
A Succinct Language for Dynamic Epistemic Logic

Tristan Charrier
IRISA

263 Avenue du General Leclerc - CS 74205
35042 Rennes Cedex, France
tristan.charrier@irisa.fr

Francois Schwarzentruber
ENS Rennes

Avenue Robert Schuman
35170 Bruz, France

francois.schwarzentruber@ens-rennes.fr

ABSTRACT
Dynamic epistemic logic (DEL) is an extension of modal
multi-agent epistemic logic with dynamic operators. We
propose a succinct version of DEL where Kripke models
and event models are described succinctly. Our proposal re-
lies on Dynamic logic of propositional assignments (DLPA):
epistemic relations are described with so-called accessibility
programs written in DLPA. We give examples of models that
are exponentially more succinct in our framework. Interest-
ingly, the model checking of DEL is PSPACE-complete and
we show that it remains in PSPACE for the succinct ver-
sion.

Keywords
Dynamic epistemic logic, propositional assignment, model
checking, succinctness, complexity.

1. INTRODUCTION
Agents take decisions according to their knowledge about

the world and their knowledge about other agents’ knowl-
edge (higher-order knowledge). Dynamic epistemic logic
([4], [16]) is a framework designed for expressing higher-
order knowledge properties and dynamics.

Actions in dynamic epistemic logic are described by means
of graphs called event models. Specific kinds of actions have
been considered in the literature For instance, public an-
nouncements are represented by single-node event models.

Attention-based announcements [7] where some agents may
listen to the source or not can be represented too by event
models, but their sizes are exponential in the number of
agents in the system.

However, we claim that this exponential blow-up in the
representation is artificial and that is why we address suc-
cinctness in dynamic epistemic logic.

Usually, if the description language is (exponentially) more
succinct, algorithmic problems become (exponentially) harder.
For instance, deciding the existence of an Hamiltonian cycle
is NP-complete but it becomes NEXPTIME-complete [13]
when the input graph is described succinctly. A succinct
representation of a graph with 2b nodes is a Boolean circuit

C such that there is an edge (i, j) ∈
{

0, . . . , 2b − 1
}2

iff C

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

accepts the binary representations of the b-bit integers i, j
as inputs.

In dynamic epistemic logic, the results are surprising.
Whereas the model checking of DEL is PSPACE-complete
[1], we would expect that the succinct version of the model
checking is EXPSPACE-complete. Actually, we provide a
framework where the representation of actions such as
attention-based announcements is exponentially more suc-
cinct whereas the model checking remains in PSPACE.

In our framework, we do not use Boolean circuits tra-
ditionally used for representing instances for succinct de-
cision problems (see [13], Chapter 20.1) but accessibility
programs based on Dynamic Logic of Propositional Assign-
ments (DLPA) ([3], [2]) as developed in [11], where they were
called mental programs. The reason of that choice is that
our model checking algorithm directly relies on DLPA. It ex-
tends the language of Van Benthem et al. [14] by including
DLPA programs and postconditions for event models.

After having recalled some background on Dynamic epis-
temic logic in Section 2, the main contribution is to provide
a succinct version of DEL in Section 3: we provide succinct
models for DEL, prove that DEL can be embedded in suc-
cinct DEL (and vice versa), and prove that succinct DEL
is exponentially more succinct than DEL. The succinctness
of succinct Kripke models is rather easy to prove but the
proof of the succinctness of succinct event models relies on
the definition of action emulations [18]. In Section 4, we
prove that the model checking problem in succinct DEL is
(still) in PSPACE. More details may be found in [12].

2. BACKGROUND ON DEL
We first start by some notations about valuations, then

present Dynamic epistemic logic (DEL). Let AP be a finite
set of atomic propositions and Ag be a finite set of agents.

2.1 Valuations
The set of valuations over AP is denoted by V(AP). Valu-

ations are denoted w, u, . . . and they are represented by the
set of true atomic propositions. The restriction of w to a
subset of propositions AP ′ is w ∩ AP ′ and is noted w|AP′ .
For any valuation w over AP , we note desc(w) the formula∧
p∈w p ∧

∧
p∈AP\w ¬p that describes the valuation w (AP is

made implicit for simplifying the notation). For a set AP , we

note ∃!(AP) the formula
∨
p∈AP

(
p ∧

∧
q∈AP|q 6=p ¬q

)
. The

size of a valuation defined over AP is the cardinal of AP ,
noted |AP | (we implement such a valuation by a bit array
of size AP).

123

w : {p} u : ∅
a, b

a, b a, b

Figure 1: Example of an epistemic model

2.2 Epistemic models
Kripke models represent static epistemic situations and

are defined as follows.

Definition 1. A Kripke model M = (W, (→a)a∈Ag, V)
is defined by a non-empty set W of epistemic states/worlds,
epistemic relations (→a)a∈Ag ⊆ W × W and a valuation
function V : W → 2AP .

Typically, W represent all possible configurations. V is a
labeling for the states for describing the configuration. The
intuitive meaning of w →a u is that agent a considers state
u as possible when the actual state is w. We do not require
→a to be an equivalence relation. The size of a Kripke model
M is implemented by a labeled graph and each relation →a

is represented by an adjacency list. The size of M is thus
O(|Ag| × |W |2 + |W | × |AP |).

Example 1. Figure 1 depicts the model
M = (W, (→a)a∈Ag, V) given by W = {w, u},
→a=→b= W × W , V (w) = {p} and V (u) = ∅. Agents
a and b do not distinguish w from u, therefore they do not
know the truth value of p (in both w and u).

Example 2. We consider the extension of the classical
muddy children puzzle [15] where children may pay atten-
tion to the father or not (as in [7]). We introduce atomic
proposition ma meaning that a is muddy and atomic propo-
sition ha meaning that agent a hears (i.e. pays attention
to) the announcements of the father. We consider the model
M = (W, (→a)a∈Ag, V) where W = V({ma, ha | a ∈ Ag}),
w →a u if (w |= ha iff u |= ha) and for all b 6= a
(w |= mb iff u |= mb), and V (w) = w for all w ∈W .

In M , an agent a will not distinguish two worlds w from u

as long he sees the same forehead states for the other agents
and his pay attention status is the same in both worlds.

A Kripke model represents the state of mind of agents. A
pointed Kripke model is a pair (M,w) with w ∈W , model-
ing the fact that the current epistemic state is w.

2.3 Syntax of epistemic language
The language LEL extends the propositional language

LProp with modal operators Ka and is defined by the fol-
lowing BNF: ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ, with
p ∈ AP , a ∈ Ag. The formula Kaϕ is read “agent a knows
that ϕ holds”. We define the usual abbreviations (ϕ1 ∧ ϕ2)

for ¬(¬ϕ1 ∨¬ϕ2) and K̂aϕ for ¬Ka¬ϕ. The size of ϕ is the
number of operators needed to write ϕ.

2.4 Event models
The dynamics of the system is modeled by event models.

Definition 2. An event model E = (E, (→Ea)a∈Ag, pre,
post) is defined by a non-empty set of events E, epistemic
relations (→Ea)a∈Ag ⊆ E × E, a precondition function pre :
E → LEL and a postcondition function post : E × AP →
LProp.

e :
pre : p
post : p ← ⊥ f :

pre : >
post : /

b

a a, b

Figure 2: Example of an event model

The precondition function defines whether a given event
is executable or not. The postcondition updates the values
of atomic propositions after executing an event e: the truth
of p is assigned to the value post(e, p).

Remark 1. Some authors ([17]) consider epistemic post-
condition functions post : E × AP → LEL. Actually, it is
always possible to compute an equivalent event model with
a propositional postcondition function from an event model
with an epistemic postcondition function. Such a trans-
formation is given in [17] but is exponential. Fortunately,
there exists a polynomial alternative transformation where
an event model with epistemic postcondition functions is
transformed into a sequence of event models with proposi-
tional postcondition functions1.

A event model is without postconditions (i.e. it does not
change physically the current state) when post(e, p) = p for
all e ∈ E and all atomic propositions p, that is when post is
trivial. In that case, we usually omit the post function and
we write E = (E, (→Ea)a∈Ag, pre).

We introduce the notation e ∈ E for e ∈ E. A pointed
event model is a pair (E , e) with e ∈ E. A multi-pointed
event model is a pair (E , E0) with E0 ⊆ E. The size of E is
similarly defined than the size of a Kripke model.

Example 3. Figure 2 shows the event model
E = (E, (→Ea)a∈Ag, pre, post) where E = {e, f},
→Ea= {(e, e), (f, f)}, →Eb= {(f, f), (e, f)}, pre(e) = p,
pre(f) = >, post(e, p) = ⊥ and post(f, p) = p.

Example 4. We focus on the notion of attention-based
announcement of p as shown in [7]. In addition to clas-
sic atomic propositions, we add propositions ha for “agent a
is listening to the announcement”. The attention-based an-
nouncement of p can be then represented by the event model
E = (E, (→Ea)a∈Ag, pre) where:

• E = V({p} ∪ {ha | a ∈ Ag}) ∪ {idle};
• for all a, e→Ea f if e 6= idle, f 6= idle, e |= ha, f |= p;
e→Ea idle if e 6= idle and e 6|= ha; idle→Ea idle;
• pre(e) = desc(e) if e 6= idle,> otherwise.

Figure 4 shows the event model of the attention-based an-
nouncement of p for two agents a1 and a2.

Event idle is the event where nothing happens. The rela-
tion →Ea is defined as follows: if a is listening (e |= ha) then
a believes that p has been announced (f |= p). If a is not
listening (e 6|= ha) then a believes nothing happens. The pre-
condition is defined to match the fact that attentive agents
listen to the announcement of p (thus leading to events where
p holds) and that other agents believe that nothing happened
(thus the > precondition on idle). The announcement is
purely epistemic so the postcondition function is trivial.

1The proof of this claim is in [12].

124

(w, e) : ∅

(w, f) : {p} (u, f) : ∅

b
b

a

a, ba, b

a, b

Figure 3: Example of a product

2.5 Product
The update of a Kripke model M with an event model E

is defined by the synchronous product of both models, noted
M ⊗ E , and defined as follows.

Definition 3. Let M = (W, (→a)a∈Ag, V) be a Kripke
model. Let E = (E, (→Ea)a∈Ag, pre, post) be an event model.
The product of M and E is M⊗E = (W ′, (→a)′, V ′) where:

• W ′ = {(w, e) ∈W × E |M,w |= pre(e)};
• (w, e)→′a (w′, e′) iff w →a w

′ and e→Ea e′;
• V ′((w, e)) = {p ∈ AP |M,w |= post(e, p)}.

Example 5. Figure 3 shows the product of the Kripke
model of Figure 1 and the event model of Figure 2.

2.6 Syntax
The language LDEL extends LEL and is defined by the

following BNF.

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | 〈E , E0〉ϕ

with p ∈ AP , a ∈ Ag. Formula 〈E , E0〉ϕ is read “There
exists an execution of (E , E0) such that ϕ holds”.

2.7 Semantics
We now define the semantics of a formula ϕ of LDEL.

Definition 4. We define M,w |= ϕ (ϕ is true in the
pointed Kripke model M,w) by induction on ϕ:

• M,w |= p iff p ∈ V (w); M,w |= ¬ϕ iff M, w 6|= ϕ;

• M,w |= (ϕ ∨ ψ) iff M,w |= ϕ or M,w |= ψ;

• M,w |= Kaϕ iff for all u ∈W ,

w →a u implies M,u |= ϕ;

• M,w |= 〈E , E0〉ϕ iff there exists e ∈ E0 s.th.

M,w |= pre(e) and M ⊗ E , (w, e) |= ϕ.

Example 6. We consider the Kripke model M of Figure
1 and the event model of Figure 2. As p 6∈ V (u) and w →a u,
we have M,w |= ¬Kap. As ¬p holds in all →a-successors of
(w, e) (Figure 3), M ⊗ E , (w, e) |= Ka¬p, we have M,w |=
〈E , {e}〉Ka¬p.

2.8 Bisimulation and equivalence
We define notions of equivalence for models.

2.8.1 Bisimulations for Kripke models
The usual notion of equivalence for Kripke models is bisim-

ulation.

Definition 5. Let AP be a finite set of atomic proposi-
tions, M = (W, (→a)a∈Ag, V) and M ′ = (W ′, (→′a)a∈Ag, V

′)
be two Kripke models. A relation B ⊆ W ×W ′ is a AP-
bisimulation between M and M ′ iff for all w ∈ W,w′ ∈ W ′
such that wBw′:

• Invariance: V (w)|AP = V ′(w′)|AP ;

• Zig: for all u ∈ W such that w →a u there exists
u′ ∈W ′ such that w′ →′a u′ and uBu′;

• Zag: for all u′ ∈ W ′ such that w′ →′a u′ there exists
u ∈W such that w →a u and uBu′.

Two pointed Kripke models (M,w) and (M ′, w′) are AP-
bisimilar if there is a AP-bisimulation B between M and
M ′ with wBw′. (M,w) and (M ′, w′) are AP-bisimilar iff
((M,w) |= ϕ iff (M ′, w′) |= ϕ) for all formulas ϕ of LDEL,
whose propositions are in AP . When AP is clear from
the context, we say bisimilar instead of AP-bisimilar. Two
Kripke models M and M ′ are bisimilar if there exists w ∈W
and w′ ∈W ′ such that (M,w) and (M ′, w′) are bisimilar.

2.8.2 Equivalence of event models
For event models, the equivalence is defined as follows.

Definition 6. Let E and E ′ be two pointed event models.
They are equivalent if for all pointed Kripke models (M,w),
for all e ∈ E, there exists e′ ∈ E ′ such that (M ⊗ E , (w, e))
and (M ⊗ E ′, (w, e′)) are bisimilar (and vice versa).

Equivalence of event models without postconditions is
characterized by action emulations ([18]) defined as follows.

Definition 7. Let E = (E, (→Ea)a∈Ag, pre) and

E ′ = (E′, (→E
′
a)a∈Ag, pre

′) be two event models without
postconditions Let Σ be the set of preconditions appearing
in E and E ′. Let Σ̂ be the set of formulas containing Σ and
closed under sub-formulas and negation (see [18] for more

details). Let CS(Σ̂) be the set of maximal consistent sub-

sets of Σ̂. An action emulation AE is a set of relations
{AEΓ}Γ∈CS(Σ̂) ⊆ E × E

′ such that whenever eAEΓe
′:

• Invariance: pre(e) ∈ Γ and pre(e′) ∈ Γ;

• Zig: For all f ∈ E and Γ′ ∈ CS(Σ̂), if e →Ea f ,

pre(f) ∈ Γ′ and the formula
(∧

ψ∈Γ ψ ∧ K̂a

∧
ψ′∈Γ′ ψ

′
)

is consistent then there exists f ′ ∈ E′ such that e′ →E
′
a

f ′ and fAEΓ′f
′;

• Zag: symmetric of Zig for E′.

Action emulation is similar to bisimulation in the sense
that the types of rules are the same, except that we ask
of preconditions to be in a same maximal consistent subset
of Σ̂. Action emulation characterizes equivalence for event
models without postconditions:

Proposition 1. E and E ′ are equivalent iff there is an
action emulation AE between E and E ′ such that for all and
Γ ∈ CS(Σ̂) such that for all e ∈ E such that pre(e) ∈ Γ,
there exists e′ ∈ E ′ such that eAEΓe

′ (and vice versa).

125

pre : ¬p∧¬ha1
∧¬ha2

post : /

pre : ¬p∧¬ha1
∧ha2

post : /

pre : ¬p∧ha1∧¬ha2
post : /

pre : ¬p∧ha1
∧ha2

post : /

pre : p∧¬ha1
∧¬ha2

post : /

pre : p∧¬ha1
∧ha2

post : /

pre : p∧ha1∧¬ha2
post : /

pre : p∧ha1
∧ha2

post : /

pre : >
post : /

a1, a2

a1

a1, a2

a1

a2a2

a1, a2

a1

a2

a1, a2

a1

a2

a1, a2

Figure 4: The event model Ap corresponding to an
attention-based announcement p for two agents a1

and a2. The six edges pointing to the dashed box
point to all four events in the box.

2.9 Model checking
The model checking problem takes as input a pointed

Kripke model M,w, a formula ϕ of LDEL and returns yes
if M,w |= ϕ; no otherwise. Sets AP and Ag are implicitly
part of the input: the number of atomic propositions and the
number of agents is unbounded and specified by M,w,ϕ.

Theorem 1. ([1]) The model checking problem is
PSPACE-complete2.

3. SUCCINCT DEL
In classical DEL Kripke models and event models are rep-

resented explicitly. It faces some practical limits when sizes
of models are exponential in the number of atomic proposi-
tions or the number of agents (see Examples 2 and 4). In
this section, we provide a symbolic succinct representation
for both Kripke and event models. It relies on accessibility
programs, presented in Subsection 3.1, written in a PDL-
dialect called Dynamic logic of propositional assignments
(DLPA).

In Subsections 3.2 and 3.3, we define respectively suc-
cinct Kripke models and succinct event models. For both
cases, we give the semantics (how Kripke/event models are
computed from their succinct representations), the expres-
siveness (all standard DEL models can be represented in
our succinct version) and the succinctness (some succinct
models are strictly more succinct than standard DEL). In
next Subsections, we present a succinct representation of
the product update and the language of succinct DEL.

3.1 Language of accessibility programs
An accessibility program, simply called program, succinctly

describes a relation between valuations. We write u
π−→ v for

“v is a successor of u by π”. The syntax for accessibility
programs is defined by the following BNF.

π ::= p←β | β? | (π;π) | (π ∪ π) | (π ∩ π) | π−1

where p ∈ AP , β is a Boolean formula. Program p←β
is read “assign atomic proposition p to the truth value of

2Actually, hardness was proven in [1] for a language with
non-deterministic choice ∪ in the language. For a proof
without such a constraint, see [6].

β”. Program β? is read “test β”. Program π1;π2 is read
“execute π1 then π2”. Program (π1 ∪ π2) is read “either
execute π1 or π2”. Program (π1 ∩ π2) is the intersection
of π1 and π2. Program π−1 is the inverse of π. We write
set(p1, . . . , pn) = (p1←⊥∪p1←>); . . . ; (pn←⊥∪pn←>) for
the program setting arbitrary values to p1, . . . , pn.

The semantics of accessibility programs is defined by in-
duction as follows:

• w
p←β−−−→ u iff (u = w\{p} and w 6|= β)

or (u = w ∪ {p} and w |= β);

• w
β?−→ u iff w = u and w |= β?;

• w
π1;π2−−−→ u iff there exists v s. th. w

π1−→ v and v
π2−→ u;

• w
π1∪π2−−−−→ u iff w

π1−→ u or w
π2−→ u;

• w
π1∩π2−−−−→ u iff w

π1−→ u and w
π2−→ u;

• w
π−1

−−−→ u iff u
π−→ w.

The size of an accessibility program corresponds to the
number of operators needed to write the program. For in-
stance, the accessibility program (p← >)∪ (q?; p← ⊥) has
size 10. The models are succinctly described by means of
accessibility programs. We are interested here in describing
Kripke models, event models and the product update.

3.2 Succinct Kripke models
We first define the succinct representation of Kripke mod-

els, then show how to extract a Kripke model from a succinct
one and vice versa and finally we give an example where the
succinct representation is indeed strictly more succinct.

3.2.1 Definition

Definition 8. A succinct Kripke model is a tuple
M = 〈APM , βM , (πa)a∈Ag〉 where APM is a finite set of
atomic propositions, βM is a Boolean formula over APM ,
and πa is a program over APM for each agent a.

The Boolean formula βM succinctly describes the set of
epistemic states. Intuitively, each πa succinctly describes the
accessibility relation →a for an agent a. A pointed succinct
Kripke model is a pair M, w with M = 〈APM , βM , (πa)a∈Ag〉
is a succinct Kripke model and w is a valuation satisfying
βM .

3.2.2 From succinct Kripke models to Kripke models
We define the explicit Kripke model M̂(M) associated to

the succinct Kripke model M: the set of worlds is the set
of valuations satisfying βM and the epistemic relation→a is
the relation described by πa.

Definition 9. Given a succinct Kripke model
M = 〈APM , βM , (πa)a∈Ag〉, the Kripke model represented by

M, noted M̂(M) is the model M = (W, (→a)a∈Ag, V) where:

• W = {w ∈ V(APM) | w |= βM};

• →a=
{

(w, u) ∈W 2 | w πa−−→ u
}

;

• V (w) = w.

126

3.2.3 From Kripke models to succinct models
We define a succinct Kripke model MM representing the

Kripke model M with respect to a set of propositions AP .

Definition 10. Let M = (W, (→a)a∈Ag, V) be a Kripke
model. We define the succinct Kripke model
MM = 〈APM , βM , (πa)a∈Ag〉 where:

• APM = AP ∪ {pw | w ∈W};
• βM = ∃!({pw | w ∈W})∧

∧
w∈W pw → desc(V (w));

• πa =
⋃
w→au

pw?; set(APM); pu?.

The intended meaning of the fresh atomic propositions
pw is to designate the world w (as nominals in hybrid logic
[5]). Formula βM describes the set W and the valuation V .
Program πa performs a non-deterministic choice over edges
w →a u and then simulate the transition w →a u. The
following proposition states that MM indeed represents M .

Proposition 2. (M̂(MM), {pw}∪V (w)) and (M,w) are
AP-bisimilar.

Proof. We note M = (W, (→a)a∈Ag, V) and

M̂(MM) = (W ′, (→′a)a∈Ag, V
′). We define

B := {(u, pu ∪ V (u)) | u ∈W}. Let us prove that B is a AP-
bisimulation. Invariance of B is routine. For Zig, consider
w ∈ W . For all u ∈ W , if w →a u then we can verify that

M̂(MM), u∪V (u) |= βM and that pw ∪V (w)
πa−−→ pu ∪V (u)

so we have w →′a u. The Zag property is symmetrical.

Example 7. The model M from Figure 1 is modeled by
the succinct Kripke model MM = 〈APM , βM , (πa)a∈Ag〉 with
APM = {p, pw, pu}, βM = ∃!({pu, pw}) ∧ (pw → p) ∧ (pu →
¬p) and πa =

⋃
v1,v2∈W pv1?; set(APM); pv2?.

3.2.4 Succinctness of succinct Kripke models
To show the succinctness of succinct Kripke models, we

describe a family of Kripke models having exponentially
more compact representations with succinct Kripke models.

Let us consider the family of models M given in Exam-
ple 2 for all number of agents n. The Kripke model M is suc-
cinctly represented by the succinct Kripke
model M = 〈APM , βM , (πa)a∈Ag〉 defined by βM = >,
APM = {ha,ma | a ∈ Ag}, πa = set({ma} ∪ {hb | b 6= a}).

Formula βM = > means that the set of possible worlds is
the set of all valuations. Program πa changes propositions
agent a is uncertain of (ma and hb for all b 6= a) while
the truth values of other propositions remain unchanged.
Pointed Kripke models M, w and M̂(M), w are bisimilar. The
number of worlds in M is 22n while the size of M is O(n2)
(each program πa is of size O(n)).

Furthermore, there is no bisimilar Kripke model M ′ with
less worlds than M since all valuations appear once in M .

3.3 Succinct event models
We adopt a similar method for succinct event models.

3.3.1 Definition

Definition 11. A succinct event model is a tuple
E = 〈APM ,APE , χE , (πa,E)a∈Ag, post〉 where:

• APM and APE are two finite disjoint sets of atomic
propositions;

• χE is a formula of LEL over APM∪APE where atomic
propositions of APE are not under the scope of a modal
operator Ka;

• πa,E is a program over APM ∪APE for all a ∈ Ag;

• post is a program over APM ∪APE.

APM is the set of propositions used to describe precon-
ditions while APE are new fresh propositions to potentially
encode distinct events with the same precondition. The for-
mula χE describes the set of events and their preconditions.
Each πa,E corresponds to the symbolic representation of an
accessibility relation →Ea for an agent a. post encodes the
postcondition function.

3.3.2 From succinct event models to event models
Let sub(χE) be the union of APM and the set of sub-

formulas of χE of the form Kaψ not under the scope of
another Ka′ operator.

Example 8. If APM = {p, q} and APE = {pe, pf} then
sub((¬pf ∧Ka¬Kbp) ∨Kaq) = {p, q,Ka¬Kbp,Kaq}.

Definition 12. Given a succinct event model
E = 〈APM ,APE , χE , (πa,E)a∈Ag, post〉 , the event model

represented by E, noted Ê(E) is the model
(E, (→Ea)a∈Ag, pre, post) where

• E = {(vpre, vpost) ∈ V(sub(χE) ∪APE)× V(APM)

vpre |= χE and vpre|APM∪APE

post−−→ vpost∪(vpre|APE
)};

• →Ea=

{
((vpre, vpost), (vpre

′, vpost
′)) ∈ E2

| vpre

πa,E ;set(sub(χE))
−−−−−−−−−−−−→ vpre

′

}
;

• pre((vpre, vpost)) = desc(vpre|sub(χE));

• post((vpre, vpost), p) =

{
> if p ∈ vpost

⊥ otherwise.

In an event e = (vpre, vpost), vpre represents the valuation
before the execution of e (it encodes the precondition and the
truth value of propositions in APE). vpost represents the val-
uation after the execution of e (it takes into account the ef-
fect of the postconditions). The relation →Ea is defined with
the program πa,E but we also change arbitrarily propositions
of sub(χE). The precondition of an event e = (vpre, vpost) is
the description of vpre restricted to sub(χE). For instance,
if vpre = {p, pe,Kar} then pre((vpre, vpost)) = p∧Kar. The
postcondition is inferred from vpost.

3.3.3 From event models to succinct event models
We define a succinct event model EE representing the

event model E .

Definition 13. Let E = (E, (→Ea)a∈Ag, pre, post) be an
event model. We define the succinct event model
EE = 〈APM ,APE , χE , (πa,E)a∈Ag, post〉 where

• APM is a superset of propositions appearing in pre;

• APE = {pe | e ∈ E};
• χE = ∃!(APE) ∧

∧
e∈E(pe → pre(e));

• πa,E =
⋃
e→Eaf

pe?; set(APM ∪APE); pf?;

• post =
⋃
e∈E pe?;

(⋂
p∈APM

p←post(e, p)
)

.

127

The fresh atomic proposition pe designates event e. For-
mula χE describes the set E and the precondition pre. Pro-
gram πa,E performs a non-deterministic choice in the same
spirit of πa in Definition 10. Program post
non-deterministically chooses the current event e and ap-
plies the postcondition assignments in parallel. The follow-
ing proposition states that EE indeed represents E .

Proposition 3. Ê(EE) and E are equivalent.

Proof. Let E = (E, (→Ea)a∈Ag, pre, post) and Ê(EE) =

(E′, (→Ea
′
)a∈Ag, pre

′, post′). Let M = (W, (→M
a)a∈Ag, V) be

a Kripke model. Let B be the set of tuples ((w, e), (w, e′))
with w ∈ W , e ∈ E and e′ = (vpre

e, vpost
e) ∈ E′ such that

vpre
e = {pe}∪ve with ve ⊆ sub(χE), V (w) ⊆ ve, ve |= pre(e)

and vpost
e = V (w, e). W. Such an e′ is well defined by Def-

initions 12 and 13. We prove that B is a bisimulation. We
have V ′((w, e′)) = V ((w, e)) by Definition 12 so invariance
holds. For Zig, if (w, e) →M⊗E

a (u, f) then M,u |= pre(f).
Therefore there exists vf ⊆ sub(χE) such that V (u) ⊆ vf ,
vf |= pre(f) and {pf} ∪ vf |= χE . By definition of post,

we have V (u)∪ {pf}
post−−→ V ((u, f))∪ {pf}. We deduce that

f ′ = ({pf} ∪ vf , V ((u, f))) ∈ E′. We have w →M
a u so

{pe} ∪ ve
πa,E ;set(sub(χE))
−−−−−−−−−−−−→ {pf} ∪ vf . We conclude that

(u, f)→E
′
a (u, f ′). The Zag property is proven similarly.

Example 9. The event model E of Figure 2
is modeled by the succinct event model
EE = 〈APM ,APE , χE , (πa,E)a∈Ag, post〉 with
APM = {p, pw, pu},APE = {pe, pf}, χE = ∃!(APE) ∧
(pe → p) ∧ (pf → >), πa,E =

⋃
e1→Eae2

pe1?; set(APM ∪
APE); pe2? and post = (pe?; p ← ⊥) ∪ (pf?) (trivial post-
condition counterpart in post has been omitted).

3.3.4 Succinctness of succinct event models
As for succinct Kripke models, we provide a family of

event models having exponentially more compact represen-
tations with succinct event models.

Let us consider the family of models (En)n∈N given in Ex-
ample 4 for all number of agents n. The event model E is suc-
cinctly represented by the succinct event model
E = 〈APM ,APE , χE , (πa,E)a∈Ag, post〉 defined by

• χE = >;

• πa,E = (¬pidle?; (ha?; p←>; set({hb, b ∈ Ag}))∪
(¬ha?; set(APM); pidle←>)) ∪(pidle?; set(APM));

• post = >?.

Atomic proposition pidle intuitively means that the event
idle is occurring (at the bottom in Figure 4). Formula χE =
> means that the set of possible events is unconstrained.
Program πa,E works as follows: if pidle is false, if ha is true,
assign > to p and arbitrarily change hb for all b 6= a; if
ha is false, change valuations of propositions in APM and
set pidle to true; otherwise if pidle is true, change all truth
values of propositions in APM . The number of worlds in E
is 2n+1 + 1 while the size of E is O(n2) (each program πa,E
is of size O(n)).

Now we prove that standard event models cannot repre-
sent En as succinctly as succinct event models.

Theorem 2. There is no propositional event model E ′n
equivalent to En with less that 2n events.

Proof. By contradiction, we use the characterization of
Proposition 1. We suppose that there E ′n has less than 2n

events, and that there is an action emulation AE between
En and E ′n. Let Σ be the set of preconditions of En and E ′n.
Note that Σ̂ (defined as in Definition 7) is a set of proposi-
tional formulas. E ′n has less than 2n events, so there exists
e1, e2 ∈ V({p} ∪ {ha | a ∈ Ag}) with e1 |= p and e2 |= p
and e1 6= e2, and there exists an event e′ of E ′n, Γ1,Γ2 such
that e1AEΓ1e

′ and e2AEΓ2e
′. As e1 6= e2, there is an agent

a such that e1 |= ¬ha and e2 |= ha (we swap e1 and e2

if e1 |= ha and e2 |= ¬ha). Then e1 →Ena idle. We con-

sider the maximal consistent subset Γ′ = {ϕ ∈ Σ̂|{ha, a ∈
Ag} |= ϕ} . We have pre(idle) ∈ Γ′ and the formula(∧

ψ∈Γ1
ψ ∧ K̂a

∧
ψ′∈Γ′ ψ

′
)

is consistent (because Γ1 and Γ′

are propositional). By Zig, there exists f ′ ∈ E′ such that

e′→E
′
n
a f ′ with idleAEΓ′f

′. By Zag, as e2AEΓ2e
′ and the

formula
(∧

ψ∈Γ2
ψ ∧ K̂a

∧
ψ′∈Γ′ ψ

′
)

is consistent, there ex-

ists f ∈ E such that e →Ena f and fAEΓ′f
′. By invariance

we obtain pre(f) ∈ Γ′. However pre(f) = desc(f) and p ∈ f

so {ha, a ∈ Ag} 6|= pre(f). We derive a contradiction, so E ′n
has at least 2n events.

3.4 Succinct product updates
Now, we generalize Definition 9 to obtain a succinct rep-

resentation for updates.

Definition 14. Let M = 〈APM , βM , (πa)a∈Ag〉 be a suc-
cinct Kripke model. Let E1, . . . ,En be a sequence of suc-
cinct event models with Ei = 〈APM ,APEi , χEi , (πa,Ei)a∈Ag,
posti〉 with APE1 , . . . ,APEn being disjoint sets. The suc-
cinct product update of M and E1, . . . ,En, noted M⊗ E1 ⊗
· · · ⊗En, is Mn = 〈APn, Ln, (π

n
a)a∈Ag〉 defined by induction

on n:

• M0 = 〈APM , [βM], (πa)a∈Ag〉;
• For n ≥ 1,

Mn = 〈APn−1∪APEn , Ln−1 :: [χEn ; postn], (πna)a∈Ag〉
with πna = post−1

n ; ((πn−1
a ; set(APEn)) ∩ πa,En); postn

and :: is the concatenation operator.

Contrary to Definition 9, we now represent the set of
worlds by a list Ln. For n = 0, Definition 14 and Defi-
nition 9 coincides in the sense that [βM] is considered the
same as βM . For n ≥ 1, we push χEn ; postn at the end
of Ln−1. The intuition behind the definition of accessibility
programs πna is as follows: we undo the effect of the postcon-
ditions of En; we then simulate the conjunction “w →a w

′

and e→Ea e′” of Definition 3 by executing the intersection of
program πn−1

a ; set(APEn) and πa,En ; finally we reapply the
postconditions of En.

Next definition explains how to build the Kripke model
that corresponds to the succinct product update.

Definition 15. Given a succinct Kripke model
M = 〈APM , βM , (πa)a∈Ag〉 and succinct event models
E1, . . . ,En where Ei = 〈APM ,APEi , χEi , (πa,Ei)a∈Ag, posti〉
, the Kripke model represented by the product update of M
and E1, ...,En, noted M̂(M⊗ E1 ⊗ · · · ⊗ En) is the model
Mn = (Wn, (→a,n)a∈Ag, Vn), defined by induction on n:

• M0 = M̂(M);

• For n ≥ 1: Mn = (Wn, (→a,n)a∈Ag, Vn) where

128

– Wn =

w ∈ V(APM ∪

⋃n
i=1 APEi), s.t. there

exists v ∈Wn−1 and e ∈ V(APEn) s.t.

Mn−1, v ∪ e |= χEn and v ∪ e
postn−−−→ w;

– →a,n=

{
(w, u) ∈W 2

n | w
πn
a−−→ u

}
;

– Vn(w) = w.

We say that w is a state of M ⊗ E1 ⊗ · · · ⊗ En if w ∈ Wn

where Wn is given in Definition 15.

Proposition 4. Let M be a succinct Kripke model and
E1, . . . ,En a sequence of succinct event models. The models
M̂(M)⊗ Ê(E1)⊗ ...⊗ Ê(En) and M̂(M⊗ E1⊗ . . .⊗En) are
APM ∪

⋃n
i=1 APEi -bisimilar.

Proof. The result is proven by recurrence on n. Case
n = 0 is direct. For the case n > 1, with the induction
hypothesis it suffices to prove that M̂(M⊗ E1⊗ . . .⊗En)

and M̂(M⊗ E1⊗ . . .⊗En−1)⊗Ê(En) are APM ∪
⋃n
i=1 APEi -

bisimilar. The proof technique is similar to the proof of
Proposition 3, the details are left to the reader.

When the context is clear, we write M ⊗ ~E
for M⊗ E1⊗ . . .⊗En.

3.5 Language of succinct DEL
We define the language LsuccDEL:

ϕ ::= > | p | ¬ϕ | (ϕ ∨ ϕ) | Kaϕ | 〈E, β0〉ϕ

where E is a succinct event model over (APM ,APE) and
β0 is a Boolean formula over APM ∪APE .

The syntax of succinct DEL is similar to the syntax of
DEL itself except that operators 〈E , E0〉 (where E , E0 is a
multi-pointed event model) are replaced by 〈E, β0〉 where
β0 is a Boolean formula that succinctly represents a set of
events E0. The semantics of 〈E, β0〉ϕ is: M,w |= 〈E, β0〉ϕ
iff there exists e ∈ Ê(E) such that e |= β0, M,w |= pre(e)

and M ⊗ Ê(E), (w, e) |= ϕ where pre(e) is the precondition

of e in Ê(E).

We write M⊗ ~E, w |= ϕ for M̂(M⊗ ~E), w |= ϕ.

4. MODEL CHECKING
The succinct model checking problem takes as input a

pointed succinct Kripke model M, w and a formula ϕ of
LsuccDEL, and returns yes if M, w |= ϕ, no otherwise.

As the model checking of DLPA is PSPACE-hard [2][3],
the succinct model checking problem is PSPACE-hard. Now
we provide the upper bound:

Theorem 3. The succinct model checking problem is in
PSPACE.

To prove Theorem 3, as APTIME = PSPACE [8] (where
APTIME is to the class of problems decided by an alter-
nating Turing machine in polynomial time), we provide an
alternating algorithm deciding the succinct model checking
problem in polynomial time.

4.1 Background on alternating algorithms
The internal nodes of the computation tree of our algo-

rithm on an input M, w, ϕ are either existential configura-
tions (as for non-deterministic algorithms) or universal con-
figurations. Player (∃)(∃)(∃) (respectively (∀)(∀)(∀)) chooses the next

configuration in existential (universal) configurations. Leafs
are either accepting or rejecting configurations. Player (∃)(∃)(∃)
wins if the game reaches an accepting configuration.

The algorithm accepts its input M, w, ϕ if player (∃)(∃)(∃) has
a winning strategy. The running time of an alternating al-
gorithm is the height of the computation tree.

4.2 Description of our algorithm
The full pseudo-code of our algorithm is given in Figure

5 and extends algorithms for variants of DLPA given in [9]
and [11] in order to handle succinct event models. The main
procedure main for model checking succinct DEL first calls
mcyes(M, w, ϕ). If this call is not rejecting the input (that
is if M, w |= ϕ) then it accepts its input M, w, ϕ.

We implicitly define the dual versions mcno, stateofno,
issuccno obtained from procedures mcyes, stateofyes,
issuccyes by switching (∃)(∃)(∃) with (∀)(∀)(∀), and with or , and
indices yes with indices no. The specifications of all proce-
dures are given in the following Theorem:

Theorem 4. For any succinct product update

M ⊗ ~E, any valuations w, u any formula ϕ
of LsuccDEL and any accessibility program π:

• mcyes rejects M⊗ ~E, w, ϕ iff M⊗ ~E, w 6|= ϕ;

• mcno rejects M⊗ ~E, w, ϕ iff M⊗ ~E, w |= ϕ;

• stateofyes rejects w,M⊗~E iff w is not a state of M⊗~E;

• stateofno rejects w,M⊗ ~E iff w is a state of M⊗ ~E;

• issuccyes rejects w, u, π iff w 6 π−→ u;

• issuccno rejects w, u, π iff w
π−→ u.

Procedures mcyes and mcno. The cases ϕ = p and
ϕ = (ϕ1 ∨ ϕ2) in mcyes are straightforward. The case ϕ =
¬ψ consists in calling the dual procedure mcno with ψ. In
the case ϕ = Kaψ, we compute the program πna from the
Kripke model (M ⊗ E1 ⊗ ... ⊗ En), given in Definition 14,
then universally choose a valuation u and finally check that
one of the three conditions holds:

• u is not in the set of states of (M⊗E1 ⊗ ...⊗En) (the
corresponding call to stateofno does not reject its in-
put), meaning that the chosen valuation u is irrelevant.

• w 6 πa−−→ u (the call issuccno does not reject w, u, πa),
meaning that the chosen valuation u is irrelevant.

• or that (M⊗E1⊗ ...⊗En), u |= ψ (the call mcyes does
not reject M ⊗ E1 ⊗ ... ⊗ En, u, ψ)). This condition is
particularly relevant when u is actually in the set of

states of (M⊗ E1 ⊗ ...⊗ En) and w
πa−−→ u.

In the case ϕ = 〈E, β0〉ψ, player (∃)(∃)(∃) chooses a valuation e

with e |= β0. Then the algorithm checks that w∪e is a state
of M⊗E1⊗ ...⊗En and that M⊗E1⊗ ...⊗En,E, (w∪e) |= ψ.
Procedures stateofyes and stateofno. The call

stateofyes(w,M,E1, ...,En) rejects if and only if the val-
uation u does not correspond to a state of M,E1, ...,En.
In order to check that the valuation u is not a state of
M ⊗ E1 ⊗ ... ⊗ En, the procedure mimics Definition 14 and
distinguishes two cases. In the case n = 0, we check that βM
holds in w. In the case n ≥ 1, we first check χEn . Then we
simulate the program postn by universally choosing a valua-

tion u such that u
postn−−−→ w. Finally, we check that χEn holds

in u (we check that the precondition of En holds).

129

Procedures issuccyes and issuccno. The cases over
π follow the semantics for accessibility programs (Subsec-
tion 3.1).

Procedure main(M, w, ϕ)
mcyes(M, w, ϕ)
accept

Procedure mcyes(M⊗ E1 ⊗ ...⊗ En, w, ϕ)
Case ϕ = p: if w 6|= p then reject
Case ϕ = (ϕ1 ∨ ϕ2):

(∃)(∃)(∃) choose i ∈ {1, 2}
mcyes((M⊗ E1 ⊗ ...⊗ En), w, ϕi)

Case ϕ = ¬ψ: mcno((M⊗ E1 ⊗ ...⊗ En), w, ψ).
Case ϕ = Kaψ:

Get πna from (M⊗ E1 ⊗ ...⊗ En).
(∀)(∀)(∀) choose u over APM⊗E1⊗...⊗En

(∃)(∃)(∃)stateofno(u, (M⊗ E1 ⊗ ...⊗ En))
or issuccno(w, u, πa) or mcyes((M⊗E1⊗...⊗En), u, ψ)

Case ϕ = 〈E, β0〉ψ:
(∃)(∃)(∃) choose e such that e |= β0

(∀)(∀)(∀)stateofyes(w ∪ e, (M⊗ E1 ⊗ ...⊗ En ⊗ En))
and mcyes(M⊗ E1 ⊗ ...⊗ En ⊗ E, (w ∪ e), ψ).

Procedure stateofyes(w,M⊗ E1 ⊗ ...⊗ En)
Case n = 0: mcyes(M, w, βM)
Case n > 0:

(∃)(∃)(∃) choose u ∈ V(APM⊗E1⊗...⊗En)
(∀)(∀)(∀)issuccyes(u, w, postn)
and stateofyes(u|APM⊗E1...⊗En−1

,M⊗E1, ...,⊗En−1)

and mcyes(M,E1, ...,En−1, u|APM⊗E1⊗...⊗En−1
,, χEn)

Procedure issuccyes(w, u, π)
Case π = p←β: if (w |= β and u 6= w ∪ {p})

or (w 6|= β and u 6= w\{p}) then reject
Case π = β?: if w 6= u or w 6|= β then reject
Case π = (π1;π2):

(∃)(∃)(∃) choose a valuation v (∀)(∀)(∀)issuccyes(w, v, π1)
and issuccyes(v, u, π2)

Case π = (π1 ∪ π2):
(∃)(∃)(∃) choose i ∈ {1, 2}
issuccyes(w, u, πi)

Case π = (π1 ∩ π2):
(∀)(∀)(∀) choose i ∈ {1, 2}
issuccyes(w, u, πi)

Case π = π′−1: issuccyes(u, w, π
′).

Figure 5: Pseudo-code

4.3 Sketch of proofs

Lemma 1. The procedure main runs in polynomial time
in the size of (M⊗ E1 ⊗ ...⊗ En, w, ϕ).

Proof. The size of the argument of the procedures is
strictly decreasing at each step, so the execution is in linear
time in respect to the size of the input. Thus, Mc runs in
polynomial time in respect to the size of (M ⊗ E1 ⊗ ... ⊗
En, w, ϕ). Therefore, the height of the computation tree is
polynomial in the size of the input.

Theorem 4 is proved by a mutual induction for mcno,
stateofno, issuccno obtained from mcyes, stateofyes,
issuccyes on the size of their inputs.

4.4 Impact
The translation, with straightforward base cases,

tr(〈E , E0〉ϕ) = 〈EE ,
∨
e∈E0

pe ∧
∧
e6∈E0

¬pe〉tr(ϕ) (∗)

is such that M,w |= ϕ iff MM , pw∧desc(V (w)) |= tr(ϕ).
Thus, Theorem 3 gives an alternative proof for the PSPACE
upper bound of the model checking of DEL.

Interestingly, if for some E , E0 whose size depends on the
input (as the attention-based announcement in Example 4)
and for which there exists a succinct pointed event model
E, β0 of polynomial size in the input, then, instead of (*),
we use:

tr(〈E , E0〉ϕ) = 〈E, β0〉tr(ϕ)

and the model checking remains in PSPACE. For instance,
the model checking of an epistemic formula that contains an
arbitrary finite number of agents and attention-based an-
nouncement modalities [p!]at is in PSPACE.

5. CONCLUSION AND PERSPECTIVES
In this paper, we provide an exponentially more succinct

version of Dynamic epistemic logic (DEL) whose model
checking problem remains in PSPACE. We conjecture that
a model checking procedure for our succinct language may
use BDD techniques of [14].

It opens a long-term research track for studying algorith-
mic problems in DEL such as satisfiability problem and epis-
temic planning in their succinct versions.

The succinct satisfiability problem is the following deci-
sion problem: determine whether a formula ϕ ∈ LsuccDEL

is satisfiable. There exists a tableau method for determining
whether a formula ϕ ∈ LDEL is satisfiable [1] that yields a
non-deterministic algorithm in exponential time for the sat-
isfiability problem. We conjecture that the tableau method
can be adapted for a formula ϕ ∈ LsuccDEL in order to prove
that the succinct satisfiability problem is in NEXPTIME.

Charrier et al. [10] provides a succinct language for it-
erations of event models: they provide modalities 〈(E , e)i〉
where i is an integer written in binary instead of the explicit
sequence (E , e); . . . ; (E , e). The corresponding model check-
ing of DEL is PSPACE-complete even with such succinct
iterations, when preconditions are propositional and with
trivial postconditions. It would be interesting to study the
extension of our succinct DEL with succinct iterations.

Also, interestingly, the satisfiability problem of attention-
based announcement logic is PSPACE-complete [7] even if
corresponding event models are exponential in the number
of agents (see Figure 4). So the gap between PSPACE and
NEXPTIME is not due to the size of models but in the very
structure of event models. We claim that our succinct ver-
sion DEL may help in characterizing fragments of DEL with
lower complexity for model checking/satisfiability problem.

Acknowledgements.
We would like to thank Malvin Gattinger and Sophie

Pinchinat for their useful insights and the anonymous re-
viewers for their comments. We also acknowledge support
from CNRS Défi INFIniTi - AAP 2017.

130

REFERENCES
[1] G. Aucher and F. Schwarzentruber. On the complexity

of dynamic epistemic logic. In Proceedings of the 14th
Conference on Theoretical Aspects of Rationality and
Knowledge (TARK 2013), Chennai, India, January
7-9, 2013, 2013.

[2] P. Balbiani, A. Herzig, F. Schwarzentruber, and
N. Troquard. DL-PA and DCL-PC: model checking
and satisfiability problem are indeed in PSPACE.
CoRR, abs/1411.7825, 2014.

[3] P. Balbiani, A. Herzig, and N. Troquard. Dynamic
logic of propositional assignments: A well-behaved
variant of PDL. In 28th Annual ACM/IEEE
Symposium on Logic in Computer Science, LICS
2013, New Orleans, LA, USA, June 25-28, 2013,
pages 143–152, 2013.

[4] A. Baltag, L. S. Moss, and S. Solecki. The logic of
public announcements, common knowledge, and
private suspicions. In Proceedings of the 7th conference
on Theoretical aspects of rationality and knowledge,
pages 43–56. Morgan Kaufmann Publishers Inc., 1998.

[5] P. Blackburn. Representation, reasoning, and
relational structures: a hybrid logic manifesto. Logic
Journal of the IGPL, 8(3):339–365, 2000.

[6] T. Bolander, M. H. Jensen, and F. Schwarzentruber.
Complexity results in epistemic planning. In
Proceedings of the Twenty-Fourth International Joint
Conference on Artificial Intelligence, IJCAI 2015,
Buenos Aires, Argentina, July 25-31, 2015, pages
2791–2797, 2015.

[7] T. Bolander, H. van Ditmarsch, A. Herzig, E. Lorini,
P. Pardo, and F. Schwarzentruber. Announcements to
attentive agents. Journal of Logic, Language and
Information, 25(1):1–35, 2016.

[8] A. K. Chandra and L. J. Stockmeyer. Alternation. In
Proc. of FOCS’76, pages 98–108, 1976.

[9] T. Charrier, A. Herzig, E. Lorini, F. Schwarzentruber,
and F. Maffre. Building epistemic logic from
observations and public announcements. In
International Conference on Principles of Knowledge
Representation and Reasoning (KR), CapeTown.
AAAI Press, 2016.

[10] T. Charrier, B. Maubert, and F. Schwarzentruber. On
the impact of modal depth in epistemic planning. In
Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI 2016,
New York, NY, USA, 9-15 July 2016, pages
1030–1036, 2016.

[11] T. Charrier and F. Schwarzentruber. Arbitrary public
announcement logic with mental programs. In
Proceedings of the 2015 International Conference on
Autonomous Agents and Multiagent Systems, AAMAS
2015, Istanbul, Turkey, May 4-8, 2015, pages
1471–1479, 2015.

[12] T. Charrier and F. Schwarzentruber. A succinct
language for dynamic epistemic logic (long version).
Research report, IRISA, 2017.

[13] C. H. Papadimitriou. Computational complexity. John
Wiley and Sons Ltd., 2003.

[14] J. Van Benthem, J. van Eijck, M. Gattinger, and
K. Su. Symbolic model checking for dynamic epistemic
logic. In Logic, Rationality, and Interaction, pages
366–378. Springer, 2015.

[15] H. van Ditmarsch and B. Kooi. One hundred prisoners
and a light bulb. In One Hundred Prisoners and a
Light Bulb, pages 83–94. Springer, 2015.

[16] H. van Ditmarsch, W. van der Hoek, and B. Kooi.
Dynamic Epistemic Logic. Springer, Dordecht, 2008.

[17] H. P. van Ditmarsch and B. P. Kooi. Semantic results
for ontic and epistemic change. CoRR,
abs/cs/0610093, 2006.

[18] J. van Eijck, J. Ruan, and T. Sadzik. Action
emulation. Synthese, 185(Supplement-1):131–151,
2012.

131

