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ABSTRACT
In a discrete preference game, each agent is equipped with an
internal belief and declares her preference from a discrete set
of alternatives. The payoff of an agent depends on whether
the declared preference agrees with the belief of the agent
and on the coordination with the preferences declared by
the neighbors of the agent in the underlying social network.
These games have been used to model the formation of opin-
ions and the adoption of innovations in social networks.

Recently, researchers have obtained bounds on the Price
of Anarchy and on the Price of Stability of discrete pref-
erence games and they have studied to which extent the
winning preference reached via best-response dynamics dis-
agrees with the majority of beliefs. In this work, we investi-
gate the robustness of these results to variants of the model.

Our starting point is the observation that bounds on the
Price of Anarchy and Stability can be very dependent on
the way the quality of an equilibrium is measured. On the
other side, results about the disagreement between majority
at equilibria and majority among beliefs continue to hold
even if we consider different classes of dynamics, such as no-
worse-response dynamics, best response with multiple play-
ers updating at the same time, or with weighted neighbors.

Keywords
Social Network; Opinion Formation; Price of Anarchy; Best-
Response Dynamics

1. INTRODUCTION
Opinion formation is a central topic in social science. The

literature aims to model how the opinion of an individual
arises and how it is influenced by the individual’s belief and
her interaction with the environment. A prominent exam-
ple of these models has been introduced by Friedkin and
Johnsen [14] as a refinement to a previous model by DeG-
root [11]: it assumes that individuals are on a social network
representing their social relations and the opinion of each in-
dividual is the outcome of a process of repeated averaging
between her belief and the opinions of the neighbors.
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Recently, this model has been the subject of thorough
research in Computer Science, mainly focusing on the com-
putational and optimization aspects of the model. In par-
ticular, the work of Bindel et al. [7] interprets the repeated
averaging process as a best-response play in a naturally de-
fined game that leads to a unique equilibrium and they study
the Price of Anarchy of this equilibrium.

The model considered in [14] and in [7] is continuous, with
beliefs and opinions being real numbers in [0, 1]. Recently,
several works departed from this assumption and consid-
ered discrete beliefs and opinions. The game theoretic ap-
proach of [7] turns out to fit the discrete setting even better
than the continuous one, since it is natural to assume that
agents are strategic, i.e., they pick the most beneficial pref-
erence among the available ones. Games modeling this set-
ting have been named discrete preference games, and they
have been primarily considered by Ferraioli et al. [12] and
by Chierichetti et al. [9].

A well-studied class of discrete preference games restricts
beliefs and opinions to only two discrete values, 0 and 1. In
this setting, the cost of agent i when the binary strategies
of the n agents are given by the vector x = (x1, ...xn) is

ci(x) = α · |xi − bi|+ (1− α) ·
∑

j∈N(i)

|xi − xj |, (1)

where bi ∈ {0, 1} denotes the belief of agent i and N(i) is her
set of neighbors. Note that the cost has two components,
whose relative weight is given by a parameter α ∈ [0, 1],
that depend on the distance of the agent’s strategy from
her internal belief and from the strategies of her neighbors,
respectively.

Chierichetti et al. [9] give bounds on the Price of Anar-
chy (PoA) and the Price of Stability (PoS) of these games.
Specifically, they evaluate the performance of an equilibrium
with respect to its ability to minimize the social cost, that
is the sum of the costs of agents. Then, they prove that the
Price of Anarchy is unbounded (this has also been observed
independently by [12]) and they give tight bounds on the
Price of Stability. They also show that for 0 ≤ α ≤ 1/2
and α = 2/3 the states of minimum social cost are always
equilibria (that is, the Price of Stability is 1).

A different approach for evaluating the quality of an equi-
librium in a discrete preference game has been proposed by
Auletta et al. [2]. They consider the extent at which an
equilibrium differs from the truthful profile, i.e. the one in
which the opinion of each agent coincides with her own be-
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lief. Their main result shows that for almost every social
network it can be the case that minority becomes majority.
Specifically they show that for α < 1/2 and for every so-
cial network topology, except the empty graph, the clique
and a few “almost-cliques”, there is a truthful profile from
which a sequence of best-response deviations can lead to an
equilibrium such that the preference kept by the minority of
agents in the truthful profile is the majority of the opinions
expressed at the equilibrium. Recently, the same authors
extended these results to every α > 0, even if each agent i
has her own αi: they show that the only social networks for
which minority does not become majority consist of vertices
with either too many or too few neighbors [4].

Both approaches for evaluating the performance of equi-
libria make very precise assumptions on the model: e.g.,
the Price of Anarchy results consider pure Nash equilibria,
whereas the results about convergence to non-truthful ma-
jorities are proved to hold only if players update sequentially
to their best-response.

Given these assumptions, it is natural to wonder at which
extent these results are robust : is it possible that a small
variation in the model brings to completely different results?
Note that this quest for robustness has been advocated very
often in game theory. A first example dates back to the
Nobel-winning work by Harsanyi and Selten [15], that in-
vestigate on Nash equilibria that can be robust to small
deviations of players. A more recent example is given by
the definition of robust Price of Anarchy [18], that looks
for Price of Anarchy bounds, that hold not only at Nash
equilibria, but also for more general classes of equilibria.

Our Contribution. This work stems out from the observa-
tion that results on Price of Anarchy and Price of Stability
can vary significantly depending on whether one consider
social cost or social welfare. In [9], agents are cost minimiz-
ers and the cost of an agent is given by (1). One could as
well consider the equivalent definition of the game in which
agents are utility maximizers with the utility of agent i in
profile x defined as

ui(x) = α (1− |xi − bi|)+(1− α)
∑

j∈N(i)

(1− |xi − xj |). (2)

Essentially, the utility of agent i is defined by counting
agreements (instead of disagreements) of the opinion of the
agent with her internal belief and with the opinions of her
neighbors. Clearly, considering utility maximizers instead of
cost minimizers does not affect the equilibria of the game.
However, the social welfare of a state (i.e., the sum of the
agents’ utilities) becomes now a natural quality measure for
a PoA/PoS analysis. Unfortunately, this type of analysis
is not robust to this change and it leads to different con-
clusions. Specifically, we prove that the PoA for the social
welfare is at most 2 (whereas it was unbounded for the so-
cial cost). We also prove that PoS for the social welfare is at
most 3/2 for values of α close to 1 (whereas for social cost
a tight bound of 2 was given). Thus, a slight change in the
way we measure equilibria that has, obviously, no effect on
the set of equilibria of the game, gives dramatically different
results. These results are presented in Section 3.

One can then wonder if also the results about minority
becoming majority may be similarly affected by small varia-
tions in the model. Note that when we move our focus from
social cost/welfare optimization to truthfulness, the quality

of a solution turns out to be unaffected from the specific
definition of payoffs or costs. However, results in [2] (and in
[4]) seem to heavily depend on the strategic play of agents
being modeled by sequential best-response deviations on un-
weighted social networks. May these results be affected by
considering a class of deviations that is slightly different from
best-response play, or multiple players updating at the same
time step, or weighted social networks?

To address this issue, we consider in this work several vari-
ants of the model of [2]. First, in place of best-response devi-
ations, we consider non-worse response deviations in which
an agent can change her strategy not only if the new strat-
egy is strictly better than the current one, but even if the
agent evaluates the two strategies as being equivalent. The
choice of non-worse response deviations, apart from being
the closest class of deviations that need to be evaluated for
testing the robustness of the results in [2], is motivated also
by the fact that a sequence of these deviations could be trig-
gered in the context of a carefully designed campaign that
uses knowledge of the structure of the social network. Inter-
estingly, even though small differences emerge, it turns out
that the findings in [2] essentially continue to hold even if we
take non-worse responses into account. This will be proved
in Section 4.

Next, we consider multiple players updating at the same
time step. Specifically, we consider the independent best
response dynamics, in which at each time step a random
subset of players is selected for update and only these se-
lected players are allowed to update their opinion to the
best-response, and concurrent best response dynamics, ac-
cording to which at each time step all players concurrently
adopt their best-response opinion. The first dynamics is a
quite realistic model for the evolution of updates. Indeed, it
is usually hard to synchronize the different components of a
real-world system so that only one of them updates at each
time step, and the remaining ones do not move until they are
notified about this change. Note that it is similarly unrealis-
tic to assume that players are able to synchronize themselves
so that they all update their opinions at the same time. Still,
the concurrent best response dynamics turns out to be an
important stress test for robustness.

Thus, in order to check at which extent these different
dynamics undermine the results of Auletta et al. [2], we
designed and run extensive experiments. The outcome of
these experiments turns out to be quite surprising: indeed,
one can observe that whenever minority becomes majority
with sequential updates, it still does with independent and
concurrent updates (with very few exceptions in the case of
concurrent updates; see below for details). We will discuss
these experiments and their results in Section 5.

Finally, we considered weighted social networks. In this
way, different neighbors can have a different influence on
a given player. Weighted graphs are thus able to model
more closely real world relationships, where people are af-
fected mainly by close friends and parents than by fleeting
friends. We run massive tests even on weighted social net-
works, from which it emerges that the findings of [2] are
robust also against weighted players.

We remark that we consider extensions of the original
model along multiple directions: different update rules (best
vs. no-worse responses), different selection rules (sequential,
concurrent and independent), weighted vs. unweighted net-
works, and homogeneous vs. heterogeneous agents. It is,
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in our opinion, very relevant that the property “minority
becomes majority” is very robust along all these directions,
and even when multiple directions are taken at same type.
A partial summary of our results is showed in Table 1.

Related Work. Discrete preference games have attracted a
lot of attention recently. This class of games was introduced
and analyzed by Ferraioli et al. [12] and, independently, by
Chierichetti et al. [9]. The former work mainly focuses on the
convergence rate of decentralized dynamics, namely best-
response and logit dynamics, to equilibria. The latter mainly
studies the Price of Anarchy and Stability, even in the case
where players can choose among more than two available
opinions. Auletta et al. [2, 4] showed that minority can
become majority as an effect of best-response deviations.

Two interesting extensions on discrete preference games
have been proposed by Bhawalkar et al. [6] and by Auletta
et al. [5]. Bhawalkar et al. [6] consider beliefs and opinions
in [0, 1], but, in addition to the opinion expressed, the social
relations of an agent are also part of her strategy and are
selected so that connections to agents with similar opinions
are more preferable. Auletta et al. [5] consider binary opin-
ions, but they model more complex social relations (e.g., to
allies and competitors or among more than two agents).

Alternative models are the HK model by Hegselmann and
Krause [16] and the DW model by Weisbuch et al. [23] ac-
cording to which the social influence of a player is restricted
to people whose opinion is close to his own. Recently, Fo-
takis et al. [13] analyzed the properties of these models on
social networks.

Discrete preference games are also related to the large lit-
erature on diffusion of information on social networks (we
refer the interested reader to [9]), on iterative voting on so-
cial networks [10, 21], and on the emergence of social norms
[22, 24].

2. PRELIMINARIES
Discrete preference games are formally defined as follows.

There are n agents; we use [n] = {1, 2, ..., n} to denote their
set. Each agent corresponds to a distinct vertex of a graph
G = (V,E) that represents the social network, i.e., the net-
work of social relations between the agents. Agent i has an
(internal) belief bi ∈ {0, 1} and her strategy set consists of
the two preferences that she can declare, i.e., xi ∈ {0, 1}.
A strategy profile (or, simply, a profile) is a vector of strate-
gies, with one strategy per agent. We use bold symbols for
profiles, i.e., x = (x1, . . . , xn) and the usual game-theoretic
notation (x−i, s) = (x1, . . . , xi−1, s, xi+1, . . . , xn) for every
i ∈ [n], every profile x ∈ S and s ∈ {0, 1}. In particular,
we will call the vector b = (b1, . . . , bn) of beliefs the truthful
profile. Moreover, for every y ∈ {0, 1}, we denote as y the
negation of y, i.e., y = 1− y.

At a profile x, the utility (or payoff) of agent i is de-
noted by ui(x) and it is defined as in (2). A profile is a
pure Nash equilibrium (or, simply, an equilibrium) if ui(x) ≥
ui(xi,x−i) for every agent i. As observed in previous works,
discrete preference games always have equilibria. Alterna-
tively, we can define the agents of discrete preference games
to be cost-minimizers, following the definition of [9] and [12]
for the cost ci(x) defined in (1). Clearly, the two defini-
tions are equivalent in the sense that they define the same
incentives for the agents.

Following previous work, we can evaluate the quality of a

profile using the social cost defined as the total cost of the
agents in the profile, i.e., SC(x) =

∑
i∈[n] ci(x). Now, fol-

lowing the classical line of research that was initiated with
the seminal work of [17], we can define the price of anar-
chy (PoA) of the game as the maximum value of the ratio
SC(x)
SC(x?)

over all equilibria x of the game, where x? denotes

the profile that minimizes the social cost. Furthermore, we
can define the more optimistic price of stability (PoS), intro-

duced by [1], as the minimum value of the ratio SC(x)
SC(x?)

over

all equilibria x. Both notions have been proposed in order
to assess the impact of selfish behavior on efficiency.

The above definitions of the price of anarchy and sta-
bility in terms of the social cost should not be considered
as unique. Since discrete preference games have a natural
(equivalent) definition with utility-maximizing agents, we
can instead use the social welfare to assess the quality of pro-
files. In particular, the social welfare of a profile x is simply
the total utility of the agents, i.e., SW (x) =

∑
i∈[n] ui(x).

Then, the PoA/PoS of a game in terms of the social welfare

is the maximum/minimum value of the ratio SW (x?)
SW (x)

over

all equilibria x of the game, where x? now is the profile that
maximizes the social welfare.

We often consider strategy updates that strictly improve
the utility of the deviating agent as well as ones that do not
decrease it. We use the term best-response moves for the
former and non-worse response moves for the latter. More-
over, we consider three different rules for selecting which
players are allowed to update their opinion at each time
step: (1) the sequential selection rule, according to which a
single player is allowed to update at each time step, (2) the
concurrent selection rule, that instead dictates that all play-
ers concurrently update their opinion at each time step, and
(3) the independent selection rule, according to which the set
of players that update their opinion is selected uniformly at
random at each time step.

3. PRICE OF ANARCHY AND STABILITY
As it is shown in [12] and [9], the price of anarchy of

discrete preference games in terms of the social cost can
be unbounded. However, the claim does not hold when we
consider the alternative definition for the price of anarchy
in terms of the social welfare.

Proposition 1. The price of anarchy of utility maximiz-
ing discrete preference games is at most 2.

Proof. Let x be an equilibrium. Observe that ui(x) ≥
1
2

(α+ (1− α) · |N(i)|) for every i, otherwise i has an incen-
tive to play strategy xi. The bound follows, since in the op-
timal profile x?, for every i, ui(x

?) ≤ α+(1− α) · |N(i)|.

It is not hard to see that the above bound is tight. Con-
sider indeed an instance with α = k

k+1
, with k > 0, the social

network G being a composition of k matchings, and assume
that each agent i has belief bi = 0. Clearly, the truthful
profile is the one that maximizes the social welfare. Con-
sider, instead, the profile x = (1, . . . , 1). Observe that this
is an equilibrium. Indeed, each agent i has exactly k neigh-

bors, and thus the utility is ui(x) =
(

1− k
k+1

)
k = k

k+1
.

Hence, i has not any incentive to adopt opinion 0, since
ui(0,x−i) = α = k

k+1
. It would be also possible to prove

that these are the only instances achieving this bound.
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Similarly, [9] claims that the price of stability for discrete
preference games is bounded by 2 and that there exist in-
stances achieving this bound for α close to 1. Again, we can
show that this does not hold when we evaluate the price of
stability in terms of the social welfare. Specifically, we prove
the following result.

Proposition 2. For α close to 1, the price of stability of
utility-maximizing discrete preference games is at most 3/2.

Proof. Let us set C = αn + 2(1 − α)m, where m is
the number of edges in the social network. Observe that
SW (x) = C − SC(x). Let x be the equilibrium that max-
imizes the social welfare and let x? be the optimal profile.
Moreover, let c = SC(x)/SC(x?). Finally, consider the
truthful profile b. If α ≥ m

m+n/6
, then SC(x?) ≤ SC(b) ≤

2(1 − α)m ≤ 1
4

(αn+ 2(1− α)m) ≤ C
4

. Hence, it follows
that

PoS =
SW (x?)

SW (x)
=
C − SC(x?)

C − SC(x)
= 1 +

(c− 1) · SC(x?)

C − c · SC(x?)

≤ 1 +
c− 1

4− c =
3

4− c ≤
3

2
,

where we used that the PoS in the cost-minimizing version
is at most 2.

Chierichetti et al. [9] also proved that the PoS is 1 if α ≤
1/2 or α = 2/3. This result carries over to the utility-
maximizing definition of the game.

It must be noted that, while robustness of PoA results
fails if one redefines discrete preference games as utility-
maximizing, it still holds if one instead considers different
definitions of social cost and social welfare. In particular,
even if we define social cost as the maximum/minimum cost
among agents, then it is easy to see that discrete preference
games still have unbounded Price of Anarchy: consider, in-
deed, an instance in which α ≤ k

k+1
, k > 0, and every agent

i has belief bi = 0 and at least k neighbors. In the optimal
profile b, each agent has 0 cost, but there are profiles, e.g.,
x = (1, . . . , 1), that are in equilibrium, and in which each
agent has a cost larger than 0. Similarly, if we define so-
cial welfare as the maximum/minimum utility among agents,
then arguments given above still hold, and thus the Price of
Anarchy in the utility-maximizing version is bounded by 2
and this bound is tight.

4. MINORITY BECOMES MAJORITY
In this section we seek social network topologies, for which,

starting from a belief assignment where 1 is supported by a
minority, we can sequentially convince agents to switch their
strategy (without decreasing their payoff), so that an equi-
librium with at least half of the players having preference 1
is reached. To this aim, we say that an assignment of beliefs
b to the vertices of a graph G is mwbm (minority weakly
becomes majority) for G if: (i) the number of vertices with
belief 1 in b is a minority; i.e., |{x ∈ V : bx = 1}| < n/2; (ii)
there is a subverting sequence of non-worse response moves
that starts from b and converges to an equilibrium b′ in
which the number of vertices with preference 1 is a (weak)
majority; i.e., |{x ∈ V : b′x = 1}| ≥ n/2. Note that this def-
inition is almost equivalent to the definition of mbm belief
assignment given in [2], except that we now consider non-
worse responses in place of best responses. Auletta et al. [2]
prove that if α < 1/2, then mbm belief assignments exist for

almost all graphs G. Here, we show that this result holds
even if we take into account no-worse responses. Specifically,
we prove that, if α ≤ 1/2, mwbm belief assignments exist
for all graphs G, except for the following forbidden graphs
(for which it is immediate to see that no mwbm belief as-
signment exists): (i) G is the complete graph Kn or consists
of n isolated vertices; (ii) n is even and G consists of an
isolated vertex and a clique Kn−1; (iii) n is even and all ver-
tices of G have degree at least n− 2. Note that for this last
subset of graphs the result of [2] does not hold. We prove
the following theorem.

Theorem 3. An mwbm belief assignment exists for every
non-forbidden graph G. Moreover, this assignment can be
computed in polynomial time.

We prove the theorem for graphs G = (V,E) with an even
number n = |V | of vertices. We then show how to extend
it to odd n. Let us first give a few more definitions and
fix notation. For subsets A,B ⊆ V , we denote by W (A,B)
the number of edges with one endpoint in A and the other
in B. For a singleton {u}, we will simply write W (u,B)
and W (A, u). Thus W (u, v) = 1 if (u, v) is an edge and 0
otherwise. A bisection of a graph G = (V,E) with an even
number n of vertices is just a partition (S, S) of V into two
disjoint sets S and S each of size n/2. Thus, S = V \S. We
call W (S, S) the width of the bisection. We say that (S, S) is
locally minimal if the width cannot be reduced by swapping
two vertices between S and S. That is, for every u ∈ S and
v ∈ S, W (S, S) ≤ W (S ∪ {u} \ {v}, S ∪ {v} \ {u}). The
following lemma from [2] will be very useful.

Lemma 4. ([2, Lemma 1]) For every locally minimal bi-
section (S, S) and for every u ∈ S and v ∈ S, W (u, S) −
W (u, S) +W (v, S)−W (v, S) + 2W (u, v) ≥ 0.

The following lemma can be found in [3].

Lemma 5. ([3, Lemma 8]) Let (S, S) be a bisection in a
n-node graph with less than n − 1 vertices with degree at
least n − 2. If there is a node z ∈ S with degree n − 2 and
W (z, S) = W (z, S) − 2 and W (x, S) = W (x, S) = n/2 − 1
for every x ∈ S, then one can compute in polynomial time
a bisection (S′, S′) such that W (S′, S′) < W (S, S).

The proof of Theorem 3 distinguishes between two cases.
The first case is the one in which there are n − 1 vertices
with degree at least n− 2.

Lemma 6. For every graph in which there are n− 1 ver-
tices with degree at least n − 2, there is a mwbm belief as-
signment.

The proof of this lemma resembles the one given for [3,
Proposition 6], and hence it is omitted.

As for the remaining case, we say that a graph G is of
type T1 if it has a bisection (S, S) such that, for all x ∈ S,
W (x, S) ≥ W (x, S)− 1 and there exists at least one vertex
u ∈ S for which W (u, S) ≥ W (u, S) + 1. Instead, a graph
G is of type T2 if it has a bisection (S, S) such that, for all
x ∈ S, W (x, S) ≥ W (x, S)− 1 and there exists at least one
vertex w ∈ S for which W (w, S) ≤ W (w, S) + 1 and w is
adjacent to two non-adjacent vertices u, v ∈ S. We prove
that graphs of types T1 and T2 admit an mwbm belief
assignment. Later we will prove that every non-forbidden
graph is of type T1 or T2.
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Proposition 7. Let G be a graph of type T1 with an
even number of vertices. Then, G has an mwbm belief as-
signment.

Proof. Let (S, S) be a bisection that is a witness that G
is of type T1 and let u ∈ S be a vertex such that W (u, S) ≥
W (u, S) + 1. Consider the belief assignment b obtained by
setting bu = 0, bx = 1 for every x ∈ S \ {u}, and bx = 0
for every x ∈ S. The number of vertices with belief 1 in b
is n/2 − 1. Consider now vertex u. If u sets its preference
equal to its belief then its payoff is W (u, S) + 1. If u sets its
preference to 1, then its payoff is W (u, S) ≥ W (u, S) + 1.
The profile b′ = (1S ,0S) after u has switched to 1 has a
weak majority of 1.

We complete the proof by verifying that in b′ no vertex
of S has an incentive to switch to 0, and thus there is an
equilibrium reachable from b′ in which the 1’s are a weak
majority. This holds for u. For x ∈ S \{u}, we observe that,
since it is playing its belief, its payoff is at least W (x, S)+1;
if x switches to 0, its payoff is at most W (x, S). Since G is
T1 we have that W (x, S) + 1 ≥W (x, S).

Proposition 8. Let G be a graph of type T2 with an
even number of vertices. Then, G has an mwbm belief as-
signment.

Proof. Let (S, S) be a bisection that is a witness that
G is of type T2 and u, v ∈ S and w ∈ S be as in the
definition of type T2 above. Consider the belief assignment
b obtained by setting, bu = bv = 0, bw = 1, bx = 1 for
every x ∈ S \ {u, v} and bx = 0 for every x ∈ S \ {w}. The
number of vertices with belief 1 in b is n/2−1. Now observe
that, for vertices u and v, switching to 1 does not decrease
the payoff. Indeed, the payoff of u in b is W (u, S) − 1
while the payoff obtained by switching to 1 is W (u, S)+1 ≥
W (u, S) − 1. Similarly, for v. Moreover, u and v are not
adjacent and thus they do not influence each others payoff.
The preference profile b′ after u and v have switched is b′ =
(1S∪{w},0S\{w}) and it has a majority of 1.

We complete the proof by verifying that in b′ no vertex
of S ∪ {w} has an incentive to switch to 0, and thus there
is an equilibrium reachable from b′ in which the number of
1’s is at least a majority. This is true for u and v. For w,
we observe that, since 1 is its belief, its payoff is at least
W (w, S) + 1; by switching to 0 the payoff would be at most
W (w, S) ≤ W (w, S) + 1. For x ∈ S \ {u, v}, since its belief
is 1, we have that the payoff is at least W (x, S) + 1. In
contrast, by switching to 0, the payoff would be at most
W (x, S) ≤W (x, S) + 1.

The two propositions above show that it is possible to
construct an mwbm belief assignment for a graph of type
T1 and T2 if a witness for the type is given. Next we prove
that, for every non-forbidden graph, such a witness exists.

For a bisection (S, S) we denote by B(S, S) the set contain-
ing (S, S), (S, S) and, for every bisection (S′, S′) obtained
by swapping two vertices between S and S, it contains both
(S′, S′) and (S′, S′). Moreover, we say that bisection (S, S)
is locally 2-minimal if it is locally minimal and it minimizes
the width among all the bisections obtained from (S, S) by
swapping two pairs of vertices. Finally, (S, S) is strong if it
does not satisfy the conditions of Lemma 5.

We are now ready to describe our algorithm. On input a
non-forbidden graph G, the algorithm starts by computing
a strong 2-minimal bisection (S?, S?) of G such that any

bisection in B(S?, S?) that is minimal is also strong. Then,
for each bisection (S, S) ∈ B(S?, S?), the algorithm checks
if either (S, S) is a witness that G is of type T1 or of type
T2.

The running time of the algorithm is polynomial: the de-
sired bisection can be computed in polynomial time by local
search [20, 19] and the set B(S?, S?) contains at most 2n2

bisections, that can be checked in time linear in n.
Finally, we prove that for every non-forbidden graph G

there is a bisection in B(S?, S?) that is a witness of G being
of type T1 or of type T2. We first consider the case in which
G has at least one isolated vertex.

Lemma 9. Let G be a graph with an even number of ver-
tices and at least one isolated vertex. If the algorithm above
does not find a witness that G is of type T1 then G is for-
bidden.

For bisection (S, S) of a graph G, let B′(S, S) ⊆ B(S, S) be
the subset of bisections (S′, S′) ∈ B(S, S) such that at least
one isolated vertex is in S′. We actually prove a stronger
statement: for every locally minimal bisection (S, S) of a
graph G if there is no witness that G is of type T1 in
B′(S, S), then G is forbidden. We stress that it is sufficient
to restrict ourselves to witnesses (S, S) in which S contains
at least one isolated vertex.

Proof. Fix a locally minimal bisection (S, S) and let i ∈
S be an isolated vertex. We start by proving that, for all x ∈
S, W (x, S) = W (x, S). Suppose by contradiction that there
exists vertex u ∈ S for which W (u, S) ≤ W (u, S) − 1 and
consider bisection (S′, S′) ∈ B′(S, S), with S′ = S∪{u}\{i}.
Its width is W (S′, S′) = W (S, S) + W (u, S) −W (u, S) ≤
W (S, S) − 1, contradicting the local minimality of (S, S).
Hence, since (S, S) is not a witness of G being of type T1, it
must be the case that W (x, S) = W (x, S) for every x ∈ S.

Next we prove that if for some vertex v ∈ S we have
W (v, S) = W (v, S)−c for some integer c ≥ 1, then c = 2 and
v is connected to all vertices in S. Indeed, Lemma 4 implies
that c ∈ {1, 2} and, furthermore, that v is connected to every
vertex x ∈ S (i.e., W (x, v) = 1). Therefore, W (v, S) = n/2
while, since v ∈ S, W (v, S) ≤ n/2− 2 which leaves c = 2 as
the only possibility.

Let A denote the subset of S consisting of all the vertices
x with W (x, S) = W (x, S) − 2; all vertices x ∈ S \ A have
W (x, S) ≥ W (x, S). We show that if A is not empty, then
the vertices of S form a clique. Assume otherwise and let
u,w ∈ S be two non-adjacent vertices of S. Pick a ver-
tex v ∈ A and consider bisection (S′, S′) ∈ B′(S, S), with
S′ = S ∪ {v} \ {u}. Since v ∈ A is connected to every
vertex x ∈ S, then for every vertex x ∈ S \ {u,w}, the
number of neighbor in S′ will be at least the same as in
S, i.e., W (x, S′) − W (x, S′) ≥ W (x, S) − W (x, S) = 0.
The vertex w is connected to v but not to u and thus
W (w, S′) −W (w, S′) ≥ W (w, S) −W (w, S) + 2 = 2. But
then, the bisection (S′, S′) would be a witness that G is of
type T1, that is a contradiction.

So, assuming that the set A is not empty, the vertices of
S form a clique. We next show that this implies that G is
a clique plus an isolated vertex and thus forbidden. Indeed,
since W (x, S) = W (x, S) for every x ∈ S and |S \ {i}| =
|S|−1, we have that every vertex of S is connected to every
vertex of S, except the isolated one. Such a high width for a
locally minimal bisection implies that the graph is a clique
plus an isolated vertex (and actually A = S \ {i}).
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If instead A is empty, we claim that W (x, S) = W (x, S)
for every vertex x ∈ S. Indeed, assume by contradiction
that W (v, S) ≥W (v, S)+1 for some v ∈ S and let u be any
vertex of S. Then, the bisection (S′, S′) ∈ B′(S, S), with
S′ = S ∪ {u} \ {i} would be a witness that G is of type T1,
that is a contradiction.

To conclude the proof, we will show that if A is empty,
then G must consist of n isolated vertices. Assume other-
wise that G has some edge; then, since (S, S) bisects the
neighborhood of each vertex, there must be an edge (u, v)
between vertices u ∈ S and v ∈ S. Then, the bisection
(S′, S′) ∈ B′(S, S), with S′ = S ∪{u} \ {i}, is a witness that
G is of type T1, that is a contradiction.

This completes the proof of Theorem 3 for all graphs with
an even number of vertices and one isolated vertex. We will
now complete the proof of Theorem 3 for all graphs with an
even number of vertices by proving the following lemma.

Lemma 10. Let G be a graph with an even number of
vertices and no isolated vertex. If the algorithm above does
not find a witness that G is of type T1 or of type T2, then
G is forbidden.

Proof. We first show that if there is a strong locally
minimal (not necessarily 2-minimal) bisection (S, S) of G
that is not a witness for G being of type T1 or of type T2,
then W (x, S) = W (x, S) of every x ∈ V . Assume for sake of
contradiction that there is a non-empty subset A ⊆ S, such
that W (u, S) ≤W (u, S)−1 for every u ∈ A. Notice that, by
Lemma 4, it must be the case that W (u, S) ≥ W (u, S) − 2
for u ∈ A.

We first observe that every u ∈ A must be connected to
every vertex of S (and, hence, their degree will be at least
n − 2). Indeed, if this was not the case, let v ∈ S be a
vertex that is not adjacent to u. Lemma 4 implies that
W (v, S) ≥ W (v, S) + 1 and W (x, S) ≥ W (x, S) − 1 for all
vertices x ∈ S \ {v}. Hence, (S, S) is a witness that G is of
type T1, that is a contradiction.

Next we observe that the vertices of S form a clique. In-
deed, if S contains two non-adjacent vertices v and w, then,
by applying Lemma 4 again, (S, S) is a witness that G is of
type T2, that is a contradiction. Hence, W (x, S) = n/2− 1
for every x ∈ S. Moreover, since the bisection (S, S) is
not a witness that G is of type T1, then it must be the
case that W (x, S) ≥ W (x, S) for every x ∈ S. Hence,
the degree of these vertices is at least n − 2. Moreover,
W (S, S) ≥ n

2

(
n
2
− 1
)
.

The only vertices for which we do not have yet a lower
bound on the degree are the ones in S \ A. Note that
W (x, S) ≥ W (x, S) for every such vertex x. Note that if
W (x, S) ≥ n/2 − 1, that the degree of x is at least n − 2.
In order to bound the degree of the remaining vertices, we
first note that it is not possible that there exists u ∈ A
with W (u, S) = W (u, S) − 2. Indeed, if this is the case,
the condition of Lemma 5 holds (note that we are assuming
that the number of vertices with degree at least n− 2 is not
n − 1, since this case was solved by Lemma 6). But this is
a contradiction, since (S, S) is strong.

Hence, for each x ∈ S, we have that W (x, S) ≥W (x, S)−
1. On the other side, it must be the case that for each
such vertex, W (x, S) ≤W (x, S), otherwise (S, S) is of type
T1. Hence, we can partition S in three subset: S1 contains
all vertices x of degree n − 1 with n/2 − 1 = W (x, S) =
W (x, S)− 1; S2 contains all vertices x of degree n− 2 with

n/2−1 = W (x, S) = W (x, S); finally, S3 contains all vertices
x of degree less than n−2 withW (x, S) = W (x, S) < n/2−1.
Note that either S3 is empty or |S3| ≥ 2, since all vertices
in S1 ∪ S2 are connected with each vertex in S. Moreover,
for every pair u, v ∈ S3 we have that W (u, S) + W (v, S) >
n/2 and thus they have at least a common neighbor in S.
Indeed, if W (u, S) + W (v, S) ≤ n/2, then since W (S, S) ≥
n
2

(
n
2
− 1
)
, it must be the case that all the remaining n

2
−

2 vertices are connected to every vertex in S. Then they
all belong to S1 and they are connected to each vertex in
S. In particular, they are all connected to u and v. Thus,
W (u, S) ≥ n/2− 2 and W (u, S) ≥ n/2− 2. Since u, v ∈ S3

and thus W (u, S) = W (u, S) and W (v, S) = W (v, S), we
have that W (u, S)+W (v, S) ≥ n−4, that is a contradiction
for every n > 8. Thus, if S3 is not empty, then there are
two vertices in S3 that are not adjacent and they have a
common neighbor in S. Then, (S, S) is of type T2, that is
a contradiction.

So, we have that W (x, S) ≥ W (x, S) for every x ∈ S.
If, in addition, we had W (u, S) ≥ W (u, S) + 1 for some
u ∈ S, then (S, S) would be a witness for G being of type
T1, that is a contradiction. Hence, W (x, S) = W (x, S) for
every vertex x ∈ S. The same argument can be used for all
vertices of S.

Let (S?, S?) be a locally 2-minimal bisection. We show
that every pair of non-adjacent vertices u ∈ S? and v ∈ S?

have the same neighborhood; that is, N(u) = N(v). Note
that for every u ∈ S? there is a non-adjacent v ∈ S?, and
vice versa: indeed, |S?| = |S?| and W (x, S?) = W (x, S?) for
every vertex x, since (S?, S?) is locally minimal and not a
witness for G being of type T1 or of type T2. Now consider
the bisection (S′, S′) ∈ B(S?, S?) where S′ = S ∪ {v} \ {u}.
Observe that W (S′, S′) = W (S?, S?). Then, since (S?, S?)
is locally 2-minimal, it follows that (S′, S′) is a locally mini-
mal bisection. Moreover, this bisection is not a witness of G
being of type T1 or of type T2. Hence, W (x, S′) = W (x, S′)
for every vertex x. Thus, every vertex that is adjacent to u
is also adjacent to v and vice versa, i.e., N(u) = N(v).

Finally, we claim that the vertices of S? (and, symmet-
rically, the vertices of S?) form a clique. Assume for sake
of contradiction that some vertex w ∈ S? exists that is not
adjacent to u. Then, w is not adjacent to v either and, by
repeating the same argument as above, we conclude that
N(w) = N(v) and, consequently, N(w) = N(u). Now, pick
a vertex u′ ∈ N(w)∩ S? (such a vertex exists since w is not
isolated and W (w, S?) = W (w, S?)) and observe that it is
adjacent to the non-adjacent vertices u and w in S?. This
triplet shows that (S?, S?) is then a witness that G is of type
T2, that is a contradiction.

In conclusion, since W (x, S?) = W (x, S?) = n/2 − 1 for
every vertex x, we have that all vertices have degree n − 2
and, hence G is forbidden.

Let us now to consider the case of graphs G with an odd
number of vertices. If G is non-forbidden then the graph
G′ obtained by adding one isolated vertex i to G is non-
forbidden, has an even number of vertices and at least one
isolated vertex. From Lemma 9, it follows that G′ is of type
T1 and we can find a witness (S, S) with i ∈ S. Then,
it is immediate to see that the mwbm belief assignment b
described in Proposition 7, when restricted to the vertices
of G′, gives an mwbm belief assignment for G.
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5. EXPERIMENTAL RESULTS
In this section we will discuss the settings and the results

of experiments that we run in order to evaluate the robust-
ness of the results in [2]. Specifically, in [2], it is shown
that for all graphs, except few forbidden graphs (i.e., the
graph with no edges and some “almost-cliques”), it is pos-
sible to find an initial assignment of beliefs to vertices and
a sequence of best responses that leads to an equilibrium
in which minority becomes majority. Actually, their result
is stronger: they prove that there is an initial assignment
of beliefs to vertices and a single vertex u such that, once
u plays his best-response, every sequence of best responses
leads to an equilibrium in which minority becomes major-
ity. Not only, they also show that this initial assignment can
be easily found by looking at the neighborhood of a locally
minimal bisection.

In our first experiments, we test whether these results
still hold when multiple players are allowed to update their
strategies at each time step. Specifically, we test if when
α < 1/2 it holds that the best-response dynamics with con-
current or independent selection rule, starting from an ini-
tial assignment of beliefs selected according to some bisec-
tion in the neighborhood of a locally minimal bisection of
a non-forbidden graph, still reaches an equilibrium in which
minority becomes majority.

To this aim, we generated random G(n, p) graphs, with
odd n going from 7 to 99 (we focused only on odd n for
which minority and majority are always well-defined) and
p = 0.25, 0.5, 0.75 in order to produce graphs with low,
medium, or high density. Hence, in total we considered 141
different pairs (n, p). For each of these pairs, we generated
100n different graphs, resulting in a total of 747300 graphs.
For each of these graphs, we checked if it is forbidden. Since,
as discussed above the set of forbidden graph is very small,
it turns out that very few forbidden graphs have been found.
Specifically, 740864 graphs out of 747300 (i.e, 99.14%) turn
out to be non-forbidden. For each of these graphs we com-
puted a locally minimal bisection B via local search. For
graphs with an odd number of vertices we consider bisec-
tions B = (S, S) in which one side, S, has one element more
than the other, S. Similarly we define the neighborhood of B
as the set of all bisections B′ that can be obtained from B ei-
ther by moving a vertex of S in S or by swapping one vertex
of S with a vertex of S. Then we considered the bisection B
and every bisection in its neighborhood. We followed the ap-
proach of Auletta et al. [2] for building an initial assignment
of beliefs from these bisections: that is, we considered a mi-
nority of n−1

2
vertices consisting of all vertices in S except a

single vertex u and a majority of n+1
2

vertices consisting of

u and of vertices in S (for every bisection, we considered all
possible choices for u, even though the result in [2] specifies
how to choose this vertex). Finally, for each of these initial
opinion profiles we run both the concurrent best-response
dynamics and the independent best-response dynamics un-
til they reach an equilibrium or until 100 steps have been
executed. As we will see, this maximum allowed number of
steps is sufficiently high to test the reachability of an equi-
librium as most of the failures will occur with small graphs.
We say that a graph fails for the given dynamics if for every
starting opinion profile the dynamics do not converge to an
equilibrium in which the minority became the majority. Our
experimental results are summarized in Table 1.

Seq. BR Seq. NWR Ind. BR Con. BR

Unweighted 100% 100% 100% 99.93%
Weighted 100% 100% 100% 99.63%

Table 1: Percentage of graphs in which minority
becomes majority

The first finding that comes out from these tests is very
surprising: for every non-forbidden graph considered in the
experiment, if players update their opinion according to
the independent best-response dynamics, then one can find
an initial assignment of beliefs from which the dynamics
leads to an equilibrium in which minority becomes majority.
Roughly speaking, this means that even though the proof of
Auletta et al. [2] heavily relies on the selection rule being
sequential, their results appear to still hold even if play-
ers choose independently and without any synchronization
when to update their opinion.

Although we believe that the independent selection rule is
far more realistic than the concurrent one, the latter plays
an important role in confirming the robustness of the results.
Indeed, it turns out that for the 99.93% of the non-forbidden
graphs that have been considered, minority becomes major-
ity even if players concurrently update their opinion to the
best response at each time step.

The above success percentage is surprisingly large. Still,
we believe that it is interesting to investigate which graphs
fail for the concurrent best-response dynamics. In Figure 1
we show how the percentage of failure changes as n or p
change. It turns out that the large majority of failures occurs
when n is small and the graph is dense (i.e., p is large). This
suggests that the graphs for which concurrent best-response
dynamics cannot lead to an equilibrium with minority be-
coming majority must be very dense. Indeed, these are the
graphs that have a higher probability to occur when n is
small and p is large. Thus, although the set of graphs for-
bidden for the concurrent best-response dynamics is larger
compared to the case of sequential updates, it still consists
of either almost empty graphs or almost-cliques.

Figure 1: Failure percentage for concurrent best-
response dynamics

We also investigated how graphs fail for the concurrent
best-response dynamics. This happens either because the
dynamics converges to an equilibrium where minority does
not become majority, or because it does not converge at
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all (within 100 steps). It turns out that the latter kind of
failures is far more frequent than the former. As reported in
Table 2, only 65 among the 569 failures that we observed in
our experiments are due to convergence to bad equilibria.

Failures Bad Equilibria No Convergence

Unweighted 569 65 504
Weighted 332 0 332

Table 2: Failures caused by convergence to bad equi-
librium or non-convergence

Apart from the effect of different selection rules, we were
also interested in understanding if the results in [2] can be
extended to edge-weighted graphs. In this case, the cost of
agent i is

ci(x) = α · |xi − bi|+ (1− α) ·
∑

j∈N(i)

wij |xi − xj |,

where wij is the weight on the edge (i, j). To test how
the different dynamics perform in this setting, we run ex-
periments similar to the ones described above. Specifically,
we considered G(n, p) graphs for 66 different pairs (n, p),
namely odd n = 7, . . . , 49 and p = 0.25, 0.5, 0.75. For each
pair we generated 50 different graphs, for a total of 92400
graphs, among which 90789 turned out to be non-forbidden.
We assigned random weights to every edge; the weights were
normalized so that the larger edge weight is 1. For these
weighted graphs, we computed the initial assignment of be-
liefs exactly as above, except that the minimality of bisection
is evaluated not with respect to the number of edges in the
cut, but with respect to the total weight of these edges. For
each starting opinion profile we run four different dynamics:
best-response dynamics with sequential, independent, and
concurrent update rule, and sequential non-worse-response
dynamics.

The results of these experiments suggest that the find-
ings of [2] are very robust even against the extension of
the model to weighted graphs. Indeed, it turns out that
for every non-forbidden graph, there is a belief assignment
taken in the neighborhood of a locally minimal bisection,
from which minority becomes majority whenever players
update their opinion according to sequential best-response,
sequential no-worse-response, or independent best-response
dynamics. That is, for every graph considered in our ex-
periment and for each of these three dynamics, we have al-
ways been able to find a minority that becomes majority
at the equilibrium. For concurrent best-response dynamics,
the behavior is similar to what we showed for the case of
unweighted graphs. Specifically, we found that the dynam-
ics allows minority to become majority in 99.63% of cases,
and failure mainly occurs when n is small and p is large,
i.e., on graphs that are in some way extreme. Moreover, all
these failures are due to the fact that the dynamics do not
converge at all.

We conclude this section, by observing that robustness is
not limited to the case in which α < 1/2 but, instead, the
results continue to hold even if each player i is allowed to
have her own different value of αi ∈ [0, 1]. For this setting,
Auletta et al. [4] recently proved that minority can become
majority for every graph except when every vertex has ei-
ther too many neighbors or too few neighbors, where the
exact thresholds on the number of neighbors depend on the

value of αi. This new result extends the previous one in [2]
even with respect to the ability of computing the initial as-
signment of beliefs from which minority becomes majority:
instead of looking at locally minimal bisections and their
neighborhood, one needs to consider 3-minimal bisections,
that is bisections whose width cannot be decreased by mov-
ing at most 3 vertices from each side to the other, and their
3-neighborhood, i.e., the bisections achieved by these moves.

We then tested even the robustness of this extension to
changes in the update rule, no-worse-response in place of
best-response, and to changes in the selection rule, indepen-
dent and concurrent updates in place of sequential ones. As
above, we generated a large number of G(n, p) graphs, and
we assigned to each vertex i a random αi ∈ [0, 1]. For those
among these graphs that turned out to be non-forbidden, we
computed a 3-minimal bisection B. For B and every bisec-
tion in its 3-neighborhood, we computed the resulting initial
assignment of beliefs. From each of these starting opinion
profiles, we run the sequential no-worse response dynamics,
the independent best-response dynamics, and the concur-
rent best-response dynamics. A graph is said to fail for a
dynamics if it does not converge to an equilibrium in which
minority becomes majority for every starting profile.

The results of these tests turn out to be even more sur-
prising than the previous ones: whenever the degree of each
vertex is not too low and not too high (with respect to αi),
then in the 3-neighborhood of a 3-minimal bisection there
always exists an initial belief assignment from which minor-
ity becomes majority for every dynamics that we considered,
including the concurrent best response dynamics. Thus, as
long as we restrict ourselves to graphs that are far away from
being forbidden, then the results of [4] appear to be robust
against both the change in the update rule and the change
in the selection rule.

6. OPEN PROBLEMS
Even though our analysis shows that PoA and PoS depend

on whether agents are utility maximizers or cost minimiz-
ers, we believe that it is still interesting to further analyze
the PoS in terms of the social welfare and explore its de-
pendence on parameter α, as done in [9] for the social cost
quality measure, and on the topology of the social network.
It would be also interesting to consider, as in [9], extensions
of the problem to more than two strategies, and to evaluate
PoA and PoS for the utility-maximizing version. Yet another
interesting direction, related to the robustness question dis-
cussed in this paper, would be to analyze ε-approximated
equilibria [8], i.e., profiles in which no player can improve
her utility by more than ε.

As for the problem of minority becoming majority, the
obvious question is to prove at which extent minority can
become majority for the more general processes and game
definitions defined in this work. Finally, one can be inter-
ested in understanding how probable the minority becomes
majority phenomenon is. How is this frequency related to
the topological properties of the network?
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