Exact complexity of
the winner problem for Young elections. Theory. Comput.
Syst., 36(4):375–386, 2003.

[33] M. Satterthwaite. Strategy-proofness and Arrow’s
conditions: Existence and correspondence theorems for
voting procedures and social welfare functions. J. Econ.
Theory., 10(2):187–217, 1975.

[34] W. D. Smith. Descriptions of single-winner voting systems.
http://m-schulze.9mail.de/votedesc.pdf, 2006.

[35] Y. Yang. Anyone but them: The complexity challenge for a
resolute election controller. In AAMAS, 2017. To appear.

[36] Y. Yang and J. Guo. The control complexity of r-Approval:
from the single-peaked case to the general case. In AAMAS,
pages 621–628, 2014.

[37] Y. Yang and J. Guo. Controlling elections with bounded
single-peaked width. In AAMAS, pages 629–636, 2014.

[38] Y. Yang and J. Guo. Possible winner problems on partial
tournaments: A parameterized study. In ADT, pages
425–439, 2013.

[39] Y. Yang, Y. R. Shrestha, and J. Guo. How hard is bribery
with distance restrictions? In ECAI, pages 363–371, 2016.

[40] M. A. Zahid and H. de Swart. The Borda majority count.
Inform. Sci., 295:429 – 440, 2015.

1177

	Introduction
	Preliminaries
	Majority Control
	Majority Bribery
	Control on Grades
	Conclusion

