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ABSTRACT

Online matching problems have garnered significant attention in
recent years due to numerous applications. Many of them capture
the uncertainty in the real world by including stochasticity in both
the arrival process and the matching process. The Online Stochas-
tic Matching with Timeouts problem introduced by Bansal, Gupta,
Li, Mestre, Nagarajan, and Rudra (Algorithmica, 2012) models
matching markets (e.g. E-Bay, Amazon). Buyers arrive from an
independent and identically distributed (i.i.d.) known distribution
on buyer profiles and can be shown a list of items one at a time.
Each buyer has some probability of purchasing each item and a limit
(timeout) on the number of items they can be shown.

Bansal et al. (Algorithmica, 2012) gave a 0.12-competitive algo-
rithm which was improved by Adamczyk, Grandoni, and Mukherjee
(ESA, 2015) to 0.24. We present an online attenuation framework
that uses an algorithm for offline stochastic matching as a black box.
Our main contributions are as follows. On the upper bound side, we
show that this framework combined with a black box adapted from
Bansal et al. (Algorithmica, 2012) yields an online algorithm which
nearly doubles the ratio to 0.46. On the lower bound side, we show
that no algorithm can achieve a ratio better than 0.632 using the
common LP for this problem. This framework has a high potential
for further improvements since new algorithms for offline stochastic
matching can lead directly to improvements for the online problem.

Our online framework also has the potential for a variety of
extensions. For example, we introduce a natural generalization:
Online Stochastic Matching with Two-sided Timeouts in which both
online and offline vertices have timeouts. Our framework provides
the first algorithm for this problem achieving a ratio of 0.31. We
accomplish this by proposing a new black box algorithm for offline
stochastic matching on star graphs, which may be of independent
interest. This new black box improves the approximation ratio for
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the offline stochastic matching problem on star graphs from 0.5 by
Adamczyk et al. (ESA 2015) to 0.56.

Keywords

Randomized Algorithms; Online Algorithm; Online Stochastic Match-
ing

1. INTRODUCTION

Consider a typical problem in matching markets (e.g. E-Bay,
Amazon). We have a certain number of buyer profiles and items.
Let us denote the set of buyer profiles by V and the set of items by
U. In our initial problem, we assume that an item is present in the
market until bought. We have an n round market process. In each
round, a buyer is sampled uniformly at random (with replacement)
from the buyer profiles. We assume that we have n buyer profiles
(this assumption is called integral arrival rates in the literature
[26]). For every item u# € U and buyer v € V, let e = (&, v) and p,
denote the the probability that buyer v will buy the item u. If v buys
u, then we obtain a reward of w.. When a buyer arrives, she will be
shown items one-by-one until she chooses to buy one. Since every
buyer v has a limited attention-span, she can be shown at most 7,
items where ¢, is typically called a timeout or patience constraint
for v. The goal is to design an algorithm such that the expected
reward at the end of the n round process is maximized. Usually, the
buyer profiles are gathered based on past information. Hence, we
will assume that the system knows all the buyer profiles as well as
the buying probabilities for each item profile pair.

We model this as the Online Stochastic Matching with Timeouts
problem introduced by Bansal, Gupta, Li, Mestre, Nagarajan, and
Rudra [7]. Formally, this is a probe-commit model for online bi-
partite stochastic matching. Let us represent an item-buyer pair by
an edge e = (u,v). The algorithm can “probe” e to see if the buyer
v “buys” the item u. If she does, the decision of selling u to v is
made irrevocably (commit). We now define the model in an abstract
setting. We are given a bipartite graph G = (E, U, V) as input. Each
edge e has a probability p. (independent of other edges) of existing
(modeling a buyer’s interest in an item) and a weight w.. Each
vertex v € V has a timeout t,,; however, the vertices in U have no
timeout restrictions (equivalently, we can say they have timeouts
of infinity). These values are all known a priori. The algorithm
proceeds in n rounds. In each round, a vertex v arrives and we can
probe at most ¢, neighbors in an attempt to match v. Arrivals are
drawn with replacement from a known i.i.d. distribution on V. For



simplicity, we will consider the uniform distribution.! If a probed
edge (u,v) is found to exist, we must match v to u and no more
probing is allowed for that round. The vertices in U can be matched
at most once. The vertices in V are called types (a buyer profile)
and two or more arrivals of the same type v € V are considered
distinct vertices (two different buyers of a particular profile) which
can each be probed up to ¢, times and matched to separate neighbors
in U. The objective is to maximize the expected weight (or profit)
of the final matching obtained. Unsurprisingly, this model captures
problems beyond the buyer/seller scenario described above. Vari-
ous online stochastic matching problem have been considered for
online advertising and many other applications [26].

We give new algorithms for the Online Stochastic Matching with
Timeouts problem that improve the competitive ratio over the pre-
vious work. We then introduce a new model wherein the seller
selling item « has a limited patience. In this generalization, called
Online Stochastic Matching with Two-sided Timeouts, we have an
additional constraint that every vertex u € U has a timeout #,, and
the algorithm can probe at most #,, neighbors of u across the n
rounds. We give the first constant factor approximation algorithm
for this generalized setting.

Related Work: Online bipartite matching and its variants have
been an active area of study beginning with the seminal work of
Karp, Vazirani and Vazirani [23]. They studied weighted bipar-
tite matching in the adversarial arrival model and gave an optimal
(1 — 1/e) competitive algorithm. The advent of e-commerce and
ad-allocation brought more variants of this problem. For an ex-
haustive literature survey, refer to the book by Aranyak Mehta [26].
Many variants study arrivals in a random or adversarial order on an
unknown set of online vertices. In the I.I.D. arrival model, Feld-
man et al. [17], Bahmani and Kapralov [6], Manshadi et al. [25],
Haeupler et al. [20], Jaillet and Lu [21], and Brubach et al. [9] gave
improved algorithms to the Online Stochastic Matching problem.
The term stochastic here refers to the known i.i.d. arrival model,
although some of those papers also address stochastic edge models.

Beyond online matching, other related problems have been stud-
ied. The adwords problem was introduced by Mehta et al. [27]
and subsequently studied by Buchbinder er al. [10] and Devanur
and Hayes [12]. More variants have been considered by Devanur
et al. [14], Devanur et al. [15], and Devanur and Jain [13]. Other
generalizations that capture the online matching problem are Online
Packing Linear Programs by Feldman et al. [16] and Agrawal et
al. [3] and the study of Online Convex Programs by Agrawal and
Devanur [2].

Bansal er al. [7] introduced the problem of Online Stochastic
Matching with Timeouts and gave the first constant factor competi-
tive ratio of 0.12. This was later improved to 0.24 by Adamczyk et
al. [1]. In both works, they considered the notion of timeouts only
on the online vertices. The original motivation for timeouts came
from the patience constraints in the Offline Stochastic Matching
problem. That offline problem was first introduced by Chen et al.
[11] and later studied by Bansal et al. [7], Adamczyk et al. [1], and
Baveja et al. [8]. A generalization to packing problems was studied
by Gupta and Nagarajan [19].

The Online Stochastic Matching with Two-sided Timeouts prob-
lem which we introduce has no direct previous work. One related
problem is Online b-matching wherein the offline vertices can each
be matched at most b times. This is somewhat similar to having
timeouts on the offline vertices in online stochastic matching. In
the adversarial setting, b-matching was first studied by Kalyanasun-

Our results are readily applicable to any distribution which yields
integral arrival rates.
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daram and Pruhs [22] and they gave an optimal algorithm. Alaei et
al. [4] studied the prophet-inequality problem and considered the
stochastic i.i.d. setting. They gave an algorithm whose competitive

L. 1 . .
ratio is 1 ek Alaei et al. [5] and Brubach ef al. [9] studied the

Online b-matching Stochastic Matching problem in the i.i.d. setting
and gave a ratio of 1 — O0(1/Vb).

1.1 Preliminaries

Let us start by giving the theoretical preliminaries to our problem.
Henceforth, we refer to the items U as the offline vertices and the
buyers V as the online vertices. We refer to the reward w, as the
weight of the edge while we refer to the buying probability p. as
the edge probability. We use the words time and round of the
process interchangeably. When we say at time ¢ € [n], it refers to
the beginning of step ¢ in the process. Also, following many of the
related works, we assume that the arrival rate of each online vertex
type is integral and hence, WLOG assume it to be 1. Additionally,
the competitive ratio for this class of problems is defined slightly
differently from usual online algorithms (see [26]). We say that a
vertex in the offline set U is safe at some time ¢ if it has not been
matched in a previous round. Similarly we say an edge ¢ = (u,v)
is safe if u is safe during the arrival of v. We say a safe edge is
safely probed if it is probed before v is matched or the timeout #,, is
reached. Finally, we denote d(u), d(e) to denote the edges incident
to vertex u and edge e respectively.

Benchmark Linear Program (LP): As in related works, we use
the following Linear Program as a benchmark for our competitive
ratios.

maximize Z We feDe (L.1)
eeE
subject to Z fepe <1 VueU (1.2)
ee€d(u)
> fepes1 Wvev (13)
eed(v)
> festu  YueUu (1.4)
ee€d(u)
D fest,  Wvev (1.5)
eed(v)
0< fo<1 Ve e E (1.6)

The variable f, in the above LP refers to the expected number of
probes on e in the offline optimal. For the problem with timeouts
on only the online vertices, WLOG we can assume t,, = n, Yu € U.

Overview of Attenuation Framework: We present a general online
attenuation framework for the design and analysis of algorithms
for the Online Stochastic Matching with Timeouts problem. In
simple terms, an attenuation framework is a method for balancing
the performance of all edges over all rounds to improve worst case
analysis. We analyze the performance ratio of every edge across the
n rounds and the competitive ratio for the algorithm is determined
by the edge e = (1, v) with the lowest ratio. In all algorithms, it is
common that the neighboring edges ¢’ € d(e) of e have much higher
ratios. Moreover, performance of e is negatively affected by that
of d(e). Thus we can improve the performance of e by attenuating
those ¢’ € d(e) and in turn improve the overall competitive ratio.
In each online round when a vertex v arrives, we need to probe at
most ¢, neighbors sequentially until v is matched. This is essentially
an offline stochastic matching problem studied in [7] on a star graph
G(v), which consists of v and its safe neighbors. In our case, assume
we have a black box, which is an LP-based algorithm solving an



offline stochastic matching problem with timeouts on a general star
graph. Each online framework takes as an input a black box with
a designated property and outputs an online algorithm. The final
competitive ratio is jointly determined by the online framework
itself and the input black box (see Theorems 3.2, 3.3, 3.4, 3.5).

The idea of edge-attenuation, first proposed in [1], aims to bal-
ance the performance of all edges. Suppose our black box guar-
antees each edge e will be probed with probability at least a fe,
where « is some constant and f, is the value assigned by an LP.
Edge-attenuation will guarantee each edge is probed with prob-
ability equal to af.. If we know the black box probes e with
probability a’ fe > @ fe, we can achieve our goal by setting a prob-
ability 1 — /@’ with which we “pretend” to probe e, but don’t
actually probe it. Unfortunately, the exact value of @’ is hard to find
since it is jointly determined by lots of inherent randomness from
the algorithm and input itself. Therefore, we resort to simulation
for a good estimation, e.g., simulating the algorithm on the input
instance many times and taking the sample mean as an estimation
of @’. Simulation-based attenuation has been used before to attack
stochastic knapsack problem [24] and offline stochastic matching
[1]. As shown there, we can ensure that the simulation errors add
up to give at most an additive factor of € in the final ratio.

Our novel vertex-attenuation approach, applies a similar idea to
the offline vertices. Notice that the star graph around an arriving
vertex v will be smaller in later rounds as the offline neighbors of v
have been matched in earlier rounds. Intuitively, each edge in this
smaller graph has less competition and therefore a greater chance
to be probed. Since the probability of being matched in a previous
round can differ greatly among offline vertices, we apply attenuation
to the offline vertices to bound these probabilities in our analysis.

QOur Contributions: One of our main contributions is a general
framework for solving the Online Stochastic Matching with Time-
outs problem which gives rise to a class of algorithms. Notably,
we decouple the offline subproblem of which edges to probe when
a vertex arrives from the online problem of handling a series of
arrivals in a balanced way.

The offline subproblem addressed in Section 2 takes as input a
stochastic star graph and an LP solution on that graph. The output is
a probing strategy which preserves the LP values up to some factor
in expectation. Our framework allows the offline subproblem to be
solved by any black box algorithm provided it satisfies one of three
basic properties described in Section 3. Thus, any new algorithm
for this subproblem can easily be plugged into our overall analysis.

In Section 2, we suggest one such new offline algorithm which
shows a novel way to perform the rounding procedure of Gandhi
et al. [18] on stochastic star graphs. For clarity, we will denote
the rounding procedure of Gandhi er al. with the acronym GKPS.
We believe this technique is of independent interest as it appears
to be the best known algorithm for solving the offline stochastic
matching with timeouts problem on a star graph. We achieve an
approximation ratio of 0.56 for this problem while the previous best
achieved by [1] is 0.5 and no algorithm using LP (1.1) can perform
better than 0.632 (See Section 4). This work may also give insight
into better rounding schemes for more general classes of stochastic
graphs.

For the online framework (Section 3), we bring tighter, cleaner
analysis to the edge-attenuation approach in [1] and generalize it to
work with a broad class of algorithms for the offline subproblem.
For example, [1] uses only the first arrival of each online vertex
type, discarding subsequent arrivals of the same type while we use
every arrival. We then present a new vertex-attenuation approach
which can be combined with edge-attenuation to achieve further
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improvement in the competitive ratio. The previous algorithm of
[1] gave a ratio of 0.24, while we almost double this to get 0.46.

Looking forward, we introduce the more general Online Stochas-
tic Matching with Two-sided Timeouts problem in Section 3.2. This
new problem is well-motivated from applications and theoretically
interesting. Using our framework, we give a constant factor 0.31-
competitive algorithm for this problem.

Finally, we show in Section 4 that no algorithm using the LP in this
paper and prior work can achieve a ratio better than 1 —1/e =~ 0.632.

2. OFFLINE BLACK BOX

The online process consists of n offline rounds. In each round, we
have an offline stochastic matching instance as studied in [7, 1] on a
star graph. Consider a single round at time ¢ : Let v be the arriving
vertex and G(v) be the star graph of v and its safe neighbors. For
ease of notation, we overload G(v) to denote both the set of edges
and the set of neighbors of v. Consider the following polytope:

Z Sfepe <1,

eeG(v)

D fe<ty, 0<fo<1¥eeG(y)

ecG(v)
2.1)

An offline black box is any algorithm that transfers any feasible
solution to the polytope 2.1 to a feasible probing strategy on G(v)
with a guaranteed performance for each edge. By a feasible prob-
ing strategy, we mean one that does not violate the matching and
patience constraints on v.

Now, we present two concrete examples of black boxes. Let
g = {fele € G(v)} be any given feasible solution to the polytope
(2.1). We will use g, to refer to the value of g for edge e.

Uniform Random Black Box: The Uniform Random Black Box,
denoted by BBy g, is a direct application of the algorithm in [7] to
the star graph G(v). To be consistent with the notation in [7], we
use GKPS to denote the dependent rounding techniques developed
in Gandhi et al [18].

Algorithm 1: BBy g

1 Apply GKPS [18] to G(v) where edge e is associated with a

value g.. Let G(v) be the set of edges that gets rounded;
2 Choose a random permutation 7 over G (v). Probe each edge

e € G’(v) in the order & until v is matched.

The performance of BBy g is presented in lemma 2.1. For each
givene € G(v),let Re g = Yo7 8e'De’-

Lemma 2.1. In BByR, each edge e will be safely probed with

;g 8e-

probability at most g, and at least (1 -

Proof. Each edge e can be probed only when e appears in G, which
occurs with probability g. according to GKPS [18]. Therefore, we
have that each edge e will be probed with probability at most g..
Consider an edge e. The random permutation order 7 can be
viewed as: each ¢’ uniformly draws a real number a,- from [0, 1] and
we sort all {a,/} in increasing order. Condition on a, = x € [0, 1]
and for each e’ # e, let X,/ be the indicator random variable that is
1if a.r < x (i.e., ¢’ falls before e in 7). For each e’, let Y., and Z,-
be the respective indicator random variables corresponding to the
event ¢’ being rounded and if e’ is present when probed. Let 1, be



the indicator for the event e is probed. Therefore we have

Prle is probed | ae = x, Y. = 1]

=E[lelae = x,Ye = 1] 2 E[1 = Y orze XerYer Zerlae = x,Ye = 1]
2 1—=x2erse 8e'Per =1 = XRe g

Thus we have
1
Pr[e is probed] = ge f Pr[e is probed | a. = x, Y, = 1]dx
0

2 ge(1 = Re,g/2) ]

Sorted Dependent Rounding Black Box: This black box, denoted
by BBsp R, introduces a new way to perform GKPS [18] rounding
on stochastic star graphs. This rounding is combined with the
probing strategy from [1] to achieve improved results for the offline
stochastic matching problem on star graphs.

Algorithms for matching problems on both stochastic and non-
stochastic graphs have relied heavily on GKPS as a subroutine [7, 1].
In GKPS, the edges rounded in each iteration are chosen arbitrarily.
Indeed, part of the beauty is that we are allowed to choose edges
arbitrarily. However, for matching problems on stochastic graphs,
we show that taking edge probabilities into account yields improved
results. While this work is limited to the star graph structure, we
believe the ideas can be extended to other graph structures in the
future. The key insight is that each iteration of GKPS [18] rounding
should choose two fractional edges with similar p, values since one
edge will be rounded up and the other rounded down. Intuitively, this
helps approximately preserve the constraint ), cg, gePe < 1. We
achieve this by rounding the two fractional edges with the largest
Ppe values in each iteration and modifying the input g, values to
balance the performance of edges with differing p. values.

To optimize our analysis, we partition the edges into three disjoint
sets based on their p, values: large, medium, and small. We denote
these sets Er, Ep, and Eg, respectively. The sets are separated
by two thresholds 77 and 75 € [0, 1] such that large edges have
De > T1., medium edges have 7g < p. < 91, and small edges have
Pe < 7s. When we optimize these thresholds for our analysis of all
cases, we set 77, = 2/3 and 75 = 1/4.

Our approach is summarized in Algorithm 2.

Algorithm 2: BBgpr

1 Sort the edges of G(v) in descending order of their p, values.
2 Compute I', the expected p, value of the first edge rounded to 1
if GKPS were applied to the edges in sorted order (i.e. always
rounding the two remaining edges with the largest p, values).
3 Modification step: If 7g < I" < 77, apply no modification.

Otherwise, if I' < 7g, set y = 1.15, let edges in Ey get
3

5
Iv=3=%

8e = ¥ge, and edges in Eg get g, = T ge. Finally, if

I'>7L,let Q =3.cE, g before modification and let edges
in E7 getge = ge/Q-

4 Apply GKPS [18] to the edges of G(v) in sorted order, where
edge e is associated with a value g.. Let G(v) be the set of
edges that gets rounded.

5 Choose a random permutation 7 over G(v) according to the
distribution in [1]. Probe each edge e € G(v) in the order 7
until v is matched.

The performance of BBgpg is presented in Lemma 2.2.

Lemma 2.2. In BBgpR, each edge e will be safely probed with
probability at least 0.56g,.

Proof. Throughout this section, we will say that an edge e has been
chosen by our rounding scheme if it’s LP value g, has been rounded
to 1 and not chosen if g, has been rounded to 0. Let £ be the set of
chosen edges after rounding a solution to LP (1.1) on a stochastic
star graph with a timeout #,, on the center vertex v. Similarly, let
5(e) be the subset of edges in E which share an endpoint with e.
Let A, = Eé\e[zfeé(e) 8rPf | 8e = 11. This is the expected sum
of the py values of all edges in the neighborhood of an edge e that
have been chosen, conditioned on the event that e has been chosen.
We assume the center v has a timeout ¢, > 2 since t,, = 1 is trivial.

Claim 2.3 restates a claim made as an intermediary step of the
proof of Lemma 2 in [1] using our A, notation.

Claim 2.3. For every edge e it holds that

Prle is safe | e € E] > 1

1 (1 (_(Ae + pe) 1 ))
— exp n
Ae + pe De L -pe

Proof. A detailed proof can be found in [1]. O

Note that when applying GKPS to a star graph, we can store the
edges in a sorted list and use Algorithm 3. This algorithm gives all
of the same guarantees as GKPS since we are allowed to select two
edges arbitrarily in every iteration of rounding a star graph.

Algorithm 3: GKPSg; 4,

1 Sort the edges in descending order of p, values.

2 Select the first two edges from the list. In other words, select
the two remaining fractional edges with the largest p, values.

3 Round one upward and the other downward according to the
rules of GKPS and remove any edge that has been rounded to 0
or 1 from the list.

4 Repeat until the list is empty and all edges have been rounded.

Let e be the first fractional edge which is chosen and let P; be a
random variable which is equal to p.,. LetI' = E[P;] and let E; be
a prefix of the initial sorted list of fractional edges which satisfies
the following property: At the end of the iteration in which e is
chosen, all edges in £1 must have been rounded to 0 or 1. Note that
e1 will be the only edge in £; which is rounded to 1. the rest will
be rounded to 0. We can now use I to tighten the bounds for edges
inboth E; and E \ E|.

Claim 2.4. Algorithm 3 followed by the AGM probing order guar-
antees the following for edge e;.

Prle; i e EVE(] 2
rle; is safe | eq 11> ST

Proof. Note that ¢; € EU E| by definition and immediately after e
is chosen, we have } . cp\E, gepe < 1—T. Therefore, Ao, < 1-T.

Then, we have
1 —(1-T+pe,) 1
1-T+pe, (1 - exp( Pe, S n 1=pe, ))

1 .. —
257 . worst case pe, = 1 ]

4

Prle;is safe] >

Claim 2.5. Algorithm 3 followed by the AGM probing order guar-
antees the following for edge e € E \ E|.

L - 1 -(1+D) 1
Prle is safe|e € E\ E{] > T (l—exp(Tlnﬁ))




Proof. We will upper bound both the A, and p, values appearing in
the function from Claim 2.3. First, A < 1, due to the LP matching
constraint 1.3 and the properties of GKPS. Second, p, < I for all
e € E\ Ej since our list of edges was sorted by p. values. Then,
the result follows by applying Claim 2.3. O

The modification step of Algorithm 2 defines three cases.
Casel: 7 <T < T,

We consider the edge sets £ N E (containing the single edge ¢;)
and £ \ Ej. In the former, I' > 75 = 1/4 and Claim 2.4 gives

1
>
3T 2 5o 2056

In the latter, p. < I' < 97 =2/3 and Claim 2.5 gives

Prle; issafe|e; € ENE(] >

Prle is safele e E\E|]

(1+71) 1
>t (1o () 2056
Case2: T < Tg
In this case, we have an modification factor ¢ = 1.15, which

we use to “help” Ep while not “hurting” Eg too much. In the
modification step, all edges in Ey get g¢ = Yge and all edges in

Eg get ge = ( vtvx
sure the patience constraint is not violated and A, remains small.
Note that I' < 7g = 1/4 implies }.ccr; gePe < 1/4 and therefore
DecE e < 3/8 since pe > Tp = 2/3 for e € Ep. Similarly,
YecEg 8¢ =ty — 1 (assuming WLOG that the LP patience con-
straint was tight). It follows that

“5v ) ge. After modification, we must make

DlecE 8¢ = YecEy 8¢ t YecEs 8¢ t 2ecEy 8e
3 ty
‘/’+8+(8—8¢)(tv— )

ty—
Also, note that for all e € E, A, < 3/4 + /4 which is again due to
the fact that 3o cg; gepe < 7s = 1/4. Finally, it is important that
fore € Er, yge < 1 assuring that g, will only be rounded to O or
1. From above, we know g, < 3/8 and therefore g, < 1.
We can now bound the ratios for edges in £, Eg, and Ep;.

=1y

Pr[e is safe| e € En Er]

_(3.¢
o1 (l—exp(—‘“::" b )

> 0.56 . worst case pe, = 1

For Eg, observe ( ;7_ lsw) is minimized for #,, > 2 at 0.943.

Prleissafe|e € EN Eg]
3,
(1o (5 )

For an edge e € E N Eyy, we first show that e must be in E; and
therefore A, < 1 —T < 1. To do so, we prove the stronger claim
that £ \ Eg C E; by showing that before modification

20.943(3 .
by

T tPe

> 0.56

I_Ze’eEM 8e’
v

This ensures that Y .cp, ¥8e + YercEy 8¢ < 1 and thus, E \
Eg C E;. Before modification, I' < 7g 1/4. So we have

ZeEEL 8e <
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DiecEy 8ePe + Die'eEyy 8e'Per < Ts and it follows that

T5—Ti Sereryy 8o
< 7
L

Ts—2e'cEp 8e'Pe’
Pe

I_Z("EEM 8e’

——

Then, since p, < 97 = 2/3, Claim 2.3 gives

ZeeEL 8e <

< v YereEy 8¢ € [0,1]

Pr[eis safe|e € En Enp]

1 -(1+91) 1
> 1- I > 0.
_1+7—L( exp( n )) > 0.56

TL 1-7L
Case 3: T > T,

Here, we use a different modification strategy to ensure £y = E|
and thus only one edge from £, will be chosen. LetQ = Y.k, ge
before modification In the modification step, all edges e € Ef
get ge = ge/Q. Then A, < 1 — TLQ since Y ock; gePe before
modification is at least 77, Q. Similar to Claim 2.4, we have

Prleis safe|e € ENEr]
> (&) atp: (1- o0 (F5220 )

1 (1-T.Q+p.) 1
2 (5) =7om: (1 ‘CXP( 7 In =2 ))

- Pe ~Pe
In the worst case, Q = 1/97, and p = 1, yielding a final ratio of 2/3.
The analysis for e € E\ Ep, uses p, < 77, and Claim 2.3 to get

Prleissafe|e € E\ Er] > 1+,]_ (1—e p( (HT’)IHI .7_L))
> 0.56

This concludes the proof of Lemma 2.2.

3. ATTENUATION FRAMEWORK FOR
ONLINE MATCHING WITH TIMEOUTS

The main idea of our attenuation framework is to decouple the
offline and online subproblems. The offline problem is what to do
with an arriving vertex once it has arrived and we must choose which
edges to probe. This is handled by a black box offline algorithm.
The black box is only restricted by one of the three properties listed
below. The online problem is how to manage a series of arrivals
and that is the primary focus of this section.

We will begin in Section 3 by defining some desirable properties
of an offline black box and showing which of those properties are
satisfied by the two black boxes proposed in this paper. Section 3.1
describes the main attenuation techniques applied during the online
phase. Finally, Section 3.2 will introduce a more general model
with timeouts on both online and offline vertices and show how to
extend our results to this model.

Throughout this section, we assume that through simulations we
can always get an accurate estimation of our target probabilities. As
shown in [1, 24], we can manipulate the simulation error properly
such that we lose at most an additive factor of € in the final ratio.

The three properties of a black box: Property A states that the
black box BB is guaranteed to probe each edge with probability at
least ag. for some constant @ € (0, 1). It gives a lower bound on
the performance of each edge without any further restrictions on the
black box. More formally:

Property A: For any feasible solution g to LP (2.1), BB out-
puts a feasible probing strategy BB|g] such that every edge e will
be probed with probability at least age for some constant @ € (0, 1).



For Properties B and C, recall that Re,g = 3l¢/z¢ 8e'Per and
this value expresses the amount of competition e will face from its
neighbors. These two properties both add the restriction that the
probability of probing a given edge will be a function of both g,
and Re g. This allows us to take advantage of the fact that R, g
may decrease as the number of arrivals increases. The conditions
of non-increasing and convexity on the function Rgg are required to
ensure that the offline ratio of BB can be used to bound the overall
competitive ratio. The condition of finitely bounded first derivative
guarantees that the error accumulated from simulation is bounded.

Property B: For any feasible g to LP (2.1), BB outputs a feasible
probing strategy BB|g] such that each edge e is probed with prob-
ability at least geRpg[Re,g], where Rgg is a non-increasing and
convex function and has finitely bounded first derivative on [0, 1].

Property C adds a further restriction that each edge is probed with
probability at most ge .

Property C: For any feasible g to LP (2.1), BB outputs a fea-
sible probing strategy BB|g] such that every edge e is probed with
probability at most g and at least g.Rpp[Re,gl, where Rpg is a
non-increasing and convex function and has finitely bounded first
derivative on [0, 1].

Observation 3.1. For any BB satisfying Property B or Property C
with Rgg, we have Rgglx] < Rggl0] < 1 for all x € [0, 1].

The fact that Rgg[0] < 1 can be seen from this example: consider
the graph G(v) which has exactly one edge e = (u,v). Clearly,
ge = 11is a feasible solution to LP (2.1). Then, BB[g] will probe e
with probability at least Rgg[0]g. = Rgg[0], implying Rgg[0] < 1.

We note that our first black box BBy g satisfies all three proper-
ties. However, our second BBgp g only satisfies Property A.

3.1 Attenuation

Our black box properties give us lower bounds on the probability
that an edge or vertex will be matched at any given time during
the online phase. Attenuation allows us to make those bounds
tight by reducing the performance of any edge or vertex which is
exceeding the lower bound. The intuition is that weakening the
over-performing edges will increase the performance of the lowest
performing edges that provide the worst case competitive ratio.

We define three distinct attenuation frameworks: edge attenu-
ation which requires an offline black box satisfying Property A,
vertex-attenuation which requires a black box satisfying Property
C, and edge and vertex-attenuation which requires an offline black
box satisfying Property B. The edge-attenuation framework gener-
alizes and clarifies the edge-attenuation approach of [1]. We also
give an improved result due to tighter analysis and a more powerful
black box. Vertex-attenuation is a novel approach introduced in this
paper that upper bounds the probability that a vertex in U will be
safe at time 7. This lets us to exploit the fact that the star graph
G(v) will be smaller in later rounds leading to a higher probability
of safely probing each of the remaining edges. It can be combined
with edge-attenuation to get the best known result for this problem.

Let f = {fc|e € E} be an optimal solution to the LP (1.1). Let
v be the vertex arriving at time ¢ € [n] and G; (v) be the star graph
consisting of v and its safe neighbors. Throughout this section we
assume f; ,, = {fele € G,(v)}, which is a feasible solution to the
LP (2.1) on G; (v).

Edge-attenuation: The most basic form of attenuation we consider
is edge attenuation. Suppose we are given a black box BB satisfying
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Property A and guaranteeing that each edge is probed with prob-
ability at least age. This attenuation will guarantee that in each
offline subproblem, each edge is probed with probability equal to
age.-

From Property A, we know that BBI[f; ] will probe each edge e
with probability at least a f.. In this framework, we maintain that
each safe edge e is probed with probability exactly equal to a fe in
all rounds via appropriate edge-attenuation. Algorithm 4 gives a
formal description of the algorithm.

Algorithm 4: ATTN;[BB]

1 For eacht € [n], let v be the vertex arriving at time ¢ and G (v)
be the graph consisting of v and its safe neighbors.

2 Letf;, = {fele € G;(v)} be the induced feasible solution to
LP (2.1).

3 Apply BBIf;,, ] and simulation-based edge-attenuation (see
Sec. 1.1) to G¢(v), such that each e is probed with probability
exactly equal to « fe.

Theorem 3.2. For any BB satisfying Property A, ATTN|[BB] has

an online competitive ratio of 1 — e~ .

Proof. Consider an edge e = (u,v) and let Fyy = Y..ch(u) fePe-
From Algorithm 4, we know that during any round ¢ € [n], u will be
matched with probability exactly equal to a F,, /n(conditioned on u
being safe at the beginning of round ¢). Therefore u will be safe at
t with probability equal to (1 — aF, /n)* =1, Thus we have

1 aF,\1
t=1 wfe (1 T )
> fe(1=(1=2)") > fe(l—e™®)
We claim that after incorporating the simulation error as shown
in Section 1.1, we can get a ratio of 1 — (1 —a/n)" — € for any given

€. Thus by setting € = ¢™ — (1 — a/n)" = O(1/n), we get the
result in theorem 3.2. |

Pr[e is probed] =

Notice that BBy g and BBg p g satisfy Property A with o = 1/2
and o = 0.56, respectively. Plugging those values into the above
theorem, we get ratios of 0.3934 and 0.4287, respectively.

Corallary 3.1. When combined with BBy g and BBspRr, the first
framework will yield an algorithm which achieves a competitive
ratio of 0.3934 and 0.4287, respectively, for the Online Stochastic
Matching with Timeouts problem.

Although this approach does not give our best result, we note
that it places fewer restrictions on the black box than the other ap-
proaches presented in this paper. Thus, developing a stronger black
box satisfying only Property A could lead to the edge-attenuation
framework yielding the best result for this problem in the future.

Vertex-attenuation: Applying vertex-attenuation without any edge-
attenuation requires an offline black box BB satisfying our most
strict property, Property C. Here is the intuition behind vertex-
attenuation. Notice that over time, the offline vertices in U will
be matched and therefore removed from the graph. Suppose we
apply BBIf;,] to G;(v) on each round ¢ when v arrives. Thus
when 7 gets larger and G (v) gets smaller, R, ¢, , will decrease for
each safe edge e = (u,v). This means the lower bound on probing
an edge, feRggl[Re,f, ], will increase with time. We can think
of previous approaches to this problem as using a weak bound of
Ref,, < 1. Vertex-attenuation lets us take advantage of Ry,



decreasing by guaranteeing that every offline node is safe with a

uniformly decreasing probability at the start of each round ¢.
Consider a specific round # when v comes. Let S, ; be the event

that u is safe at # for each u € U. We have the below Lemma 3.1.

Lemma 3.1. Suppose we apply BBIf, ;] to G¢(v) during each
round t when v arrives. Then for each round t € [n], we have (1)

Pr{Su,i] 2 Pr[Sy, - 11(1-1/n) and (2) Pr(Su,: ASu, 1 1Su, -1, Sw 1

Pr[Su,t |Su,t—l] Pr[Su’,t |Su’, 11

Proof. First, we show the proof of inequality (1). Assume u is
safe at (the beginning of) # — 1. Notice that in the round ¢ — 1,
every edge e € d(u) will be matched with probability at most f, pe.
Therefore, we have that u will be matched in round ¢ — 1 with
probability at most 1 — Fy, /n, where Fyy = Y. cg(u) fePe- Thus we
have Pr[S,, (] > Pr[S,, ;—11(1 = F, /n) 2 Pt[S,, ;—11(1 = 1/n).
Now we show the proof of inequality (2). Assume both u and u’
are safe at time # — 1. Consider the round 7 — 1 and assume each edge
e is probed with probability e, f. with a, € [0,1]. Notice that
Pr[Sy.: A Su’,tlsu,t—lssu’,t—l] =1- Zeei)(u)uﬁ(u’) Sfepeae/n
and Pr[Sy, ¢ 1Sy, ;1] = I_Zeeﬁ(u) fepeae /n, PrlSy ¢Sy 1] =
1 =Y ecow’) fePee /n. Therefore we get the inequality (2), since
d(u) and d(u’) are disjoint. O

Lemma 3.1 implies that adding vertex-attenuation independently
to every offline u at the start of each round ¢ € [n] ensures every u is
safe at time  with probability equal to (1-1/n)'~!. Additionally, for
two vertices u and u’, this event is negatively correlated. Algorithm
5 describes this online framework, denoted by ATTN,.

Algorithm 5: ATTN,[BB]

1 Foreacht € [n], let v be the vertex arriving at time ¢ and G (v)
be the star graph consisting of v and its safe neighbors.
Compute and add attenuation factors to each offline « such that

each u is safe at time ¢ with probability equal to (1 — 1/n)*~1.
Letf;,v = {fele € G¢(v)} be the induced feasible solution to
LP (2.1) and BBIf;,, ] be the feasible probing strategy of BB.
Apply BB[f;,,] to G+ (v).

Theorem 3.3. For any BB satisfying Property C with function Rgg,
ATTN,[BB] has a competitive ratio of fol e *Rpgle *]dx — €.

Proof. Consider a single edge e = (u,v). Let A, ; be the event
that e is effectively probed during round ¢, i.e., v comes at #, u
is safe, and e is probed. Let S, ; be the event that u is safe at
(the beginning of) #, i.e., e € G;(v). From ATTN,, we have that
Pr{Su,1= (1 -1/n)""" and Pr[S,;1Su.;] < (1 = 1/n)" "1, Letv
be the vertex arriving at 7. Recall that Ry, ,, is the sum of fe'per
over all edges in G;(v) excluding e itself. Therefore, we have
E[Ref, , |Su,:] < (1- 1/n)'~1. Thus, from Property C, we have

Pr{Ae,1] > (fe/n) PrlSu,: 1 E[Rgg[Re.f, , 1]
> (fe/n)(1 = 1/n)' ~'Regl[ElRe.f, , 1]
> (fe/m)(1 = 1/n)"'Regl(1 - 1/m)' "]
and (The right-most equality below is obtained by letting n — o),
Pr{e is probed] = X, Pr[Ac /]
> 3y L1 - ) Resl(1 - 1)1 = [y e Rgple™ Jdx

Incorporating simulation errors (see Sec. 1.1), we get an online

ratio of fol e *Rpgle *]dx — € for any given € > 0. O

1=
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Plugging the BBy g function Rgg,, ; [x] = 1 —x/2 into the above
formula, we get a ratio of 0.4159.

Corallary 3.2. The second framework combined with BBy g yields
an algorithm, which achieves a competitive ratio of 0.4159 for the
Online Stochastic Matching with Timeouts problem.

Edge and Vertex-attenuation Combined: Our final and cur-
rently most powerful framework combines both edge and vertex-
attenuation. Notice that by design, edge-attenuation upper bounds
the probability an edge will be probed in an offline step. Therefore,
our black box only needs to satisfy Property B which is slightly
less restrictive than Property C.

At the start of each round #, let every u be safe with a target
probability equal to y; € [0, 1]. From Property B, we have that
each safe edge e = (u, v) is probed during round ¢ with probability at
least foa;, where a; = E[Rgg[Re.f, , 11 > Regly:] (same analysis
as Theorem 3.3). Using edge-attenuation, each safe edge e is probed
with probability equal to Rgg[ys]fe. Consequently, each safe u
at time ¢ will remain safe at # + 1 with probability at least 1 —
Regly:]/n. Through vertex-attenuation, each u remains safe at 7 + 1
with probability equal to y;41 = y:(1 — Rggly:]/n). Thus, we
ensure each edge is probed with a uniformly increasing ratio and
every oftline node is safe with a uniformly decreasing probability.
Algorithm 6 describes this online framework denoted ATTN3.

Algorithm 6: ATTN3[BB]

For time steps 1,2,...,7do

2 Let each u be safe with probability equal to y;.

Let v arrive at time ¢ and G (v) be the graph of v and its safe
neighbors. Let f; ,, be the feasible solution to LP (2.1).
Apply BBI[f;,, ] and edge-attenuation to G, (v) such that each
edge e is probed with probability equal to @, f., where

a; = Rgglyr].

Apply vertex-attenuation to each u such that each u is safe at
time # + 1 with probability equal to y;.1 = y: (1 — a;/n).

—

We can express a recurrence relation for (y;, @;) as follows.

n=1 o =Reslvl; vu=v(1-%) G
Theorem 3.4. For any BB satisfying Property B, ATTN3[BB] has
an online competitive ratio of (1 — h(1) — €), where h is the unique
function satisfying h’ = —hRgg[h] with boundary condition h(0) =
1. Here, h' represents the first-order derivative of function h.

Proof. Consider an edge e = (u, v). It will be probed with probabil-
ity equal to f, ?:1 7% From Observation 3.1, Rgg[x] € [0, 1]
for all x € [0, 1]. From Property B and Equation (3.1), we know
that {a } is an increasing sequence and {y; } is a decreasing sequence
withy; > 1/e and a; < Rgg[1/e] for all ¢.
Define a function 4 : [0, 1] — [0, 1] such that A((r — 1)/n) = y;
for all t € [n]. Thus we have 4(0) = 1. Equation (3.1) implies that
MU= =D~ (= 1) myPesth(a = m)

Letting x = (t—1)/n and the above equation yields At l/m—hx)

—h(x)Rpgl/(x)]. Now letting n — oo, we can see that i satisfies
the differential equation h’ = —hRgg[/4] with boundary condition
h(0) = 1.

Given h, we have

Qe = Lyn (e - 1)/n)Reslh((t - 1)/n)]
= [} h(ORea[h(x)1dx = h(0) - h(1) = 1 - h(1)

n
t=1



Simulation error subtracts at most O(e) in the final ratio (see
Sec. 1.1). Hence, this completes the proof of the theorem. O

BBy g satisfies Property B with Rgg,, . [x] = 1 — x/2. Plugging
ReB,, x into the above theorem, we get h(x) = 2/(1 + ¢*), which
implies ATTN3[BBy g ] has an online ratio of 1 — 4(1) —e > 0.4621.

Corallary 3.3. The third framework combined with BBy g vyields
an algorithm, which achieves a competitive ratio of 0.4621 for the
Online Stochastic Matching with Timeouts problem.

3.2 Extensions to a More General Model

The online attenuation framework combined with an offline black
box can be extended to more general models. In this section, we
give an example by showing how the first attenuation framework
together with an offline black box BB satisfying Property A can
be used for the generalization of Stochastic Matching with timeouts
on both offline and online vertices. We do believe the other two
frameworks can be used to attack the generalized model as well.

In this model, in addition to our previous setting each offline
vertex u has a timeout constraint of #,,, i.e., each u can be probed
at most ¢, times over the n rounds. Hence, the constraint 1.4 in LP
(1.1) is a valid constraint in the benchmark.

Theorem 3.5. Forany BB satisfying Property A with o, ATTN;[BB]
has an online competitive ratio of ae™® — € for the Online Stochastic
Matching with Two-sided Timeouts problem.

Recall that S, ; is the probability that u is safe at time ¢. In this
new setting, u is safe if u is not matched and the timeout of u has not
been exhausted. The lemma 3.2 gives a lower bound on Pr[S,, ;]
when we apply ATTN;[BB] using any BB satisfying Property A
with .

Lemma 3.2.

PI‘[Su,t] > (1- %)l—l(l _ a(zn_l))

Proof. Consider a node u. For each e € d(u) and each t’ € [n],
let X, be the indicator for the event: e comes at t’; ¥, ;» be the
indicator for the event : e is probed when e comes at t’; Z, ;» be
the indicator for the event: e is present when probed. Notice that
{Xe,t's Ye, 17, Ze, 1} are all independent for each given (7', e).

Let S,i’t be the event that u is not matched at time ¢ and Sit be
the event that u is probed at most #,, — 1 at the beginning of time
t. Define A to be the event that Z;,_:ll Yecow) Xe,iYe ' Zeyr =0
and A, to be the event that Z;,’:ll Yeecow) Xe,pYe,r <ty — L.
Observe that Pr[S,i’t N Sz%,z] > Pr[A; A Ap]. Let us now lower
bound the value of Pr[A| A Aj].

Recall that Fy, = Y.ep(u) fepe. For each given t' < t, we
know that Pr(}cco(u) Xe,t'Ye,t' Ze,r» =01 = 1 —aFy/n > 1-a/n.
Therefore we have Pr[A;] > (1 — a/n)? -1, Notice that for each
givent’ <1,

E[Ze €d(u) Xe,t’Ye,t’lAl]
= E[Zea(u) XL’,I’Ye,t’l Zeea(u) Xe,t’Ye,t’Ze,t' =0]
= Zeea(u) Pr[Xe,pr =Ye,r = 1|Ze€6(u) Xe,v'Ye,tZe,tr = 0]

afe(1-pe)/n
1-aF,/n

a(ty—F,)/n
l1-aF,/n

= Yeedu)

aty
n

<

<
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Thus we get BIX!, | Seeaw) Xe,rYe,rr|A1]l < %t (1—1), which
implies that Pr{A|A(] > (1 — & (¢ - 1)). Therefore
a ;_ at —a
Pr[Sy,¢] = Pr[S)  AS2 ;1> Pr{A| AAy] > (1= 1(1—T>
[m]

Let us now prove Theorem 3.5.

Proof. The proof is very similar to that of Theorem 3.2. Consider
a single edge e = (1, v), we have

. t—1 _ _
Pr[e is probed] > Z?:l %ozfe (l - %) (1- %) > feae™@
]

Plugging BBgsp g with @ = 0.56, we get a ratio of 0.3198 for this
generalized model.

Corallary 3.4. The first framework combined with BBspR yields
an algorithm, which achieves a competitive ratio of 0.3198 for the
Online Stochastic Matching with Two-sided Timeouts problem.

4. LOWER BOUND TO BENCHMARK LP

Here, we present an unconditional lower bound for this LP due
to the stochasticity of the problem. We call this lower bound a
stochasticity gap, similar to the concept of an integrality gap.

Consider a complete bipartite graph with |U| = |V| = n. Let the
edge probabilities p, for all edges be 1/n and the rewards w, be 1.
Let the patience values for all vertices be n. Notice that assigning
fe = 1 for every edge is a feasible solution to LP 1.1. Hence, the
optimal LP value is at least n. However, we will show that any
online algorithm cannot perform better than (1 — 1/e)n. Therefore,
the stochasticity gap for this LP is at least (1 — 1/e) = 0.63.

Consider any vertex u € U. We have the following:

Pr[u is matched] = 1 — Pr[/\;‘:] u is not matched at 7] “.1)
=1- ?:1 Pr[u was not matched att]  (4.2)
<T-T17, (1= 4 x4 xn) 4.3)
<1-1/e-o(l) @.4)

Step 4.2 is due to independence. Step 4.3 uses union bound,
Pe = 1/n, and probability 1/n for each v to be drawn. Using union
bound over all u € U, no algorithm can do better than (1 — 1/e)n.

5. CONCLUSION/FUTURE DIRECTIONS

We gave a general framework for the Online Stochastic Matching
with Timeouts problem and its extension. This led to improved
competitive ratios for the former and first constant factor ratio for
the latter. More importantly, the frameworks are general enough
to obtain further improvements by simply finding a better black
box for the offline problem on star graphs. One future direction is
to increase the competitive ratio by designing better black boxes.
In particular, can we obtain a ratio of at least 0.5? For example,
an adaptation of the second black box, BBgpgr from Section 2,
to meet Property B from Section 3 would likely accomplish this
goal. Another future direction is to design similar framework(s)
for the various other online stochastic matching problems, such as
b-matching. We believe these frameworks have the potential to give
aunified framework for many of the stochastic matching problems.
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