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ABSTRACT
Recent research reveals that many NP-hard voting problems in gen-
eral become polynomial-time solvable in single-peaked elections.
In contrast to these results, we prove for the first time that construc-
tive control by adding/deleting votes for Borda are NP-hard even
in single-peaked elections. On the other side, we prove that con-
structive control by adding/deleting votes/candidates for Borda are
polynomial-time solvable in single-dived elections, which are elec-
tions obtained from single-peaked elections by reversing voters’
preferences. Finally, we study constructive control by adding/deleting
votes/candidates for Borda in single-peaked elections with k-truncated
votes, i.e., each voter ranks only her top-k candidates, aiming at
investigating how the values of k affect the complexity of these
problems. For this purpose, we adopt the voting correspondences
Borda↑, Borda↓ and Bordaav . We obtain many polynomial-time
solvable results for k being a constant.
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1. INTRODUCTION
Voting is a common method for preference aggregation and col-

lective decision-making, and has applications in multi-agent sys-
tems, political elections, web spam reduction, pattern recognition,
etc. A major concern in voting is the potential existence of strate-
gic individual who has an incentive to change the election results
by controlling (reconstructing) the election, such as adding/deleting
votes/candidates. There would be two goals that the strategic indi-
vidual wants to reach: making a distinguished candidate p win the
election, or making p lose the election. The former case is called
a constructive goal and the latter case is called a destructive goal.
We consider only control problems with a constructive goal in this
paper. Fortunately, many control problems for commonly used vot-
ing correspondences are proved to be computationally hard to solve
in general, even with the assumption that the strategic individual
knows voters’ preferences. As a result, the strategic individual may
give up his plan to attack the election.

Nevertheless, in many real-world scenarios voters’ preferences
are subject to some combinatorial restrictions. One of the most
well-studied restrictions is arguably the so-called single-peaked do-
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main [7]. Generally, an election is single-peaked if there is an or-
der of the candidates such that each voter’s preference increases
first and then decreases when the candidates are visited from one
side to another side. See Figure 1 for an illustration. Single-peaked
elections arise in many real-world scenarios. For instance, for can-
didates corresponding to numerical quantities, it is quite reason-
able to assume that each voter has a particular favorite point in
the range of candidates, and voters evaluate candidates by their
proximity to this point. In addition, single-peaked elections have
several nice properties. For instance, in single-peaked elections
Condorcet cycles do not occur. A significant consequence is that
one escapes from Arrow’s impossibility theorem [1, 7]. Due to the
importance of single-peaked elections, the complexity of strategic
voting problems for many natural voting correspondences in single-
peaked elections has been extensively studied recently. It turned out
that many NP-hard problems become polynomial-time solvable in
single-peaked elections [6, 8, 19].

In addition to combinatorial restrictions of the preferences of
voters, in some real-world applications obtaining full rankings of
the candidates is challenging. For instance, when the number of
candidates is extremely large, it might be only possible to read the
top-k ranked candidates in each vote. In this case, it is more ef-
ficient to ask voters to rank only their top-k candidates for some
small integer k, though voters have complete preferences over all
candidates. Votes with only the top-k candidates being ranked are
referred to as k-truncated votes.

In this paper, we study the complexity of constructive control
by adding/deleting votes/candidates for Borda in several specific
settings, including single-peaked/dived elections and k-truncated
single-peaked elections. Borda is arguably one of the most signifi-
cant voting correspondences. In this setting, each voter gives points
to the candidates according to her preference over the candidates.
In particular, the i-th preferred candidate is given m − i points,
where m denotes the number of candidates. A Borda winner is a
candidate with the highest total score. Problems related to Borda
have been extensively studied in the literature [5, 10, 11, 25, 29,
30, 31, 32, 36]. In particular, it is known that constructive control
by adding/deleting votes/canddiates for Borda in general elections
are all NP-hard [9, 26, 31].

1.1 Our Contribution
Our main contributions are summarized as follows.

1. We prove that constructive control by adding/deleting votes
for Borda are NP-hard even in single-peaked elections. These
results stand in a sharp contrast to many of the previous polynomial-
time solvability results in single-peaked elections. To the
best of our knowledge, these are the first NP-hardness results
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of unweighted control problems for natural voting correspon-
dences in single-peaked elections1.

A line of research which received a considerable amount of
attention very recently is to investigate the complexity of
strategic voting problems in nearly single-peaked elections,
such as t-swoop elections, t-additional axes single-peaked
elections, elections with single-peaked width t, to name a
few [15, 17, 33, 34, 35]. In general, each nearly single-
peaked election is associated with an integer t, indicating
the distance of the election to a single-peaked election. This
line of research primarily aims at investigating the minimum
value of t from which the complexity of specific strategic
voting problems changes. Our NP-hardness results exactly
pinpoint the complexity border of constructive control by
adding/deleting votes for Borda in these nearly single-peaked
elections.

2. We study control problems for Borda in single-dived elec-
tions. In particular, we prove that constructive control by
adding/deleting votes/candidates for Borda are polynomial-
time solvable in single-dived elections. To obtain these re-
sults, we derive a useful property of Borda scores of candi-
dates in single-dived elections. This property may be useful
for further studies of voting problems for Borda.

3. Finally, we consider k-truncated single-peaked elections, i.e.,
each voter ranks only her top-k preferred candidates and,
moreover if all voters ranked all candidates we have a single-
peaked election. We adopt the three extensions of Borda in
elections with k-truncated votes, namely Borda↑, Borda↓ and
Bordaav . These extensions have been studied in the litera-
ture (see, e.g., [4, 14, 28]). Let m be the number of candi-
dates. In both Borda↑ and Bordaav , each candidate ranked
in the i-th position, where 1 ≤ i ≤ k, in a vote receives
m− i points. They differ in assigning the points to unranked
candidates. In particular, in Borda↑ each unranked candidate
receives 0 points, while in Bordaav each unranked candidate
receives m−k−1

2
points. In Borda↓, each candidate ranked in

the i-th position, where 1 ≤ i ≤ k, receives k− i+ 1 points,
and each unranked candidate receives 0 points. We show that
many control problems for Borda∗ where ∗ ∈ {↑, ↓, av} are
polynomial-time solvable when k is a constant. From param-
eterized complexity point of view, these problems are either
shown to be fixed-parameter tractable (FPT) or lie in the class
XP with respect to k.

Our main results are summarized in Tables 1 and 2.

1.2 Motivation
A motivation of the study of control problems is that the issues of

adding/deleting votes/candidates occur in many electoral settings.
For instance, in academic paper review process, it is up to the editor
handling a paper to assign the paper to several reviewers, and before
the final decision is made, the editor can add further reviewers. We
refer to [18, 20, 23] for further concrete examples.

Using complexity as a barrier against strategic behavior has been
suggested by many researchers. The key point is that if it is NP-
hard for the strategic individual to successfully figure out how to
reconstruct the election, he may refrain from attacking the voting.
Therefore, whether a voting correspondence is resistant to control
1Faliszewski et al. [19] obtained several NP-hardness results of
voting problems in single-peaked elections. However, their results
hold only for weighted elections. Our NP-hardness results are for
unweighted elections.

attacks has been recognized as a significant property to measure
voting correspondences [2]. In addition, complexity analysis helps
practitioners decide what kind of solution method is appropriate.
For polynomial-time solvability results, we directly provide effi-
cient algorithms. On the other hand, hardness results suggest that
finding an exact solution is apt to be costly or impractical, and re-
sorting to approximation or heuristic algorithms may be a necessary
choice.

In addition, as Borda is a prevalent voting correspondence and
single-peaked elections and elections with k-truncated votes are
important, it makes sense to investigate the complexity of control
problems for Borda in single-peaked elections and elections with
k-truncated votes.

1.3 Preliminaries
Election. An election E is a tuple (C,ΠV), where C is a set of

candidates and ΠV a multiset of votes cast by a set of voters (each
voter casts one vote). Every vote π ∈ ΠV is defined as a linear
order (permutation) over C. For a linear order π and an element
c in π, π(c) is the position of c in π, i.e., the number of elements
ordered before c plus 1. In addition, for an integer x with 1 ≤ x ≤
y where y is the number of elements in π, π[x] is the x-th element
of π, i.e., the one in the x-th position. Each vote π cast by a voter
indicates the voter’s preference over the candidates. In particular,
a candidate a is preferred to another candidate b if π(a) < π(b).
A voting correspondence is a function that maps each election E
to a nonempty subset of candidates, the winners. If there is only
one winner, we call it the unique winner; otherwise, we call them
co-winners.

For a linear order x = (x1, x2, ..., xi) over a set {x1, ..., xi},←−x is the reversal of x, i.e., ←−x = (xi, xi−1, ..., x1). For A ⊆
{x1, ..., xi}, x \ A is the linear order obtained from x by remov-
ing all elements in A, and x[A] = x \ ({x1, ..., xi} \ A). For
instance, for x = (2, 4, 1, 7, 0) and A = {2, 7}, x \ A = (4, 1, 0)
and x[A] = (2, 7). For two linear orders x = (x1, x2, ..., xi)
and y = (y1, y2, ..., yj), we denote by (x,y) the linear order
(x1, x2, ..., xi, y1, y2, ..., yj). For C ⊆ C, ΠC

V is the multiset of
votes obtained from ΠV by replacing every π ∈ ΠV with π[C].

Borda. A positional scoring correspondence is characterized by
a scoring vector 〈s(1), s(2), ..., s(m)〉 such that s(i) ≥ s(j) for
every 1 ≤ i < j ≤ m, where m is the number of candidates.
Moreover, each vote π gives s(π(c)) points to every candidate c.
The winners are the candidates with the highest total score. The
Borda correspondence is a positional scoring correspondence with
the scoring vector 〈m,m− 1, ..., 0〉.

Single-peaked/dived election. An election (C,ΠV) is single-
peaked if there is a linear order (cα(1), cα(2), ..., cα(m)) of C, the
so-called harmonious order, such that for every π ∈ ΠV and 1 ≤
x < y < z ≤ m, it holds that π(cα(x)) < π(cα(y)) implies
π(cα(y)) < π(cα(z)). The top ranked candidate in π is referred
to as the peak of π. See Figure 1 for an illustration. Single-dived
elections are obtained from single-peaked elections by reversing all
votes.

Elections with k-truncated votes. A k-truncation π′ of a vote
π is the sublinear order of π with the first k candidates. Formally,
π′ is a permutation over the candidates in {c ∈ C | π(c) ≤ k}
such that π′(c) = π(c) for every c ∈ C with π(c) ≤ k. A
k-truncated vote is a k-truncation of some vote. To avoid confu-
sion, we use complete votes to refer to votes over C hereinafter. A
k-truncated election is an election with k-truncated votes. A k-
truncated single-peaked election is obtained from a single-peaked
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election by replacing each vote with its k-truncation. See Figure 1
for an illustration.
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Figure 1: This figure illustrate a single-peaked election with 5
candidates a, b, c, d, e and 3 votes (b, c, a, d, e), (c, b, d, e, a) and
(e, d, c, b, a), respectively. The 3-truncations (b, c, a), (c, b, d)
and (e, d, c) of these votes are shown in the green area.

Borda with truncated votes. We mainly study three variants of
the Borda correspondence in k-truncated elections, namely Borda↑,
Borda↓ and Bordaav .

In Borda↑, each candidate in the i-th position, 1 ≤ i ≤ k, in a
vote receives m− i points, and each unranked candidate receives 0
points. In Borda↓, each candidate in the i-th position, 1 ≤ i ≤ k,
receives k − i + 1 points, and each unranked candidate receives 0
points. In Bordaav , each candidate in the i-th position, 1 ≤ i ≤ k,
in a vote receives m − i points, and each unranked candidate re-
ceives m−k−1

2
points. Or equivalently, each candidate in the i-th

position receives m+ k − 2i+ 1 points, and every unranked can-
didate receives 0 points (multiply each score by 2 and then subtract
m− k − 1 from it). In all three cases, candidates with the highest
total score are the winners.

Problem formulations. We study four problems, namely CCAV,
CCDV, CCAC and CCDC, where “CC” stand for “constructive
control”, and “AV|DV|AC|DC” stand for “adding votes|deleting
votes|adding candidates|deleting candidates”. The following for-
mulations are based on k-truncated elections, but can be adapted to
elections with complete votes naturally.

In the inputs of all problems, we have a k-truncated election
(C,ΠV), a distinguished candidate p ∈ C, and an integerR ≥ 0. In
CCDV, all candidates and k-truncated votes are registered. A reg-
istered election consists of all registered candidates and registered
k-truncated votes. The question is whether p can win the registered
election by deleting at most R many k-truncated votes. In CCAV,
all candidates are registered, but not all k-truncated votes. In par-
ticular, a submultiset ΠU ⊆ ΠV of unregistered k-truncated votes
is given. The question is whether p can win the registered election
by adding (registering) at most R many k-truncated votes in ΠU .

By setting k = |C| in the definitions of CCAV and CCDV, we
have the definitions of the problems in elections with complete
votes.

In CCDC, all candidates and k-truncated votes are registered.
The question is whether p can win the registered election by delet-
ing at mostR candidates from C\{p}. One may have observed that
after the deletion of some candidates, there may be less than k can-
didates in a π ∈ ΠV . So, we need to modify ΠV after the deletion
of some candidates. As discussed previously, every voter has in fact
a complete preference over all candidates. It is natural that when
a voter observed that some of her top-k candidates were deleted,

she will adjust her vote according to her preference. To capture
this phenomena, we assume that each k-truncated vote π ∈ ΠV
is associated with a complete vote π̄ over C whose k-truncation is
π. Moreover, if a subset C of candidates are deleted, each π ∈ ΠV
will be reset as the t-truncation of π̄\C where t = min{k, |C\C|}.
When k = |C|, we have CCDC in elections with complete votes.

Now we discuss CCAC. In this case, all k-truncated votes are
registered but not all candidates. In particular, a subsetD ⊆ C\{p}
of unregistered candidates such that |C \ D| ≥ k is given. The
question is whether p can win the registered election by adding
(registering) at mostR candidates inD. Analogous to CCDC, each
k-truncated vote π ∈ ΠV is associated with a complete vote π̄ such
that π is the k-truncation of π̄ \D. Moreover, after adding a subset
C ⊆ D of candidates, each π ∈ ΠV is reset as the k-truncation of
π̄ \ (D \ C).

To define CCAC in elections with complete votes, we let k =
|C \ D|. Moreover, after adding a subset C ⊆ D of candidates, a
k-truncated vote π ∈ ΠV is reset as the (k + |C|)-truncation of
π̄ \ (D \ C).

In all the above problems, we assume that the distinguished can-
didate p does not win in advance (i.e., p does not win before per-
forming the corresponding manipulative action); since otherwise,
we can immediately conclude that the instance is a YES-instance.

Following the convention, for each problem we distinguish be-
tween the unique-winner model and the nonunique-winner model.
In the unique-winner model, winning an election means to be the
unique winner, while in the nonunique-winner model, winning an
election means to be the unique winner or to be a co-winner.

Our results hold for both the unique-winner and nonunique-winner
models. We will not state this again in the theorems. We do not
study destructive control by adding/deleting votes/candidates for
Borda since they are polynomial-time solvable even in the general
case [26, 31].

2. SINGLE-PEAKED AND SINGLE-DIVED
ELECTIONS

In this section, we study control by adding/deleting votes/candidates
for Borda in single-peaked and single-dived elections with com-
plete votes. Our results in this section is summarized in Table 1.
We first consider in single-peaked elections.

Recently, the complexity of control problems for many voting
correspondences in single-peaked elections has been investigated.
It turned out that many NP-hard control problems become polynomial-
time solvable in single-peaked elections. In particular, CCAV and
CCDV for all Condorcet-consistent voting correspondences as well
as for several other non Condorcet-consistent voting correspon-
dences such as Approval and r-Approval are polynomial-time solv-
able in single-peaked elections. We refer to [8, 19] for further de-
tails. However, whether these control problems for Borda in single-
peaked elections are polynomial-time solvable remain open.

In this section, we show that CCAV and CCDV for Borda are
NP-hard even in single-peaked elections. These are the first NP-
hardness results of unweighted control problems for natural voting
correspondences in single-peaked elections. In general elections,
it is known that CCAV and CCDV for Borda are NP-hard [9, 31,
26]. However, all previous NP-hardness reductions do not apply
to single-peaked elections since the elections constructed in these
reductions are not single-peaked (as a matter of fact, these elections
have very large distances from single-peaked elections).

THEOREM 1. CCAV and CCDV for Borda are NP-hard even in
single-peaked elections.
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general case single-peaked single-dived
CCAV NP-hard NP-hard P
CCDV NP-hard NP-hard P
CCAC NP-hard ? P
CCDC NP-hard ? P

Table 1: Complexity of control problems for Borda. Our results
are in bold. Entries filled with the “?” mean that the complexity
of the corresponding problems remained open.

PROOF. We prove the theorem by reductions from the X3C prob-
lem defined as follows.

Exact 3-Set Cover (X3C)
Input: A universal set U = {c1, c2, ..., c3κ} and a col-
lection S = {s1, s2, ..., sn} of 3-subsets of U .
Question: Is there an S′ ⊆ S such that |S′| = κ and
each ci ∈ U appears in exactly one set of S′?

We assume that each ci ∈ U occurs in exactly 3 subsets of S.
This assumption does not affect the NP-hardness [22]. Observe that
under this assumption, n = 3κ.

Let I = (U = {c1, c2, ..., c3κ}, S = {s1, s2, ..., s3κ}) be an
instance of the X3C problem.

CCAV. Consider first the nonunique-winner model. We create
an instance EI = (C,ΠV ,ΠU , p ∈ C, R = κ) as follows.

Candidates C. We create in total 6κ+1 candidates. In particular,
for each cx ∈ U we create two candidates cLx and cRx . In addition,
we create a distinguished candidate p.

Let a be the linear order (cL1 , c
L
2 , ..., c

L
3κ) and b the linear order

(cR1 , c
R
2 , ..., c

R
3κ). Moreover, let � = (←−a , p,b). We shall create

votes that are single-peaked with respect to �.
Registered Votes ΠV \ΠU . We create in total 2κ+ 2 registered

votes. In particular, we create 2κ + 1 votes with peak at cR3κ (i.e.,
each vote is defined as (

←−
b , p,a). In addition, we have one vote

defined as (p, cL1 ,b,a \ {cL1 }).
Unregistered votes ΠU . We create in total 3κ unregistered votes.

In particular, for each si ∈ S, we create a vote πi such that (1)
πi(p) = 1; and (2) for every cx ∈ U , if cx ∈ si then πi(cRx ) = 2x
and πi(cLx ) = 2x + 1; otherwise, πi(cLx ) = 2x and πi(cRx ) =
2x+ 1.

It is fairly easy to check that all votes created above are single-
peaked with respect to �.

Finally, we set R = κ. Now we prove the correctness of the
reduction. For c, c′ ∈ C and ΠV ⊆ ΠV , let score(c, c′,ΠV )
be the Borda score of c minus the Borda score of c′ in (C,ΠV ).
It is easy to verify that score(cRx , p,ΠV \ ΠU ) = 2κx − 1 and
score(p, cLx ,ΠV \ΠU ) > 0 for every x ∈ {1, 2, ..., 3κ}.

(⇒:) Assume that there is an exact 3-set cover S′ ⊂ S of I. Let
ΠS′ = {πi | si ∈ S′}. It is easy to verify that score(cRx , p, (ΠV \
ΠU )∪ΠS′) = 0 and score(p, cLx , (ΠV \ΠU )∪ΠS′) > 0 for every
x ∈ {1, 2, ..., 3κ}. So, after adding all votes in ΠS′ , p becomes a
winner.

(:⇐) Let Π′ be a solution of EI and S′ = {si | πi ∈ Π}.
According to the construction, for every x ∈ {1, 2, ..., 3κ} each
unregistered vote πi gives 2xmore points to p than to cRx if cx 6∈ si,
and gives 2x − 1 more points to p than to cRx if cx ∈ si. Since
score(cRx , p,ΠV \ ΠU ) = 2κx − 1, there must be at least κ − 1
elements si ∈ S′ such that cx 6∈ si. As |S′| ≤ κ, S′ is an exact
3-set cover of I.

To prove the NP-hardness of the unique-winner model of CCAV,
we need only to replace the registered vote (p, cL1 ,b,a\{cL1 }) with
(p, cL1 , c

L
2 ,b,a \ {cL1 , cL2 }).

CCDV. Consider now the nonunique-winner model of CCDV
for Borda in single-peaked elections. We create an instance EI =
(C,ΠV , p ∈ C, R = κ) as follows.

Candidates C. We create in total 9κ+1 candidates. In particular,
for each cx ∈ U , we create two candidates cLx and cRx . Moreover,
we create a set D = {d1, d2, ..., d3κ} of 3κ dummy candidates.
Finally, we create a distinguished candidate p.

We shall create votes that are single-peaked with respect to �

defined as

(cL3κ, c
L
3κ−1, ..., c

L
1 , c

R
1 , c

R
2 , ..., c

R
3κ, p, d1, d2, ..., d3κ).

Votes ΠV . We create in total 5κ votes. First, for each si ∈ S,
we create a vote πi such that (1) for every cx ∈ U , if cx ∈ si then
πi(c

L
x ) = 2x − 1 and πi(cRx ) = 2x; otherwise, πi(cRx ) = 2x − 1

and πi(cLx ) = 2x; (2) πi(p) = 6κ + 1; and (3) for every dy ∈ D,
where y ∈ {1, 2, ..., 3κ}, πi(dy) = 6κ + 1 + y. In addition, we
create a multiset ΠA of 2κ− 2 votes with the same preference. In
particular, for each π ∈ ΠA it holds that (1) π(p) = 1; and (2) for
every x ∈ {1, 2, ..., 3κ}, π(dx) = 2x, π(cRx ) = 6κ − 2x + 3 and
π(cLx ) = 6κ+1+x. Finally, we create a multiset ΠB of 2 votes. In
particular, for each π ∈ ΠB it holds that (1) π(p) = 1; and (2) for
every x ∈ {1, 2, ..., 3κ}, π(dx) = 2x+ 1, π(cRx ) = 6κ− 2x+ 2
and π(cLx ) = 6κ+ 1 + x.

One can check that all votes created above are single-peaked with
respect to �. Moreover, score(cRx , p,ΠV) = 2κ(3κ− x+ 1)− 1
and score(p, cLx ,ΠV) ≥ 3, for every x ∈ {1, 2, ..., 3κ} (recall
that every element in U occurs in exactly three 3-subsets in S). It
remains to prove the correctness of the reduction.

(⇒:) Assume that there is an exact 3-set cover S′ ⊂ S of I.
Let ΠS′ = {πi | si ∈ S′}. One can check that score(cRx , p,ΠV \
ΠS′) = 0 and score(p, cLx ,ΠV\ΠS′) > 0 for every x ∈ {1, 2, ..., 3κ}.
So p becomes a winner after deleting all votes in ΠS′ , implying that
EI is a YES-instance.

(:⇐) Observe that each vote in ΠA ∪ ΠB ranks p in the top.
Therefore, if EI is a YES-instance, there is a solution including no
vote in ΠA ∪ ΠB . Let Π be such a solution. Moreover, let S′ =
{si | πi ∈ Π}. According to the construction, for every cx ∈ U ,
x ∈ {1, 2, ..., 3κ}, a vote πi ∈ Π gives 6κ+ 1−2xmore points to
cRx than to p if cx ∈ si; and 6κ+ 1− (2x− 1) more points to cRx
than to p if cx 6∈ si. As score(cRx , p,ΠV) = 2κ(3κ− x+ 1)− 1,
this implies that for every cx ∈ U there are at least κ− 1 elements
si ∈ S′ such that cx 6∈ si. From |S′| ≤ κ, it follows that S′ is an
exact 3-set cover of I.

To prove the unique-winner model, we modify the above reduc-
tion slightly. In particular, we create one more vote in ΠA with the
same preference and one less vote in ΠB .

Now we turn our attention to constructive control by adding/deleting
votes/candidates for Borda in single-dived elections. In particular,
we prove that all these problems are polynomial-time solvable in
single-dived elections. The following lemma summarizes a prop-
erty of Borda scores in single-dived elections which is useful in
developing polynomial-time algorithms for the problems studied.

LEMMA 1. Let E = (C,ΠV) be a single-dived election with re-
spect to a linear order � over C. Then, at least one of {�[1],�[m]}
is a Borda winner, where m = |C|. Moreover, if for some 1 < i <
m, �[i] is a winner, then the last ranked candidate in each vote is
either �[1] or �[m].
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PROOF. For c ∈ C and π ∈ ΠV , let SC(c, π) be the score of
c obtained from π, and SC(c) =

∑
π∈ΠV

SC(c, π). Let i be any
arbitrary integer such that 1 < i < m. We partition ΠV into three
submultisets ΠL, Πi and ΠR, where ΠL consists of all votes whose
last ranked candidates are some �[i′] where i′ < i, ΠR consists of
all votes whose last ranked candidates are some �[i′] where i′ > i,
and Πi consists of all the remaining votes. Let x = |ΠL| and
y = |ΠR|. To prove the first statement, we need to prove that

max{SC(�[1]), SC(�[m])} ≥ SC(�[i]).

For every vote π ∈ ΠL, it holds that SC(�[m], π)−SC(�[i], π) ≥
m − i and SC(�[i], π) − SC(�[1], π) ≤ i − 1. For every vote
π ∈ ΠR, it holds that SC(�[1], π) − SC(�[i], π) ≥ i − 1 and
SC(�[i], π)− SC(�[m], π) ≤ m− i. For every vote π ∈ Πi, it
holds that SC(�[m], π) − SC(�[i], π) > 0 and SC(�[1], π) −
SC(�[i], π) > 0. Therefore, if x ≥ y, then SC(�[m])−SC(�[i]) ≥∑
π∈ΠL∪Πi

(SC(�[m], π)−SC(�[i], π))−
∑
π∈ΠR

(SC(�[i], π)−
SC(�[m], π)) ≥ x(m− i)− y(m− i) ≥ 0. If y ≥ x, we can get
that SC(�[1])− SC(�[i]) ≥ 0 analogously.

Consider now the second statement. Due to symmetry, assume
that the Borda score of �[m] is greater than or equal to that of �[1],
and the Borda score of �[i] is equal to that of �[m]. That is, both
�[m] and �[i] are winners. Due to the proof of the first statement,
we know that x = y (otherwise, either �[m] has a greater Borda
score than that of �[i] (if x > y), or �[1] has a greater Borda score
than that of �[i] (if y > x)). Moreover, the equality of the Borda
scores of �[i] and �[m] implies that every vote in ΠR ranks �[m]
in the last position and Πi = ∅. As a result, �[1] has Borda score at
least x(m−1). It follows then that �[m] has Borda score x(m−1)
too. Therefore, all votes in ΠL rank �[1] in the last position.

Due to Lemma 1, the unique winner of a single-dived election
must be either the first or the last candidate in �. A winner can be
every candidate. However, if a candidate between �[1] and �[m]
in � is a winner, then each vote either ranks �[1] first and �[m]
last, or ranks �[m] first and �[1] last. Due to Lemma 1, we can
achieve the following theorem.

In the following, we assume that a harmonious order � is given
in the problem instances. This assumption is sound since a harmo-
nious order can be calculated in polynomial-time for single-peaked
(or single-dived) elections [3, 12, 16].

THEOREM 2. CCAV, CCDV, CCAC and CCDC for Borda are
polynomial-time solvable in single-dived elections.

PROOF (NONUNIQUE-WINNER MODEL OF CCAC). Let the given
instance be (C,ΠV , p ∈ C,D ⊆ C \ {p}, R). In addition let �
be a linear order over C with respect to which (C,ΠV) is single-
peaked. Let �′ be the linear order � restricted to C \ D. If p 6∈
{�′[1],�′[t]}, where t = |C \ D|, then due to Lemma 1, we can-
not make p a winner by adding candidates (recall that p does not
win (C \ D,ΠC\DV )). Assume that p is either the first or the last can-
didate in �′. Due to symmetry, assume that p = �′[1]. Again, due
to Lemma 1 to make p a winner we cannot add any candidate on the
left side of p in �. Then, we enumerate all possible candidates �[i]
such that either �[i] = �′[t] or i > j where �[j] = �′[t], and for
each enumeration we ask if it is possible to add at mostR′ = R−1
(if �[i] = �′[t], replaceR−1 withR) candidates lying between p
and �[i] in � to make p a winner. Due to Lemma 1, we need only to
make p have a Borda score no less than that of �[i]. For each c ∈ C
lying between p and �[i] in �, let sg(c) = N(p, c)−N(�[i], c),
i.e., the increase of the score gap between p and �[i] caused by the
addition of c. We order these candidates according to the values of
sg(c), from the highest to the lowest. Then, we add the first up to

CCAV CCDV CCAC CCDC

single-peaked FPT XP (k) XP XPFPT (k +R)
single-dived P P P P

Table 2: Complexity of constructive control by adding/deleting
votes/cadidates for Borda∗ in k-truncated single-peaked/dived
elections, where ∗ ∈ {↑, ↓, av}. The Parameterized complexity
results for CCAV, CCAC and CCDC are with respect to k.

k candidates in the order one-by-one: if after deleting a candidate
p becomes a winner, we immediately conclude that the instance is
a YES-instance. If after adding the first k candidates in the order p
still does not win, the instance is a NO-instance.

3. K-TRUNCATED SINGLE-PEAKED ELEC-
TIONS

In this section, we study control problems in k-truncated single-
peaked/dived elections and investigate how the values of k impact
on the complexity of these control problems in this case. A param-
eterized problem is a language Σ∗ ×N, where Σ is a finite alpha-
bet. The first component is called the main part and the second
component is called the parameter. A parameterized problem is
fixed-parameter tractable (FPT) if it is solvable inO(f(k)·|I|O(1))

time, and is in XP if it is solvable in O(|I|g(k)) time, where |I| is
the size of the main part, k is the parameter, and f(k) and g(k) are
computable functions in k. For further discussion on parameterized
complexity, we refer to [13].

We first study k-truncated single-peaked elections. In this set-
ting, we consider first CCAV. It is known that CCAV for Borda in
general is NP-hard [31]. Moreover, Liu and Zhu [25] proved that
CCAV for Borda in general is W[2]-hard2 with respect to the so-
lution size R. We have shown in the previous section that CCAV
for Borda is NP-hard in single-peaked elections. Now we prove
that CCAV for Borda∗ where ∗ ∈ {↑, ↓, av} in k-truncated single-
peaked elections is FPT, with respect to k. In particular, we give an
integer-linear programming formulation (ILP) with bounded num-
ber of variables for the problem. It is known that ILP is FPT with
respect to the number of variables [24].

THEOREM 3. CCAV for Borda∗ where ∗ ∈ {↑, ↓, av} is FPT
in k-truncated single-peaked elections, with respect to k.

PROOF (UNIQUE-WINNER MODEL). Let the given instance be
I = (C,ΠV , p ∈ C,ΠU ⊆ ΠV , R), and the order with respect
to which (C,ΠV) is single-peaked be �. Let A and B be the sets
of the (up to) k candidates lying immediately on the left-side and
right-side of p in �, respectively, i.e.,

A = {c ∈ C \ {p} | 0 < �(p)−�(c) ≤ k}

and

B = {c ∈ C \ {p} | 0 < �(c)−�(p) ≤ k}.

Observe that every YES-instance has an optimal solution including
only k-truncated unregistered votes which give p a positive score.
Then, due to the definition of k-truncated single-peaked elections,
every k-truncated vote in such a solution gives 0 points to all can-
didates not in A ∪ B ∪ {p}. Hence, we need only to focus on
2The parameterized complexity class W[2] is a super class of FPT.
A problem is W[2]-hard if all problems in W[2] are FPT-reducible
to this problem. Unless FPT=W[2], W[2]-hard problems do not
admit FPT-algorithms.
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the scores of candidates in A ∪ B ∪ {p} given by the unregistered
votes. This allows us to formulate the instance into an ILP instance
with at most k2k+1 variables. Let ΠU′ be the multiset of all un-
registered votes giving p a positive score. We partition ΠU′ into
at most k2k+1 multisets, each consisting of all k-truncated unreg-
istered votes in ΠU′ giving the same score to every candidate in
A ∪ B ∪ {p}. Let t = |A ∪ B ∪ {p}| and (c1 = p, c2, ..., ct) a
fixed order of A ∪B ∪ {p}. We create for each multiset discussed
above a variable xβ where β is a t-dimensional integer vector such
that the i-th component β[i] is the score that every k-truncated vote
in this submultiset gives to ci. Each variable indicates how many
k-truncated votes from the corresponding submultiset are included
in an optimal solution. Let nβ be the size of the multiset corre-
sponding to xβ . Let Π = ΠV \ ΠU . For c ∈ C, let SC(c,Π) be
the total score of c given by all k-truncated votes in Π. We have the
following restrictions:

1. for every variable xβ , we have 0 ≤ xβ ≤ nβ ;

2.
∑
β xβ ≤ R, where β runs over all possible t-dimensional

integer vectors discussed above; and

3. to ensure that p becomes the unique winner, for every ci ∈
A ∪B, we have that

SC(p,Π) +
∑
β

xββ[1] > SC(ci,Π) +
∑
β

xββ[i],

and for every c ∈ C \ (A ∪B ∪ {p}), we have

SC(p,Π) +
∑
β

xββ[1] > SC(c,Π),

where β runs over all possible t-dimensional integer vectors
discussed above.

Due to the result in [24], such an ILP instance can be solved in
FPT-time with respect to k.

Now we study CCDV. In general, it is NP-hard [31]. Moreover,
we have shown that it is NP-hard even in single-peaked elections.
From the parameterized complexity point of view, whether CCDV
for Borda in general is FPT with respect to R remained open. We
show now that with respect to the combined parameters k and R
(or k+R), CCDV for Borda∗ is FPT in k-truncated single-peaked
elections, where ∗ ∈ {↑, ↓, av}. As a consequence, for any con-
stant k, CCDV for Borda∗ in k-truncated single-peaked elections is
FPT with respect to R.

For an election (C,ΠV), a positional scoring vector (or corre-
spondence) ~a and a candidate c ∈ C, let score(c, (C,ΠV),~a) be
the score of c in the election calculated according to ~a.

THEOREM 4. CCDV for Borda∗ where ∗ ∈ {↑, ↓, av} is FPT
in k-truncated single-peaked elections with respect to k +R.

PROOF (UNIQUE-WINNER MODEL). Consider first Borda↑. Let
I = (C,ΠV , p ∈ C, R) be a given instance and � = (c1, ..., cm)
an order with respect to which (C,ΠV) is single-peaked. Moreover,
let m = |C|, n = |ΠV |. Let

~a = 〈m− 1,m− 2, ...,m− k, 0, ..., 0〉

and ` = (m− 1) · n.
The framework of the algorithm is to first break down the given

instance into polynomially many subinstances, and then solve each
subinstance by formulating it into an ILP instance whose number
of variables is bounded by a function of k and R. In particular,
the algorithm breaks down I into ` subinstances, each of which

takes I and an integer s such that 0 < s ≤ ` as the input, and
asks whether there are at most R many k-truncated votes in ΠV
whose deletion results in p having a score at least s and every other
candidate having a score less than s. Clearly, I is a YES-instance
if and only if at least one of the subinstances is a YES-instance.
Moreover, if each subinstance is solvable in FPT-time, so is I . Let
I ′ = (I, s) be a subinstance. In the following, we show how to
solve I ′ in FPT-time.

Let A = {c ∈ C \ {p} | score(c, (C,ΠV),~a) ≥ s}. Observe
that if I ′ is a YES-instance, then there is an optimal solution which
consists of only k-truncated votes that rank at least one candidate in
A in the top-k positions. Hence, for every YES-instance I ′ it holds
that |A| ≤ k · R. As deleting votes does not increase the scores of
candidates, all candidates in C \ (A ∪ {p}) have score less than s
in the final election no matter which k-truncated votes are deleted.
As a consequence, we need only to consider the impact of deletions
of k-truncated votes on the scores of candidates in A ∪ {p}. We
partition ΠV into multisets, each consisting of all k-truncated votes
giving exactly the same scores to all candidates in A ∪ {p}. That
is, two k-truncated votes π and π′ are in the same multiset if and
only if for every c ∈ A ∪ {p} such that π(c) ≤ k, it holds that
π(c) = π′(c). Clearly, the number of submultisets is bounded by a
function of k and R.

Now we are ready to give the ILP formulation for I ′. In par-
ticular, we create a variable for each submultiset discussed above,
indicating how many k-truncated votes from this submultiset are
deleted. Precisely, for each submultiset we create a variable x(B, f)
where B ⊆ A ∪ {p} and f : B 7→ {1, 2, ..., k} is a mapping such
that every k-truncated vote in the submultiset ranks each candi-
date c ∈ B in the f(c)-th position and ranks every candidate in
(A ∪ {p}) \ B in some k′-th position with k′ > k. Therefore,
every k-truncated vote in the submultiset corresponding to a vari-
able x(B, f) gives ~a[f(c)] points to every candidate c ∈ B and
0 points to every candidate c ∈ (A ∪ {p}) \ B. Let n(B, f) be
the number of k-truncated votes in the submultiset corresponding
to the variable x(B, f). The restrictions are as follows.

1. Since we are allowed to delete in total at most R many k-
truncated votes, we have∑

x(B, f) ≤ R,

where x(B, f) runs over all variables defined above.

2. For every variable x(B, f), we have

0 ≤ x(B, f) ≤ n(B, f).

3. To ensure the final score of p is at least s, we have

score(p, (C,ΠV),~a)−
∑

x(B, f) · ~a[(f(p)] ≥ s,

where x(B, f) runs over all variables corresponding to the
submultsets of k-truncated votes which rank p in the top-k
positions.

4. To ensure the final score of every candidate in A is less than
s, for every c ∈ A we have

score(c, (C,ΠV),~a)−
∑

x(B, f) · ~a[f(c)] < s,

where x(B, f) runs over all variables corresponding to the
submultsets of k-truncated votes which rank c in the top-k
positions.

For Borda↓ (Bordaav), we need only to replace ~a with 〈k, k −
1, ..., 1, 0, ..., 0〉 (〈m+ k− 1,m+ k− 3, ...,m− k+ 1, 0, ..., 0〉),
and redefine ` = k · n (` = (m+ k − 1) · n).
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We are unable to show the fixed-parameter tractability of CCDV
as we did for CCAV with respect to the single parameter k. The
reason is that in this case an optimal solution may contain votes
that give 0 points to p, and hence, we cannot limit our attention to a
set of candidates whose cardinality is bounded by a function of k.
Nevertheless, we can show that with respect to k the problem is in
XP, by a dynamic programming algorithm.

THEOREM 5. CCDV for Borda∗ where ∗ ∈ {↑, ↓, av} in k-
truncated single-peaked elections is in XP with respect to k.

PROOF. Let I = (C,ΠV , p ∈ C,�, R),m, n,~a,� and ` be as
defined in the proof of Theorem 4. We develop an XP-algorithm
for the problem stated in the theorem as follows. Without loss of
generality, assume that p = cz for some k ≤ z ≤ m−k, i.e., there
are at least k − 1 candidates lying on both sides of p in �. Indeed,
if this was not the case, we could add 2k − 2 dummy candidates
ranked after all other candidates in all k-truncated votes, and put
k−1 of them one-by-one on the leftmost positions of � and put the
remaining of them one-by-one on the rightmost positions of �. For
each πv ∈ ΠV , let +(πv) be the set of candidates whose scores de-
crease after the deletion of πv , i.e., +(πv) = {c ∈ C | πv(c) ≤ k}.
An observation is that the candidates in +(πv) lie consecutively in
�. For ease of exposition, let c(πv, 1), c(πv, 2), ..., c(πv, k) denote
the candidates in +(πv) such that �(c(πv, x)) < �(c(πv, y)) for
every 1 ≤ x < y ≤ k.

Let Π1 be the multiset of all k-truncated votes πv such that
p ∈ +(πv). Deleting a k-truncated vote in Π1 does not affect
the score of any candidate ci such that |i − z| ≥ k. Moreover,
deleting any k-truncated vote not in Π1 does not change the score
of p. The algorithm breaks down I into n · (` + 1)2k−1 subin-
stances, each of which takes I together with a (2k−1)-dimensional
integer vector 〈bz−k+1, bz−k+2, ..., bz, ..., bz+k−1〉 and a nonneg-
ative integer t ≤ R as the input, where each 0 ≤ bx ≤ ` for
z − k + 1 ≤ x ≤ z + k − 1, and asks if there is a submultiset
ΠT ⊆ ΠV such that

1. |ΠT | ≤ R;

2. |ΠT ∩Π1| = t;

3. for every cx, z − k + 1 ≤ x ≤ z + k − 1,

score(cx, (C,ΠT ∩Π1),~a) = bx;

4. for every cx 6= p,

score(cx, (C,ΠV \ΠT ),~a) < score(cz, (C,ΠV),~a)− bz.

The algorithm first focuses on ΠT ∩ Π1, i.e., the part of the
solution in Π1. Determining whether there is a Π′ ⊆ Π1 such
that Π′ = ΠT ∩ Π1 and Π′ satisfies Conditions (2) and (3) can
be done in XP-time (in fact FPT-time) using ILP-based algorithms.
Precisely, we say two k-truncated votes π1, π2 in Π1 have the same
type if their rankings of the first k candidates are identical, i.e.,
π1[i] = π2[i] for every 1 ≤ i ≤ k. There are in total at most k22k

different types. For each type, we assign a variable indicating how
many k-truncated votes of this type are in Π′. The restrictions are
analogous to the ones in the proof of Theorem 3.

Now we show how to calculate ΠT \Π1. Let

scp = score(bz, (C,ΠV),~a)− bz.

In addition we reset R := R − t. For each i ∈ {1, ..., z − k, z +
k, ...,m}, define bi = 0. Let (π1, π2, ..., πu) be an order of all
k-truncated votes in ΠV \ Π1 such that c(πx, 1) is not on the right
side of c(πy, 1) in � for every 1 ≤ x < y ≤ u. Our algorithm is

based on dynamic programming. In particular, we maintain a table
DT (i, R′, s1, s2, ..., sk) where i, R′ are integers such that 1 ≤ i ≤
u, 0 ≤ R′ ≤ min{R, i}, and each sx, 1 ≤ x ≤ k is an integer
between 0 to `. We defineDT (i, R′, s1, s2, ..., sk) = 1 if and only
if there exists ΠH ⊆ {π1, ..., πi} such that

1. |ΠH| = R′;

2. for each 1 ≤ x ≤ k, score(c(πi, x), (C,ΠH),~a) = sx; and

3. for every candidate cx lying on the left side of c(πi, 1) in �,
score(cx, (C,ΠH),~a) > score(cx, (C,ΠV),~a)− bx− scp.

The initialization of the dynamic table is as follows:

1. DT (1, 0, s1, ..., sk) = 1 if and only if sx = 0 for every
1 ≤ x ≤ k, and for every candidate cx ∈ C \ {p} it holds
that score(cx, (C,ΠV),~a)− bx − scp < 0;

2. DT (1, 1, s1, ..., sk) = 1 if and only if for every 1 ≤ x ≤
k it holds that sx = score(c(π1, x), (C, {π1}),~a), and for
every candidate cx lying on the left side of c(π1, 1) it holds
that

score(cx, (C, {π1}),~a) > score(cx, (C,ΠV),~a)−bx−scp.

We use the following relation to update the table:
DT (i, R′, s1, ..., sk) = 1 if and only if

• DT (i− 1, R′, s1, ..., sk) = 1 (only when R′ ≤ i− 1); or

• DT (i− 1, R′ − 1, s′1, ..., s
′
k) = 1 where for every 1 ≤ x ≤

k, s′x = sx − score(c(πi, x), (C, {πi}),~a).

Clearly, the subinstance is a YES-instance if there exists DT (i =
u,R′ ≤ R, s1, ..., sk) = 1. As we have in total at most n2 · (` +
1)k entries to calculate, the running time of the above dynamic
programming algorithm is bounded by O(n2 · (` + 1)k). As we
have at most n · (`+ 1)2k−1 subinstances, the whole running time
of the algorithm is O(n3 · (`+ 1)3k−1), an XP-algorithm.

Now we study control by adding/deleting candidates in k-truncated
single-peaked elections. Faliszewski et al. [19] studied CCAC and
CCDC for Plurality in single-peaked elections, and proved that they
are polynomial-time solvable. Recall that Plurality can be regarded
exactly as Borda↑, Borda↓ and Bordaav in 1-truncated elections.
We extend their results by showing that CCAC and CCDC for
Borda↑, Borda↓ and Bordaav in k-truncated single-peaked elec-
tions are all polynomial-time solvable for any constant k.

Before presenting our algorithms, let’s first study a property. In
general, it states that the score of every candidate c is determined
by the k − 1 candidates lying on the left-side of c in �, the k − 1
candidates lying on the right-side of c in �, and c herself.

LEMMA 2. Let (C,ΠV) be a k-truncated single-peaked elec-
tion with respect to a linear order � over C. Then, for every Borda∗
where ∗ ∈ {↑, ↓, av}, it holds that

score(c, (C,ΠV), Borda∗) = score(c, (C,ΠC
V ), Borda∗),

where C = {c′ ∈ C | �(c)− k + 1 ≤ �(c′) ≤ �(c) + k − 1}.

Now we are ready to give our algorithms for CCAC and CCDC
for Borda∗ for every ∗ ∈ {↑, ↓, av} in k-truncated single-peaked
elections.

THEOREM 6. CCAC and CCDC for Borda∗ for every ∗ ∈ {↑
, ↓, av} in k-truncated single-peaked elections are XP with respect
to k.
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PROOF (UNIQUE-WINNER MODEL FOR CCDC). We first de-
scribe an algorithm for CCDC in k-truncated single-peaked elec-
tions for the following voting correspondence characterized by k
rational numbers α(1), ..., α(k): each vote gives α(i) points to the
candidate in the i-th position where 1 ≤ i ≤ k, and gives 0 points
to every candidate in the i′-th position where i′ > k, and the win-
ners are the ones with the highest total score.

Let I = (C,ΠV , p ∈ C, R) be a given instance and � an or-
der with respect to which all votes in ΠV are single-peaked. Let
m = |C|. If R ≤ 2k or m ≤ R + k, the instance can be solved
in O(mO(k))-time by enumerating all potential solutions. Assume
now that R > 2k and m > R + k. Let X = {c ∈ C | �(c) <
�(p)} and Y = {c ∈ C | �(c) > �(p)} be the sets of candidates
lying on the left side of p and right side of p in �, respectively.
The algorithm first breaks down I into polynomially many subin-
stances, each taking the original instance, two sets A ⊆ X,B ⊆ Y
such that |A| = min{k, |X|}, |B| = min{k, |Y |} and an integer
0 ≤ R′ ≤ R as the input. Let a (resp. b) be the leftmost (resp.
rightmost) candidate of A (resp. B) in �, i.e., a (resp. b) is the
candidate in A (resp. B) such that �(a) ≤ �(c) for every c ∈ A
(resp. �(b) ≥ �(c) for every c ∈ B). Moreover, let

D = {c ∈ C \ (A ∪B ∪ {p}) | �(a) < �(c) < �(b)}.

The subinstance asks whether there exists C ⊆ C \ {p} such that

1. |C| = R′;

2. (A ∪B) ∩ C = ∅;

3. D ⊆ C;

4. p wins the election after deleting all candidates in C.

In general, the subproblem aims to find a potential solution of size
exactly R′, and A (resp. B) includes exactly the k candidates ly-
ing consecutively on the left side (right side) of p in � in the final
election. Clearly, the original instance is a YES-instance if and
only if one of the subinstances is a YES-instance. Moreover, as
we have at most m2k+1 subinstances, the original instance is solv-
able in XP-time if each subinstance is solvable in XP-time. Let
I ′ = (I, A,B,R′) be a subinstance. Clearly, if |D| > R′, I ′ is
a NO-instance. Otherwise, we consider the election after deleting
all candidates in D. Then, due to Lemma 2, the final score of p
is known. Let s be the final score of p. As deleting a candidate
never decreases the score of every other candidate, all candidates
that have score more than s have to be deleted in order to make p
win the election. Hence, if there is such a candidate in A∪B, I ′ is
a NO-instance. Otherwise, we delete those candidates which have
scores more than s iteratively (notice that it may happen that after
deleting a candidate, a candidate having score less than s previously
has score more than s). If more than R′ candidates are deleted, I ′

is a NO-instance; otherwise I ′ is a YES-instance.
Borda↓ falls into the category of such voting correspondences.

In particular, by setting α(i) = k − (i − 1) the above algorithm
solves CCDC for Borda↓ in k-truncated single-peaked elections.

Consider now Borda↑. At first glance, the above algorithm does
not apply to Borda↑, since Borda↑ calculates winners with respect
to f(1), f(2), ..., f(k) where f(i) = m−i andm is the number of
candidates. Hence, candidate deletion changes the values of each
f(i). Nevertheless, recall that the subproblem defined above seeks
a solutionC of size exactlyR′. Therefore, if we havem candidates
in the original instance, we have exactly m− R′ candidates in the
final election. Due to this, by setting α(i) = m−R′ − i for every
1 ≤ i ≤ k the above algorithm solves CCDC for Borda↑ in k-
truncated single-peaked elections. Analogously, by setting α(i) =

m−R′+k−2i+1 the above algorithm solves CCDC for Bordaav
in k-truncated single-peaked elections.

Now we study control problems for Borda∗ in k-truncated single-
dived elections. An observation is that Lemma 1 still holds in this
case.

THEOREM 7. CCAV, CCDV, CCAC and CCDC for Borda∗ in
k-truncated single-dived elections are polynomial-time solvable,
where ∗ ∈ {↑, ↓, av}.

4. RELATED WORK
Our NP-hardness results of CCAV and CCDV for Borda in single-

peaked elections are most related to [8, 19], where many voting
problems which are NP-hard in general are shown to be polynomial-
time solvable in single-peaked elections. For weighted elections,
Faliszewski et al. [19] obtained a dichotomy results for construc-
tive coalition weighted manipulation with three candidates for po-
sitional scoring correspondences. Their results imply that con-
structive coalition weighted manipulation with three candidates for
Borda is polynomial-time solvable. Brandt et al. [8] proved that
constructive coalition weighted manipulation with four candidates
for Borda is NP-hard. Our NP-hardness results clearly extend to
weighted elections.

Our work concerning k-truncated votes is related to the work
by Menon and Larson[27], where they studied the complexity of
weighted manipulation and bribery problems in k-truncated single-
peaked elections. In particular, they proved that there are bribery
and manipulation problems which are polynomial-time solvable
in single-peaked elections, but become NP-hard when k-truncated
votes exist. In this paper, we mainly study control problems. More-
over, we are solely concerned with unweighted elections. Finally,
our primary goal is to investigate how the parameter k impacts the
parameterized complexity of control problems. However, Menon
and Larson[27] are mainly concerned with how the complexity of
weighted manipulation and bribery problems changes in single-
peaked elections, k-truncated elections and general elections.

Fitzsimmons and Hemaspaandra [21] explored the complexity of
many voting problems in single-peaked elections with partial votes,
i.e., votes with ties. In particular, they studied constructive coali-
tion manipulation problem for numerous voting correspondences.
It should be pointed out that Fitzsimmons and Hemaspaandra [21]
studied four different models of single-peaked elections with par-
tial votes. We refer to [21] for further details. In CCAV and CCDV,
we do not modify votes. Hence, from purely complexity point of
view, in these two problems k-truncated votes can be regarded as
partial votes, i.e., the unranked candidates in a vote are less pre-
ferred to ranked candidates and the vote is indifferent between the
unranked candidates. Nevertheless, in all models studied in [21],
ties may occur in several places, but not necessarily only in the last
m− k positions, where m is the number of candidates. Moreover,
in k-truncated single-peaked elections, every vote ranks exactly k
candidates. This is not the case in each of the four models studied
in [21]. In addition, in CCAC and CCDC, the associated complete
vote to each k-truncated vote is essential in the definition of the
problems studied in this paper. Finally, we consider mainly con-
trol problems, while Fitzsimmons and Hemaspaandra [21] studied
manipulation problems.
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