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ABSTRACT
When rational behavior of the agents and private infor-
mation are considered, the optimal social law synthesizing
problem naturally evolves into a setting which can be han-
dled by the framework of algorithmic mechanism design.
We focus on the Bayesian case in this paper, that is, the
probability distribution of each agent’s cost is known. It is
easy to see that in this case our problem closely relates to
path/spanning-tree auctions and Myerson’s optimal auction
mechanism, but the optimization objective is new, that is,
we focus on profit maximization instead of payment maxi-
mization. By studying this problem: we further extend the
logic-based framework of social law optimization problem to
the strategic case, and show that it becomes a new problem
of algorithmic mechanism design; we find out a mechanism
that is incentive compatible, individually rational and max-
imizes the expected profit for all input cost profiles; howev-
er, we can show that this mechanism is computational in-
tractable; so, we finally find out a tractable constant-factor
approximation mechanism.

CCS Concepts
•Computing methodologies → Multi-agent systems;

Keywords
social laws, logic, normative systems, mechanism design, op-
timization

1. INTRODUCTION
Social law was initially proposed by Shoham and Tennen-

holtz [22, 23] as an off-line approach for coordinating multi-
agent systems, and then extended by a lot of follow-up work,
e.g., [26, 27, 1], based on introducing the formal systems of
modal and temporal logics. Although the various approach-
es to social laws proposed in the literature differ on technical
details, they all share the same basic intuition that a social
law is a set of restrictions on the available actions of agents.
By imposing these restrictions, it is hoped that some desir-
able objectives will emerge [3]. The purpose is typically to
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prevent some destructive interactions from taking place, or
to facilitate some positive interactions. In this sense, social
laws also have much in common with normative systems [17,
7], which is also an important direction in AI research.

Ågotnes and Wooldridge [2] further extended the frame-
work of social laws by enabling expressing multiple differ-
ently valued objectives and taking into account the cost of
implementing each action restriction, and investigated the
problem of optimal social law synthesis defined as to find
out the social law that maximizes the difference between
the total value of the fulfilled objectives and the total im-
plementation cost. They showed that in general the optimal
social law synthesis is intractable, but several tractable sub-
case can be found out. Moreover, they showed that this
problem can be solved by integer programing.

A phenomenon that has attracted a lot of interest in re-
cent years but is generally absent in the original framework
of social laws is the information incompleteness and rational
behavior of the agents. Such multiagent systems abstract
the internal dynamics of many real world distributed system-
s which can be modeled as non-cooperative games played by
a set of agents, all of which always try to act to maximize
their individual utilities. This setting brings about some
fundamental challenges to social law synthesis: each agen-
t’s actual cost on restricting her actions is privately known
by herself; each agent decides to obey the social law only
if she can obtain a payment that is higher than her cost;
and if we decide to obtain these cost values by “asking” the
agents, they may misreport it strategically to achieve higher
utilities. So, in such a strategic case, obtaining the optimal
social law depends crucially on whether we can correctly
elicit the private cost information from the agents and take
into consideration during social law synthesis.

The above issue naturally falls into the domain of algorith-
m mechanism design [19, 20, 21], which is recently an active
direction in the intersection of computer science and game
theory and aims to solve optimization problems in strategic
cases just like the one considered in this paper. Basically, we
can extend the framework of optimal social laws proposed
in [2] to a procurement auction, in which firstly a mecha-
nism (consisting of an allocation rule and a payment rule)
is announced, then every agent reports its cost value, and
finally a set of restricted actions (i.e., a social law) is select-
ed and a payment to each agent is decided by applying the
allocation rule and payment rule. We aim to find out the
mechanism that reliably outputs the social law which max-
imizes the profit defined as the difference between the total
value of the fulfilled objectives and the total payment.
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We focus on the Bayesian case in this paper, that is, the
probability distribution of each agent’s cost is known. In this
case our problem closely relates to path auctions [4, 25, 5, 11,
16, 29, 8, 28], spanning-tree auctions [6, 13, 25] and Myer-
son’s optimal auction mechanism [18], but the optimization
objective is new, i.e., we focus on profit maximization in-
stead of payment maximization. The main contributions of
this paper can be summarized as follows:

1) We further extend the logic-based framework of social
law optimization problem [26, 2] to the strategic case,
and show that it becomes a new problem of algorithmic
mechanism design – social law auction design;

2) We find out a mechanism that is incentive compatible,
individually rational and maximize the expected profit
for all possible cost profiles; However, we can show that
this mechanism is computational intractable;

3) We then find out a constant-factor approximation mech-
anism that is incentive compatible, individually ratio-
nal and computationally tractable.

This paper can be seen as an attempt to introduce the
methodology of algorithmic mechanism design into the tra-
ditional logic-based approach to artificial intelligence. We
have obtained a framework that not only greatly improves
the reliability and robustness of social laws, but also discov-
ers some interesting new problems for the further study of
algorithmic mechanism design.

The remainder of this paper is structured as follows. We
start with some background on social laws and algorithmic
mechanism design as well as the formal framework of our
work. Next, we present an optimal social law auction and
show it is computationally intractable. Then, we present
a tractable 2-approximation social law auction. Afterward-
s, we discuss some related work. Finally, we present some
conclusions and introduce some problems for future study.

2. BACKGROUND AND PRELIMINARIES
We give a very brief summary on the formal framework

of social laws adopted in [2], and then extend it to the one
that will be applied in our work.

2.1 Model of Multiagent Systems
The interaction of the agents can be specified by a weight-

ed Kripke structure, which extend conventional Kripke struc-
ture for branching-time logic (see e.g.,[12]) with costs. For-
mally, a weighted Kripke structure (over a proposition set
Φ) is a 7-tuple K = 〈S, s0, R,A, α, c, π〉 where:

• S is a finite, non-empty set of states;

• s0 ∈ S is the initial state;

• R ⊆ S × S is a total (i.e., for every s ∈ S there is a
t ∈ S such that (s, t) ∈ R) relation on S, which we
refer to as the transition relation;

• A = {1, ..., n} is a set of agents;

• α : R→ A labels each transition in R with an agent;

• c : R→ R+ is a cost function; and

• π : S → 2Φ is a valuation function.

Intuitively, a weighted Kripke structure describes the state
transitions of a multiagent system where each state s ∈ S
is labeled with a set of propositions π(s) that are true in it,
each state transition τ = (s, t) ∈ R is controlled by an agent
α(τ), and forbidding the transition τ will induce a cost of
value c(τ) to us.

2.2 Computation Tree Logic (CTL)
CTL is a branching-time logic intended for representing

the properties of Kripke structures. Since CTL is widely
documented in the literature, we only introduce the version
of CTL syntax adopted in our work and the informal mean-
ing of the operators. The full version of CTL syntax and
semantics can be found in [12].

The syntax of CTL can be defined by the following BNF
grammar, where p ∈ Φ:

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | E© ϕ | E(ϕ1Uϕ2) | E2ϕ (1)

The semantics of CTL can be given with respect to the
satisfaction relation “�”, which holds between pairs of the
form K, s (where K is a Kripke structure and s is a state in
K), and formula:

• K, s � p iff p ∈ π(s);

• K, s � ¬ϕ iff not K, s � ϕ;

• K, s � ϕ1 ∨ ϕ2 iff K, s � ϕ1 or K, s � ϕ2;

• K, s � E© ϕ iff ∃λ ∈ paths(s): K,λ[1] � ϕ;

• K, s � E(ϕ1Uϕ2) iff ∃λ ∈ paths(s), ∃u ∈ N, s.t. K,λ[u] �
ϕ2 and ∀v, (0 ≤ v < u): K, τ [v] � ϕ1;

• K, s � E2ϕ iff ∃λ ∈ paths(s): K,λ[i] � ϕ for all i.

Note that, paths(s) denotes the set of paths started from
state s, and λ[i] denotes the (i + 1)’s state on path λ. E
is a path selection operator intuitively means “there exists
a path such that ...”, and ©,U and 2 are temporal opera-
tors intended to capture the notions “next-time”, “until” and
“always” respectively. For example, K, s � Eϕ1Uϕ2 means
“there is a path from s such that ϕ1 is satisfied in the states
along the path until arriving at a state satisfying ϕ2.

2.3 Optimal Social Laws
A social law defines, for each possible system transition,

whether or not it is legal. Formally, a social law η (w.r.t.
a Kripke structure K = 〈S, s0, R,A, α, c, π〉) is a subset
of R, such that R \ η is a total relation. The latter is
a reasonableness constraint : it prevents social laws which
lead to states with no successor. Let N(Ra) = {η : (η ⊆
Ra) and (R \ η is total)} be the set of social laws over
Ra ⊆ R. The intended interpretation of a social law η is
that (s, s′) ∈ η means transition (s, s′) is forbidden in the
context of η; hence R \ η denotes the legal transitions of η.
The effect of implementing a social law on a Kripke struc-
ture is to eliminate from it all transitions that are forbidden
according to this social law. If K is a Kripke structure, and
η is a social law over K, then K†η denotes the Kripke struc-
ture obtained from K by deleting transitions forbidden in
η. Formally, if K = 〈S, s0, R,A, α, c, π〉 and η ∈ N(R), then
K†η = K′ is the Kripke structure K′ = 〈S, s0, R

′, A, α, c, π〉
such that R′ = R \ η and all other components are as in K.
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We denote by K the set of Kripke Structures that may be
obtained by implementing some social law on K, i.e.,

K = {〈S, s0, R
′, A, α, c, π〉 : R′ ⊆ R and R′ is total }. (2)

A preference relation of the social law designer can be
defined on K by a valuation function:

v : K → R+ (3)

Then the utility of a social law η with respect to a Kripke
structure K and valuation function v, which is denoted by
u(η,K, v), is then the difference between the value brought
by the social law and the cost of implementing it, i.e.,

u(η,K, v) = v(K†η)−
∑

(s,s′)∈η

c(s, s′) (4)

So, from the point of view of a designer with valuation
function v, the optimal social law η∗(K, v) with respect to
Kripke structure K and valuation function v will be the one
that maximizes the value of the function u:

η∗(K, v) = arg max
η∈N(R)

u(η,K, η) (5)

The optimal social law problem is the problem of com-
puting η∗(K, v). Ågotnes and Wooldrige [2] showed that ev-
ery valuation function that doesn’t discern between bisimu-
lation equivalent structures (i.e., assigns the same value to
such structures) can be compactly and equivalently repre-
sented as a feature set: F = {(ϕ1, a1), ..., (ϕk, ak)} which
defines the following valuation function:

vF (K′) =
∑

(ϕi,xi)∈F,K′,s0�ϕi

ai (6)

and if we define v by this approach, the The optimal so-
cial law problem is FPNP -complete, and can be solved by
integer programming.

2.4 Economic Model
We adopt the above formal framework of social laws, but

1) we focus on the case where the α function of the weight-
ed Kripke structure is a bijection function. So, each
transition (s, s′) ∈ R can be uniquely enumerated by
the index i of the agent who controls it;

2) For each transition i ∈ R we reinterpret c(i) as the cost
that will be brought to agent i if this transition is for-
bidden. We assume c(i) to be known only by agent i,
but as public information the cost of the agents are
independent continuous random variables ξ1, · · · , ξn,
where each ξi is drawn from the interval Ξi = [0, ωi]
subject to a probability density function fi.

We use the following usual notations for vectors, e.g., ξ =
(ξ1, · · · , ξn), ξ−i = (ξ1, · · · , ξi−1, ξi+1, · · · , ξn), and (ξi, ξ−i) =
ξ. We denote by Ξ =

∏
i∈A Ξi the space of all possible cost

profiles. For each ξ ∈ Ξ, we have the joint probability den-
sity f(ξ) =

∏
i∈A fi(ξi) by the independence assumption.

We run a procurement auction to determine the select-
ed social law: firstly we announce an auction mechanism
consisting of an allocation function Ĥ : Ξ → N(R) and a
payment function Pi : Ξ→ R+ for each agent i, then collect
the cost reports from the agents as their bids and obtain
the bid profile ξ, and finally select the social law Ĥ(ξ) and

pay each agent i the amount Pi(ξ). Note that, the alloca-
tion function can be equivalently specified as for each agent
i and each bid profile ξ, Hi(ξ) = 1 (which means agent i is

selected) if i ∈ Ĥ(ξ), otherwise Hi(ξ) = 0.
After a mechanism 〈H,P 〉 is determined, it applies to any

instances of agent set A with the real costs randomly drawn
from Ξ, the interactions of the agents intrinsically become a
Bayesian game 〈A, (Ξi, fi, Bi, ui)i∈A〉 where

• Ξi denotes not only the cost space but also the action
space for agent i, since the actions of each agent are
restricted to cost reports, i.e., each ξi ∈ Ξi also denotes
the action “reporting ξi”;

• fi is the probability density function of agent i’s cost;

• Bi is the strategy space of agent i containing all the
functions of the form b : Ξi → Ξi, which means agent
i can report her cost strategically;

• ui : Ξi×Ξ→ R is the utility function of agent i. When
agent i’s cost value is ξi, the bid profile ξ will bring to
her the utility:

ui(ξi, ξ) = Pi(ξ)− ξi ·Hi(ξ) (7)

Bayesian-Nash Equilibrium (bne) is a natural solution con-
cept for such games. Intuitively, a strategy profile (b1, · · · , bn)
is a bne means for each agent i, using the strategy bi(ξi) will
achieve the highest expected utility for her, no matter which
real cost ξi ∈ Ξi she takes now. Formally, the expected u-
tility achieved by agent i whose cost value is ξi ∈ Ξi via
bidding ξ′i ∈ Ξi is

ūi(ξi, ξ
′
i) = Eξ−i∈Ξ−i [ui(ξi, (ξ

′
i, ξ−i))] (8)

The strategy profile (b1, · · · , bn) is a BNE if and only if

∀i, ξi, b′i 6= bi : ūi(ξi, b(ξi)) ≥ ūi(ξi, b′(ξi)) (9)

Given this solution concept, the task of mechanism design
is actually to find out a proper mechanism, so that, there is
a BNE and for any instance the outcome of the BNE sat-
isfies the objective of the designer. A mechanism is called
Bayesian-Nash Incentive Compatible (bnic) if and only if
truthful bidding, i.e., bi(ξi) = ξi for all i and ξi, is a b-
ne. According to the famous Revelation Principle [20] we
can greatly reduce the search space of mechanisms and only
focus on bnic mechanism without loss of generality.

If agent i bids ξ′i, and let hi(ξ
′
i) and pi(ξ

′
i) be the expecta-

tion of transition i being selected and the expected amount
of payment given to agent i respectively, then

hi(ξ
′
i) =

∫
Ξ−i

Hi(ξ
′
i, ξ−i)f−i(ξ−i)dξ−i (10)

pi(ξ
′
i) =

∫
Ξ−i

Pi(ξ
′
i, ξ−i)f−i(ξ−i)dξ−i (11)

By equations (8)(7)(10) and (11) we can further obtain

ūi(ξi, ξ
′
i) = pi(ξ

′
i)− hi(ξ′i)ξi (12)

So if agent i truthfully bids her cost ξi, she will get the
expected utility

ûi(ξi) = ūi(ξi, ξi) = pi(ξi)− hi(ξi)ξi (13)
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Implementing a social law by making every agent volun-
tarily obey the restrictions rather than by“hard constraints”
is one of the challenge issues in social law research. In our
framework, this requirement can be naturally captured by
the game theoretical concept individually rationality (ir)
which means every agent will get a nonnegative expected
utility after the implementation of the social law. Since we
focus on bnic mechanisms, ir is equivalent to nonnegative
expected truthful-bidding utilities, i.e.,

∀i ∈ A, ξi ∈ Ξi : ûi(ξi) ≥ 0 (14)

If all the agents truthfully bid their costs, then for arbi-
trary real cost profile ξ drawn from Ξ, the bid profile will
also be ξ, and the selected social law and the payment to
agent i will be Ĥ(ξ) and Pi(ξ) respectively. For the designer
with a feature set F = {(ϕ1, x1), ..., (ϕk, xk)}, the value of
the Kripke structure obtained by implementing the selected
social law is vF (K†Ĥ(ξ)), the total payment is

∑
i∈A Pi(ξ)

and therefore the achieved profit is

σ(ξ) = vF (K†Ĥ(ξ))−
∑
i∈A

Pi(ξ) (15)

So, the expected profit of the designer with respect to the
cost profile space Ξ is

Eξ∈Ξ[σ(ξ)] =

∫
Ξ

(
vF (K†Ĥ(ξ))−

∑
i∈A

Pi(ξ)
)
f(ξ)dξ (16)

The aim of this paper is to find out the bnic and ir mech-
anism 〈H∗, P ∗〉 that maximizes the expected profit.

3. OPTIMAL SOCIAL LAW AUCTIONS
First of all, we can show the requirement of bnic can be

equivalently transformed to some constraints on the alloca-
tion function and payment function.

Lemma 1. A mechanism 〈H,P 〉 is bnic iff ∀ i ∈ A, ξi, γi ∈
Ξi : ûi(ξi)− ûi(γi) ≥ hi(γi)(γi − ξi) .

Proof. The following equivalence relations follow triv-
ially from the definition of bnic and equations (12) and
(13): the mechanism 〈H,P 〉 is bnic iff ∀i ∈ A, ξi, γi ∈
Ξi : ūi(ξi, ξi) ≥ ūi(ξi, γi) iff ∀i ∈ A, ξi, γi ∈ Ξi : ûi(ξi) ≥
pi(γi) − hi(γi)ξi iff ∀i ∈ A, ξi, γi ∈ Ξi : ûi(ξi) − ûi(γi) ≥
hi(γi)(γi − ξi).

Lemma 2. A mechanism 〈H,P 〉 is bnic iff ∀ξi ∈ Ξi:

1) hi(ξi) is monotone nonincreasing; and

2) the following equation holds:

pi(ξi) = pi(0) + ξihi(ξi)−
∫ ξi

0

hi(ti)dti (17)

.

Proof. “⇒”: By lemma 1, for all i, ξi and γi, we have
both ûi(ξi) − ûi(γi) ≥ hi(γi)(γi − ξi) and ûi(γi) − ûi(ξi) ≥
hi(ξi)(ξi − γi). Then we can obtain

hi(ξi)(ξi − γi) ≤ ûi(γi)− ûi(ξi) ≤ hi(γi)(ξi − γi) (18)

It follows that hi(ξi) ≤ hi(γi) iff ξi ≥ γi. Therefore, hi(ξi)
is a monotone nonincreasing function.

To show the correctness of equation (17), we firstly divide

the interval [0, ξi] into L intervals of length δ = ξi
L

. Denote

by yk = (k + 1)δ the rightmost end of the kth interval, and
by xk = kδ its leftmost end. Let ξi = yk and γi = xk, then

(19)

L−1∑
k =0

hi(y
k)(yk − xk) ≤

L−1∑
k=0

ûi(x
k)− ûi(yk)

≤
L−1∑
k=0

hi(x
k)(yk − xk)

Noticing that, yk = xk+1 for all 0 ≤ k ≤ L− 1, therefore

L−1∑
k=0

ûi(x
k)− ûi(yk) = ûi(0)− ûi(ξi) (20)

Both the left part and right part of inequality (19) are Rie-
man sums. By increasing L, δ gradually approaches 0, both
of the left part and right part of inequality (19) converge to∫ ξi

0
hi(ti)dti. Therefore,

ûi(0)− ûi(ξi) =

∫ ξi

0

hi(ti)dti (21)

Moreover, equation (13) follows

ûi(0) = pi(0) (22)

Finally, the equation in item 2) of this lemma follows by
combining the equations (13)(21)and (22).

“⇐”: By equation (13), equation (17) is equivalent to

ûi(ξi) = pi(0)−
∫ ξi

0

hi(ti)dti (23)

So, for all γi ∈ Ξi

ûi(ξi)− ûi(γi) =

∫ γi

ξi

hi(ti)dti (24)

Since hi is monotone nonincreasing,∫ γi

ξi

hi(ti)dti ≥ (γi − ξi)hi(γi) (25)

then ûi(ξi)−ûi(γi) ≥ (γi−ξi)hi(γi). Therefore, by lemma 1,
〈H,P 〉 is bnic.

Then, we can transform the expression for expected profit,
i.e., equation (16), to a simpler form.

Lemma 3. A mechanism 〈H,P 〉 is bnic only if

(26 )

Eξ ∈Ξ[σ(ξ)] =

∫
Ξ

(
vF (K†Ĥ(ξ))

−
∑
i∈A

(ξi +
Fi(ξi)

fi(ξi)
)Hi(ξ)

)
f(ξ)dξ

−
∑
i∈A

(
pi(0)−

∫ ωi

0

hi(ti)dti
)

Proof. By Lemma 2,

pi(ξi) = pi(0) + ξihi(ξi)−
∫ ξi

0

hi(ti)dti (27)
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Therefore, by equation (11) we can further obtain

(28)

∫
Ξ

Pi(ξ)f(ξ)dξ =

∫ ωi

0

pi(ξi)f(ξi)dξi

= pi(0) +

∫ ωi

0

ξihi(ξi)fi(ξi)dξi

−
∫ ωi

0

∫ ξi

0

hi(ti)dtif(ξi)dξi

Since∫ ωi

0

∫ ξi

0

hi(ti)dtif(ξi)dξi =

∫ ωi

0

hi(ti)(1− Fi(ti))dti (29)

can be obtained by changing the order of integration. So,

(30)

∫
Ξ

Pi(ξ)f(ξ)dξ = pi(0)−
∫ ωi

0

hi(ξi)dξi

+

∫
Ξ

(ξi +
Fi(ξi)

fi(ξi)
)Hi(ξ)f(ξ)dξ

Finally, equation (26) can be obtained by combining equa-
tions (30) and (16).

Lemma 4. A mechanism 〈H,P 〉 is bnic and ir only if∑
i∈A

(
pi(0)−

∫ ωi

0

hi(ti)dti
)
≥ 0 (31)

Proof. 〈H,P 〉 is bnic follows equation (23), since we
have shown that it is equivalent to equation (17). Then
by inequality (14), we have ∀i ∈ A : ûi(ωi) = pi(0) −∫ ωi

0
hi(ti)dti ≥ 0. So, inequality (31) trivially holds.

Note that, in lemma 3, ξi + Fi(ξi)
fi(ξi)

is a famous structure

in Myerson’s optimal auctions [18]. We denote it as λ(ξi)
and name it as the virtual cost of transition i. We focus
on the regularity case of the space Ξ, that is, we assume λ
is non-decreasing function of ξi for every i. Moreover, we

let g(η, ξ) = vF (K†η) −
∑
i∈A(ξi + Fi(ξi)

fi(ξi)
)ηi where ξ ∈ Ξ

is the current bid profile, η is a selected social law, and if
i ∈ η then ηi = 1 , else ηi = 0. The above 2 lemmas
show that the value of the expected profit can be computed
as the difference of two items: the first item is an integral∫

Ξ
g(Ĥ(ξ), ξ)f(ξ)dξ whose value is determined by Ĥ(ξ) only;

and the second item is non-negative. Based on this observa-
tion, we can propose the following mechanism, which takes
a bid profile ξ as input and output the selected social law
H∗(ξ) and the payment vector P ∗(ξ) to the agents.

Mechanism PM-SLA

Input: a Kripke structure K = 〈S, s0, R,A, α, c, π〉, a
feature set F , the cost space Ξi and probability density
function fi for each agent i, and a bid profile ξ

1. Find out the social law η = Ĥ∗(ξ) ∈ N(R) that
maximizes g(η, ξ) = vF (K†η)−

∑
i∈A λi(ξi) · ηi;

2. Compute the payment to each agent i as
P ∗i (ξ) = H∗i (ξ)ξi +

∫ ωi

ξi
H∗i (ti, ξ−i)dti;

Output: the allocation and payment (H∗(ξ), P ∗(ξ))

The intuition behind this mechanism is the allocation func-
tion H∗(ξ) maximizes g for every ξ and fortunately is mono-
tone non-increasing (we will show this later), so it maximizes

the integration
∫

Ξ
g(Ĥ(ξ), ξ)f(ξ)dξ; the payment function

satisfies the constraints imposed by bnic and ir, i.e., equa-

tions (17) and (31), and makes
∑
i∈A

(
pi(0)−

∫ ωi

0
hi(ti)dti

)
get its minimal value 0, and so the expected profit is maxi-
mized within all bnic and ir mechanisms. In the following,
we will formally prove these results.

Lemma 5. The allocation function of PM-SLA is mono-
tone non-increasing.

Proof. Let Ĥ∗(ξ) be the social law that maximizes the

function g(Ĥ(ξ), ξ) = vF (K†Ĥ(ξ))−
∑
i∈A λ(ξi)Hi(ξ), Ĥ

′(ξ)
be a social law that H ′k(ξ) ≥ H∗k (ξ), and γ = (γk, ξ−k)
where γk ≥ ξk. Suppose H∗k (ξk, ξ−k) is a increasing func-
tion of ξk, that is, when the bid vector changes to γ, the
social law Ĥ ′(ξ) becomes the one maximize the objective

function. Therefore, g(Ĥ ′(ξ), γ) ≥ g(Ĥ∗(ξ), γ). So,

(32)

vF (K†Ĥ ′(ξ))−
∑
i ∈A

λ(γi)H
′
i(ξ)

≥ vF (K†Ĥ∗(ξ))−
∑
i∈A

λ(γi)H
∗
i (ξ)

Since γi = ξi for all i 6= k, inequality (32) is equivalent to

(33)g(Ĥ ′(ξ), ξ) + (λ(ξk)− λ(γk))H ′k(ξ)

≥ g(Ĥ∗(ξ), ξ) + (λ(ξk)− λ(γk))H∗k (ξ)

By the regularity of the space Ξ, we can further obtain
g(Ĥ ′(ξ), ξ) ≥ g(Ĥ∗(ξ), ξ), which contradicts the fact that

Ĥ∗(x) is the social law with highest profit in this case. So,
for each k, H∗k (ξk, ξ−k) and further h∗k(ξk) is a non-increasing
function of ξk.

The intuition behind the above lemma is actually very ob-
vious. Since the higher an agent i bids, the higher virtual
cost it has, and the profits of all the social laws that con-
taining transition i will decrease because of increasing total
payments, so the likelihood of selecting transition i will de-
crease. Now we are ready to prove the main results of this
section.

Theorem 6. PM-SLA is bnic and ir.

Proof. Since p∗i (ξi) =
∫

Ξ−i
P ∗i (ξi, ξ−i)f−i(ξ−i)dξ−i =

ξih
∗
i (ξi) +

∫ ωi

0
h∗i (ti)dti −

∫ ξi
0
h∗i (ti)dti, we can obtain

p∗i (0) =

∫ ωi

0

h∗i (ti)dti (34)

and further p∗i (ξi) = p∗i (0) + ξih
∗
i (ξi)−

∫ ξi
0
h∗i (ti)dti. More-

over, by lemma 5, h∗i is non-increasing. So, by lemma 2,
pm-nfa is bnic.

Then, by equations (23) and (34), ∀ξi ∈ Ξi :

û∗i (ξi) =

∫ ωi

0

h∗i (ti)dti −
∫ ξi

0

h∗i (ti)dti ≥ 0 (35)

So, PM-SLA is also ir.

Theorem 7. PM-SLA maximizes the expected profit with-
in all bnic and ir mechanisms.
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Proof. Suppose there is a bnic and ir mechanismM′ =
(H ′, P ′) which achieve higher expected profit than the pm-
nla mechanism M∗ = (H∗, P ∗). By lemma 2, M′ is ir
follows

∀i ∈ A : p′i(0)−
∫ ωi

0

h′i(ti)dti ≥ 0 (36)

Therefore, by lemma 3, equality (34) and inequality (36),
Eξ∈Ξ[σM′(ξ)] > Eξ∈Ξ[σM∗(ξ)] implies

(37)

∫
Ξ

(
vF (K†Ĥ ′(ξ))−

∑
i ∈A

λ(ξi)H
′
i(ξ)

)
f(ξ)dξ

>

∫
Ξ

(
vF (K†Ĥ∗(ξ))−

∑
i∈A

λ(ξi)H
∗
i (ξ)

)
f(ξ)dξ

which contradicts the fact thatH∗(ξ) maximizes vF (K†Ĥ(ξ))−∑
i∈A λ(ξi)Hi(ξ) with respect to all ξ ∈ Ξ.

4. COMPUTATIONAL COMPLEXITY
The computational problem of pm-nfa can be specified as

given a Kripke structure K = 〈S, s0, R,A, α, c, π〉, a feature
set F = {(ϕ1, x1), ..., (ϕk, xk)}, the cost value space Ξi and
the corresponding probability density function fi for each
agent i ∈ A, and the bid profile ξ from the agents, to output
the selected social law Ĥ∗(ξ) and the corresponding payment
profile P ∗(ξ). Notice that, the two functions H∗ and P ∗ are
actually implicitly defined by the mechanism PM-SLA, we
are not going to explicitly show the functions but instead
compute the values of the two functions for the current bid
profile.

The computation ofH∗(ξ) is a common optimization prob-
lem. The computation of P ∗(ξ) seems more complex, be-
cause it involves computing the integral

∫ ωi

ξi
H∗i (ti, ξ−i)dti

which seems requiring the explicit expression of H∗i (ti, ξ−i)
which is a function of ti ∈ Ξ. But the following result shows
there is a more direct approach to compute P ∗(ξ).

Lemma 8. For all i ∈ A,

P ∗i (ξ) =

{
inf {ci ∈ Ξi : i /∈ Ĥ∗(ci, ξ−i)} i ∈ Ĥ∗(ξ)
0 else

Proof. By lemma 5, for all i ∈ A, Ĥ∗(ci, ξ−i) is a mono-
tone non-increasing function of ci, therefore H∗i (ci, ξ−i) = 0
for all ci ∈ Ξi or there is a θi ∈ Ξ such that

H∗i (ci, ξ−i) =

{
1 0 ≤ ci ≤ θi
0 else

For the first case, it is trivial that i /∈ Ĥ∗(ξ) and P ∗i (ξ) = 0;

for the second case, if ξi ≤ θi, then i ∈ Ĥ∗i (ξ) and P ∗(ξ) =

ξi +
∫ θi
ξi

1dti = θi = inf{ci ∈ Ξi : i /∈ Ĥ∗(ci, ξ−i)}, else

i /∈ Ĥ∗(ξ) and P ∗i (ξ) = 0.

The above result means the payment to each selected a-
gent is the threshold cost she can bid to keep her in the
selected set, given the bids from other agents unchanged.
Therefore, firstly we can obtain the following result:

Theorem 9. PM-SLA is dominant strategy incentive com-
patible (dsic, i.e., truthful).

Proof. By lemma 5, the allocation function of PM-SLA
is monotone, and by lemma 8, the payment to the selected
agents are their threshold bid, therefore according to the
famous characterization of single-parameter truthful mech-
anisms [18, 24], PM-SLA is truthful.

Moreover, step 2 of mechanism PM-SLA and be equiva-
lently substituted by the following steps.

2.1 For each agent i ∈ η∗ find out the social law
η = Ĥ−i(ξ) ∈ N(R \ {i}) that maximizes g(η, ξ),
and let P ∗i (ξ) be that value that satisfy

λ(P ∗i (ξ)) = g(Ĥ∗(ξ), ξ) + λ(ξi)− g(Ĥ−i(ξ), ξ);

2.2 For each agent i /∈ Ĥ∗(ξ) let P ∗i (ξ) = 0;

Now, it is obvious that, the solution to the following sub-
problem is crucial in the computation of PM-SLA.

pm-sla-allocation

Given: a Kripke structure K = 〈S, s0, R,A, α, c, π〉, a
feature set F , the cost space Ξi and probability density
function fi for each agent i, a bid profile ξ, and an
available transition set Ra ⊆ R

Output: a social law η ∈ N(Ra) that maximize
g(η, ξ) = vF (K†η)−

∑
i∈A λi(ξi) · ηi

Finally, we can prove a negative result on the computation
of PM-SLA.

Theorem 10. The problem of computing PM-SLA is
FPNP -complete.

Proof. Firstly, we can show the pm-sla-allocation prob-
lem is FPNP -complete: the associated decision problem, i.e.,
“whether there is a social law η ∈ N(Ra) achieving the value
of g(η, ξ) at least l ∈ R+”, is trivially in NP , so this problem
is in FPNP ; Moreover, we can reduce the optimal social
law problem [2], which is FPNP -complete, to this problem.
Then, we can find out that the complexity of computing
PM-SLA mainly involves solving at most n + 1 instances
of pm-sla-allocation, where n is the number of transitions
in Ra, so it is also FPNP -complete.

5. APPROXIMATION
Since the computation of PM-SLA is intractable, we

are going to find out an computationally tractable approx-
imation mechanism. Basically, this approximation mecha-
nism is based on an approximation algorithm for pm-sla-
allocation: firstly, we formulate an integer program for
this problem based on the methodology introduced in [2].
The idea is the value of the objective function g(η, ξ), which
we aim to maximize, depends not only on whether each tran-
sition is selected but also on whether each formula ϕi in
the feature set F = {(ϕ1, a1), ..., (ϕk, ak)} is satisfied in the
current state, which may further depends on whether each
sub-formula of ϕi is satisfied in the current state s or the
next states N (s) = {s′ ∈ S : ∃(s, s′) ∈ R}. Each of the
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above choice can be captured by a boolean variable, and the
combined value assignments to all the boolean variables are
constrained by the semantics of ctl.

For each formula ϕ, its related sub-formulas can be de-
noted as cl(ϕ), or be called the closure of ϕ defined as:

cl(ϕ) = {ϕ} ∪ sub(ϕ)

where

sub(ϕ) =


cl(ψ) ∪ cl(χ) if ϕ = ψ ∨ χ or ϕ = E(ψUχ)

cl(ψ) if ϕ = ¬ψ or ϕ = E© ψ or ϕ = E2ψ

{ϕ} if ϕ ∈ Φ

Then for each feature set F = {(ϕ1, a1), ..., (ϕk, ak)}, we let

cl(F) = cl(ϕ1) ∪ · · · ∪ cl(ϕk)

Basically, the set cl(F) is the set of all the formulas that may
influence the value of the objective function g(η, ξ). So we
can introduce the following two classes of boolean variables:

• xsϕ ∈ {0, 1} for each s ∈ S and ϕ ∈ cl(F);

• yss′(or yi) ∈ {0, 1} for each i = (s, s′) ∈ R.

Intuitively, xsϕ = 1 means ϕ is true in state s, and yss′ = 1
means the transition is selected by the mechanism.

The semantics constraints can be expressed by the follow-
ing result, which directly follows from ctl semantics:

Lemma 11. The following 2 formulas are valid:

1) E(ψUχ)↔ (χ ∨ (ψ ∧ E© E(ψUχ)))

2) E2ϕ↔ ϕ ∧ E© E2ϕ

Therefore, we can further obtain the following result.

Lemma 12.

1) xsp = 1 iff p ∈ π(x);

2) xs¬ψ = 1 iff xsψ = 0;

3) xsψ∨χ = 1 iff xsψ = 1 or xsχ = 1;

4) xsE©ψ = 1 iff ∃s′ ∈ N (s) : yss′ = 0 and xs
′
ψ = 1;

5) xsE(ψUχ) = 1 iff at least one of the following hold:

– xsχ = 1;

– xsψ = 1 and ∃s′ ∈ N (s) : yss′ = 0 and xs
′

E(ψUχ) = 1;

6) xsE2ϕ = 1 iff both of the following hold:

– xsϕ = 1;

– ∃s′ ∈ N (s) : yss′ = 0 and xs
′

E2ϕ = 1.

Proof. Items 1)- 4) follow trivially from the semantics
of ctl; and item 5) and item 6) follow from lemma 11.

Then, for each instance of pm-sla-allocation parame-
terized by (K,F , (Ξi, fi)i∈A, Ra, ξ), we can give the follow-
ing integer program (which we refer as ILP-PSA(Ra), since
we assume the other parameters are clear from the context):

maximize ∑
(ϕi,ai)∈F

ai · xs0ϕi
−

∑
(s,s′)∈R

(ξi +
Fi(ξi)

fi(ξi)
)yss′ (38)

subject to:

xsϕ ∈ {0, 1} ∀s ∈ S, ϕ ∈ cl(F) (39)

yss′ ∈ {0, 1}, ∀(s, s′) ∈ R (40)

yss′ = 0, ∀(s, s′) ∈ R \Ra (41)∑
s′∈N (s)

(1− yss′) ≥ 1, ∀s ∈ S (42)

xsp = 1, ∀s ∈ S, p ∈ π(s) (43)

xsp = 0, ∀s ∈ S, p ∈ (Φ ∩ cl(F)) \ π(s) (44)

xs¬ψ = 1− xsψ, ∀s ∈ S,¬ψ ∈ cl(F) (45)

xsψ∨χ ≥ xsψ, ∀s ∈ S, ψ ∨ χ ∈ cl(F) (46)

xsψ∨χ ≥ xsχ, ∀s ∈ S, ψ ∨ χ ∈ cl(F) (47)

xsψ∨χ ≤ xsψ + xsχ, ∀s ∈ S, ψ ∨ χ ∈ cl(F) (48)

xsE©ψ ≥ xs
′
ψ − yss′ , ∀s ∈ S,E© ψ ∈ cl(F), s′ ∈ N (s) (49)

xsE©ψ ≤
∑

s′∈N (s)

xs
′
ψ , ∀s ∈ S,E© ψ ∈ cl(F), s′ ∈ N (s) (50)

xsE(ψUχ) ≥ xsχ, ∀s ∈ S,E(ψUχ) ∈ cl(F) (51)

xsE(ψUχ) ≥ xsψ + xs
′

E(ψUχ) − yss′ − 1,
∀s ∈ S,E(ψUχ) ∈ cl(F), s′ ∈ N (s)

(52)

xsE(ψUχ) ≤ xsψ + xsχ, ∀s ∈ S,E(ψUχ) ∈ cl(F) (53)

xsE2ψ ≤ xsψ, ∀s ∈ S,E2ψ ∈ cl(F) (54)

xsE2ψ ≤
∑

s′∈N (s)

xs
′

E2ψ, ∀s ∈ S,E2ψ ∈ cl(F) (55)

xsE2ψ ≥ xsψ + xs
′

E2ψ − yss′ − 1,
∀s ∈ S,E2ψ ∈ cl(F), s′ ∈ N (s)

(56)

A solution to ILP-PSA(Ra) is an assignment to the boolean
variables (xsϕ)s∈S,ϕ∈F , (yss′)(s,s′)∈R, which means the social
law η = {(s, s′) ∈ R : yss′ = 1} is selected. So, in the case
we mention η as an solution to ILP-PSA(Ra).

Theorem 13. A social law η∗ ∈ N(Ra) is selected in
a solution to ILP-PSA(Ra) iff η∗ = arg maxη∈N(Ra) g(η, ξ),
i.e., η∗ is a solution to an instance of pm-sla-allocation
where the available transition set is Ra.

Proof. Since (38) is equivalent to g(η, ξ), we only have
to show (39)- (56) correctly captures all the constraints im-
posed on the variables: (41) means we only select transitions
from Ra; The reasonable constraints of social law are cap-
tured by (42); And by lemma 12, (43)-(56) correctly captures
the constraints imposed by ctl semantics.

Since integer programming is intractable, the proposed in-
teger program is still a computationally infeasible solution.
But we can obtain a tractable approximation algorithm vi-
a relaxing and rounding. We can relax ILP-PSA(Ra) to a
linear program LP-PSA(Ra), which is obtained from ILP-
PSA(Ra) via replacing (39) and (40) respectively to
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• 0 ≤ xsϕ ≤ 1 ∀s ∈ S, ϕ ∈ cl(F) (39′)

• 0 ≤ yss′ ≤ 1, ∀(s, s′) ∈ R (40′)

Then, we can design an algorithm for pm-sla-allocation:

Algorithm find-osl-apx

Input: an instance of pm-sla-allocation
(K,F , (Ξi, fi)i∈A, Ra, ξ), and a threshold θ ∈ [0, 1]

1. Find the solution (xsϕ)s∈S,ϕ∈F , (yss′)(s,s′)∈R to
LP-PSA(Ra);

2. Let η+ = {(s, s′) ∈ Ra : yss′ ≥ θ}.

Output: the selected social law η+

Afterward, we can give the following mechanism:

Mechanism PM-SLAX

Input: a Kripke structure K = 〈S, s0, R,A, α, c, π〉, a
feature set F , the cost space Ξi and probability density
function fi for each agent i, and a bid profile ξ

1. η ←find-osl-apx(R);

2. For each agent i ∈ η: η−i ←find-osl-apx(R \ {i}),
and let Pi be that value that satisfy
λ(Pi) = g(η, ξ) + λ(ξi)− g(η−i, ξ);

3. For each agent i /∈ η let Pi(ξ) = 0;

Output: the allocation and payment (η, P )

Finally, we can show PM-SLAX is a dsic, ir and com-
putational tractable mechanism, and if choose the threshold
θ = 0.5, it produces an approximation ratio equals to 2.

Theorem 14. PM-SLAX is dsic and ir.

Proof. The allocation of PM-SLAX is also monotone
non-increasing: the idea is when an agent raises her bid,
the allocation to it computed by solving LP-PSA(Ra) must
be non-increasing. Detailed proof can be formulated via re-
duction to absurdity just like that in the proof of lemma 5.
Moreover, the payment to each selected agents is her thresh-
old bid. So, we can conclude PM-SLAX is dsic. IR follows
from the fact when an agent is selected, the payment to her
is her threshold bid which is higher than her current bid,
i.e., her true cost; otherwise the payment to her is 0.

Theorem 15. PM-SLAX is tractable 2-approximation
mechanism to PM-SLA if we choose θ = 0.5.

Proof. The computation of PM-SLAX is mainly formed
by at most n+1 calls to the function find-osl-apx, which is
tractable since linear programming is tractable, and there-
fore is tractable. Let OPT be the optimal expected profit
(achieved by PM-SLA), (xs+ϕ )s∈S,ϕ∈F ,(y+

i )i∈A be the re-
sult obtained by solving LP-PSA(Ra), (yi)i∈A be the alloca-
tion of PM-SLAX , and (xsϕ)s∈S,ϕ∈F be the result enforced

by (yi)i∈A. We have
∑
i∈A λi(ξi)y

+
i ≥ 1

θ
·
∑
i∈A λi(ξi)yi, s-

ince we have y+
i ≥ θ ·yi for all i; Moreover, it is easy to show

xsϕ ≥ (1− θ) · xs+ϕ for all s ∈ S and ϕ ∈ cl(F), and therefore∑
(ϕi,ai)∈F ai · x

s0
ϕi
≥ (1− θ) ·

∑
(ϕi,ai)∈F ai · x

s0+
ϕi

. So, if we

choose θ = 0.5, then
∑

(ϕi,ai)∈F ai · x
s0
ϕi
− ·
∑
i∈A λi(ξi)yi ≥

(1−θ) ·
∑

(ϕi,ai)∈F ai ·x
s0+
ϕi
−θ
∑
i∈A λi(ξi)y

+
i ≥ 1

2
OPT .

6. RELATED WORK
The problem considered in this paper is mainly motivated

from [2], where the optimal social law problem has been
formalized and a ilp solution has been proposed. Compared
with this work, we non-trivially extend the optimal social
law problem to the strategic case, find a solution based on
algorithmic mechanism design, and explicitly study an ap-
proach to solve the discovered computationally intractable
problem. Rational behavior of the agents actually has been
already considered in some work on social laws, e.g., [3] and
so on, but they mainly focus on game theoretical analysis
rather than synthesizing which intuitively reduces to mech-
anism design, as we do in this paper.

On the side of algorithmic mechanism design, our work
especially relates to the class of work relates to graphs, e.g.,
path auctions, spanning-tree auctions, and so on, since social
law synthesis is a problem on Kripke structures, which are
also intrinsically graphs. Among this class of work, our work
is most close to Elkind et al.’s work [11] on path auction-
s, since it proposes a methodology that solves the payment
minimization problem in path auctions in the Bayesian case
based on the framework of Myerson’s optimal auctions [18].
But our work is different from [11] on mainly two aspect-
s: firstly, we study a different optimization objective, i.e.,
(value− payment) vs. payment; secondly, we further study
the computational issue and propose a tractable mechanis-
m with constant-factor approximation guarantee. Actually,
profit-maximization has been studied in competitive auction-
s [15, 14, 10, 9], but their settings are totally different, i.e.,
they focus on buying (or selling) multiple identical items.

7. CONCLUSION AND FUTURE WORK
In this paper we non-trivially extend the optimal social

law problem to the strategical case, and propose a mecha-
nism, which is truthful, individually rational, computation-
ally tractable, and with constant-approximation guarantee,
based on the framework of Bayesian mechanism design. By
this work, we not only introduce a meaningful new frame-
work for designing social laws, but also introduce an interest-
ing new problem to algorithm mechanism design research.
In our opinion, two aspects of future work are important:
firstly, as we currently focus on the Bayesian case, it is also
necessary to study the prior-free case; secondly, notice that
we assumed each agent can own only one transition. It is
interesting to remove this assumption and study the general
case where each agent can own multiple transitions.
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