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ABSTRACT
The emergence of online social networks has revolutionized
the way people seek and share information. Nowadays, pop-
ular online social sites as Twitter, Facebook and Google+
are among the major news sources as well as the most effec-
tive channels for viral marketing. However, these networks
also became the most effective channel for spreading misin-
formation, accidentally or maliciously. The widespread dif-
fusion of inaccurate information or fake news can lead to un-
desirable and severe consequences, such as widespread panic,
libelous campaigns and conspiracies. In order to guarantee
the trustworthiness of online social networks it is a crucial
challenge to find effective strategies to contrast the spread
of the misinformation in the network.

In this paper we concentrate our attention on two prob-
lems related to the diffusion of misinformation in social net-
works: identify the misinformation sources and limit its dif-
fusion in the network. We consider a social network where
some nodes have already been infected from misinforma-
tion. We first provide an heuristics to recognize the set of
most probable sources of the infection. Then, we provide an
heuristics to place a few monitors in some network nodes in
order to control information diffused by the suspected nodes
and block misinformation they injected in the network be-
fore it reaches a large part of the network.

To verify the quality and efficiency of our suggested so-
lutions, we conduct experiments on several real-world net-
works. Empirical results indicate that our heuristics are
among the most effective known in literature.

Keywords
Social Network; Spread of Misinformation; Independent Cas-
cade Model; Maximum Spanning Arborescence; Unbalanced
Cut; Source Identification

1. INTRODUCTION
In recent years online social networks have revolution-

ized the way we communicate, seek and share information.
Nowadays, millions of people use popular online social sites
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such as Twitter, Facebook and Google+ to publish, read,
and spread information and they rely on these networks as
their major news sources. The popularity of online social
networks comes from their incredible efficiency in informa-
tion dissemination and sharing based on trust relationships
built among their users. However, these trust relationships
can also be used to spread rumors, inaccurate or even fake
information. Thus, online social networks became the most
effective channel for spreading misinformation. Here, we
consider as misinformation both the inaccurate and not ver-
ified information accidentally diffused by users, and fake in-
formation created and spread by malicious users to mislead
people and obtain illicit profit. The diffusion of inaccurate
information or fake news can lead to undesirable and se-
vere consequences, such as widespread panic, libelous cam-
paigns against competitors, conspiracies, frauds. For exam-
ple, false rumors about an earthquake in Ghazni province
in Afghanistan in 2012 caused thousands of people to leave
their home for long time [9]. Similarly, a false rumor origi-
nated from Twitter in June 2011 about an injury suffered by
the former U.S. President Obama caused a temporary insta-
bility in financial markets [16]. Several other cases of mis-
information occurred recently, such as the diffusion of false
information about vaccinations that is causing many parents
to refrain from immunizing their children [20], or the panic
created by tweets establishing that Ebola was rampant in
US [22]. Threats related to misinformation on online social
networks attracted attention of the scientific community [8,
29] and the problem of finding effective strategies to guar-
antee the trustworthiness of online social networks has been
recognized as a priority [27]. In 2013 the World Economic
Forum recognized the issue of “misinformation spread” has
one of the top ten globally significant issues of the year [28].

The problem of contrasting the spread of misinformation
in an online social network is complex and multi-faceted.
We can identify three main steps: (i) recognize misinfor-
mation; (ii) identify misinformation sources; (iii) limit the
diffusion of misinformation. In this paper we concentrate
our attention on the last two points. We consider a scenario
where misinformation has already been diffused in the net-
work and administrators have been able to recognize it and
find the set of the infected users. We want to identify the
sources of misinformation and limit their ability to continue
in diffusing misinformation in the network.

Identifying its sources is crucial in contrasting misinfor-
mation, since it allows network administrators to under-
stand the ultimate goals of the misinformation, recognize
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their targets, punish the guilty nodes or orchestrate effec-
tive strategies for containing its diffusion. Due to the size of
online social networks, to recognize misinformation sources
can be a very challenging task and in several scenarios it is
not possible to identify them for certain. For this reason, so-
cial network administrators are reluctant to ban users from
the network if they do not have incontrovertible evidence of
their misbehavior. A more pragmatic approach is to create a
list of “suspects” that can be monitored in order to recognize
the misinformation that they could inject in the network in
an early stage and thus reduce its effect.

The control can be performed through monitors placed on
users to parse all their activities, recognize misinformation
and block it. Monitors in social media as Twitter or Face-
book, could be implemented by computer-aided accounts
whose duty is to recognize spam and other malicious infor-
mation, and to execute accurate fact checking in order to
validate information that goes through them. Monitoring
could be also realized by real users that will be paid for false
or malicious information that they recognize and block.

Given the huge number of users in online social networks
it may be impossible or too expensive to place monitors on
all users. On the other hand, it could be impossible or unde-
sired to place monitors directly on suspect users, because we
cannot have access to them or we do not want to raise their
suspicions. Thus, we have to select a set of users to mon-
itor, distinct from the set of suspected sources, such that
we can guarantee misinformation injected into the network
will be intercepted. Clearly, we cannot guarantee that mis-
information is recognized as soon as it is created, but we
would like to take the number of users exposed to misinfor-
mation small. Moreover, in several contexts we could have
specific users that must be protected from misinformation.
For example, we want to protect parents from misinforma-
tion about vaccination.

Our Contribution. We model a social network as a di-
rected weighted graph G = (V,E,w), where V is the set of
nodes in the network, E ⊆ V ×V is the set of directed edges,
and w : E → [0, 1] defines for each edge (u, v) the probability
that u will transmit its information to v.

We model the diffusion of (mis-)information on this net-
work through the Independent Cascade Model, that has first
investigated by Goldenberg et al. [12, 13] and by Kempe
et al. [17]. Given a set S ⊆ V of sources, let A(t) de-
note the set of nodes that have been infected at time t and
At =

⋃
t′<tA(t′) be the set of all nodes that have been in-

fected within time t. Then, the process works in steps as
follows. We start with A(0) = S. At each time step t,
for every u ∈ A(t − 1) and every v ∈ V \ At−1 if the edge
(u, v) exists then v will be infected with probability w(u, v).
The process ends after t∗ steps if no new node is infected in
step t∗ (i.e. A(t∗) = ∅). In the following we will omit the
subscript t when it is clear from the context.

In this paper we consider two optimization problems:
Source Identification (SI) problem: given the graph G
and the set A of infected nodes, find a set S of nodes having
maximum probability to be the sources of the infection;
Monitor Placement (MP) problem: given G, the set S
of source nodes, the (possibly empty) set T of target nodes
and integer k, find the minimal set M of nodes, disjoint from
S ∪ T , that is a cut of the graph completely separating S
and T such that the side of the graph containing S has at
most k nodes.

For both these problems we propose heuristic solutions.
Our heuristics build on graph-theoretic background. We re-
duce the SI problem to the Maximum Spanning Arbores-
cence/Branching problem, and our heuristics will be based
on the algorithms proposed in [5, 7] and [4]. The core of our
heuristic for the MP problem, instead, lies on the computa-
tion of a k–unbalanced cut [14].

We remark that we concentrate our attention on heuristics
since both the problems are provably hard. Indeed, Lappas
et al. [18] proved that, even if the number of sources k
is known, the Source Identification problem is NP-hard to
solve even on Direct Acyclic Graph and it is NP-hard even to
produce a β-approximation for this problem, for every β > 1.
Zhang et al. [30], instead, considered a slightly different
version of our Monitor Placement problem and proved it is
#P -complete. It is easy to prove that the problem in [30]
can be polynomially reduced to our MP problem and so also
MP is #P -complete.

To verify the quality and efficiency of our heuristics we
conduct extensive experiments on three real-world networks:
Gnutella, Wiki-Vote and Epinions. The results indicate that
our heuristics sensibly outperform the most effective alter-
natives known in literature.

Related works. In recent years the issue of the spread of
misinformation in social media received great attention not
only by social and computer scientists but also by reporters,
economists, social media businessman and politicians. In
particular, research concentrated on three directions: how
to model the diffusion of misinformation, how to distinguish
misinformation from true information and how to limit its
spread in the network. Here, we only refer to works in the
third direction, that is the more relevant to this paper.

The first works on the source identification problem used
simple epidemics models: that is, they describe the informa-
tion diffusion process as an infection disease spreading over
the population. These works adopted centrality measures to
identify the sources of the diffusion process. In particular,
Comin and da Fontoura Costa [6] run several experiments
to compare degree, betweenness, closeness, and eigenvector
centrality in identifying the sources of the misinformation.

Along the same line of research, Shah and Zaman [26] pro-
posed a new centrality measure, named rumor centrality,
and showed that it outperforms all the previously consid-
ered centrality measures. Rumor centrality revealed to be
very influential and it has been largely used, and extensions
and generalizations have been proposed to identify sources
of epidemics spread in several different settings, varying in
the number of sources, the topology of the network and the
coarseness of information about the set of affected nodes
that is known to the algorithm. We refer interested readers
to the survey of Jiang et al. [15] and references therein.

Epidemics models assume that there exists a global pa-
rameter that describes the probability that a user is infected
by a neighbor. While this assumption simplifies the compu-
tational complexity of the model, it fails in describing real-
world situations where users are differently bent to accept in-
formation from their neighbors. To overcome this difficulty,
the Independent Cascade model has been proposed as a gen-
eralization of the epidemics model where each edge has its
specific activation probability. Clearly, this generalization
makes the problem extremely more complex to deal with.
Indeed, as discussed above, Lappas et al. [18] prove that
for the Source Identification problem with an Independent
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Cascade model of diffusion it is NP-hard even to produce a
β-approximation, for every β > 1.

This hardness result leaves us only two possible research
directions: either we focus on special network topologies or
we consider general heuristics with good experimental per-
formances. Lappas et al. in [18] follow the first direction and
study the Source Identification problem on tree networks.

Nguyen et al. [23], instead, follow the second direction and
propose efficient heuristics for identifying sources of misin-
formation in general networks. In this work we build upon
the contribution of [23]. We present a new heuristic ap-
proach whose performance turns out to be much better than
algorithms previously presented. Moreover, we remark that
both algorithms in [18] and [23] need to know in advance the
number k of sources to find. Our heuristic, instead, works
well even if the number of sources is not known.

A correct identification of sources can be very useful even
for limiting the diffusion of misinformation. Two main ap-
proaches have been proposed in literature to address this
problem. The first one, proposed by Budak et al. [3], re-
quires that a true information campaign is initiated from a
subset of highly influential nodes. In this way, the diffusion
of misinformation and true information proceeds in parallel,
except that nodes that have received the true information
will be immune to the misinformation and will not transmit
it. However, in order to have a true information campaign
that would be effective in the tentative of limiting misin-
formation, one must carefully choose the seeds from which
the diffusion starts. We remark that this approach requires
perfect knowledge of the sources of misinformation in order
to correctly selecting the seeds of the contrasting campaign.

Budak et al. [3] studied the computational complexity
of this problem and proposed some preliminary solutions.
A similar approach has been taken by Nguyen et al. in
[24] and [21]. They introduced the Node Protector prob-
lem which aims to find the smallest set of highly influential
nodes whose decontamination with good information helps
to contrast the viral spread of misinformation. They give in-
approximability results and propose greedy approximation
algorithms. Variants of the problem have been also consid-
ered by Fan et al. [10], that focused on a community-based
network, and Zhang et al. [31] that, instead, not only aim to
minimize the spread of misinformation, but also to maximize
the diffusion of true information.

Zhang et al. [30] recently proposed a different approach
for limiting the spread of misinformation. Namely, they pro-
pose to place monitors over the network that are able to de-
tect misinformation and block it. A good monitor placement
should satisfy two requirements: on one side, we would like
to place as few monitors as possible, on the other side, we
would like that our monitors limit the number of nodes ex-
posed to misinformation. These two discording goals make
the problem very difficult. Indeed, Zhang et al. [30] proved
that the problem is #P -complete, and proposed an heuris-
tics for placing monitors so that misinformation is detected
with high probability before it reaches target nodes.

In this work, we strengthen the model [30] by putting more
stringent requirements on the number of nodes exposed to
misinformation and requiring that misinformation is always
detected (more details in Section 3). Nevertheless, experi-
ments show that our heuristics has performance comparable
or even better than the algorithm proposed in [30].

2. SOURCE IDENTIFICATION
We start by recalling the statement of the Source Identi-

fication problem. Here we are given a social network G =
(V,E,w) and a set A ⊆ V of nodes infected by misinfor-
mation. We assume that misinformation diffused in G ac-
cording to the Independent Cascade model starting from a
number k (maybe unknown) of sources. Our goal is to dis-
cover the sources of the misinformation.

To this aim, we consider the subgraph HA of G induced by
A and w.l.o.g. we assume HA is connected. In the following
we will omit the subscript when it is clear from the context.

Our approach is built on the idea that the structure of
the network H can help to guess how the misinformation
diffused. In particular, we would like to find the most prob-
able path that misinformation went through, conditioned on
the fact that the set of infected nodes is A. We now discuss
how we implement this idea and how we use it to compute
a set of probable sources.

Warm-up: Single Source. Consider first the simpler case
in which the misinformation starts from a unique source.

Our approach is based on the concept of maximum span-
ning arborescence. An arborescence of the graph G is a
directed subgraph T on a subset V ′ ⊆ V of vertices of
G, such that there is a distinguished node r ∈ V ′, called
root, and a single directed path from r to every other ver-
tex in V ′. A spanning arborescence of G is an arborescence
containing all the vertices of G. Roughly speaking, an ar-
borescence is a directed tree and a spanning arborescence
is a directed spanning tree. The weight of an arborescence
T = (V ′, E′) is the sum of the weights of the edges in T ,
i.e., W (T ) =

∑
(u,v)∈E′ w(u, v). The maximum spanning ar-

borescence is a spanning arborescence of maximum weight.
Let T be a spanning arborescence of the subgraph H in-

duced by the set of infected nodes A and let r be its root. We
denote as Er,T the event that misinformation spreads from
r according to T , i.e., if it occurs that in an information dif-
fusion process starting from r and proceeding according to
the Independent Cascade model each node v ∈ H is infected
by its unique predecessor in T .

Let T be the set of all the spanning arborescences of H
and let T ? ∈ T be a maximum spanning arborescence of H.
It is immediate to see that the following observation holds.

Observation 1. T ? = arg maxT∈T Pr (Er,T ).

Proof Sketch. Let T be a spanning arborescence with
root r and assume that misinformation spreads from r ac-
cording to T . Then, at time 0 the root r is the unique
infected node and at the next time step only its children in
T become infected Since in the Independent Cascade model
each neighbor is infected independently, then the probability
that all the children of r are infected at time step 1 is∑
(r,v)∈E(T )

Pr (r infects v | r is infected) =
∑

(r,v)∈E(T )

p(r, v).

By recursively repeating this argument on all the levels of
the arborescence T , and considering that for each node v
of H there exists a unique path in T from r to v, we can
prove that the probability that misinformation spreads from
r according to T is equal to W (T ). Thus, T ? is the most
probable spanning arborescence that misinformation went
through to infect nodes in A.

Notice that the probability that a node is the source of
the misinformation is the sum of the probabilities of all the
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arborescences rooted in that node. But computing this prob-
ability is not computationally affordable. However, the root
of the maximum spanning arborescence T ∗ is a natural can-
didate to maximize this probability.

This simple observation then suggests a heuristic for iden-
tifying the single source of misinformation: to choose the
root of the maximum spanning arborescence of the subgraph
H induced by the set of infected nodes A.

Despite the simplifying assumptions, our approach has
some very interesting features. First, the problem of com-
puting spanning arborescences is very well studied and a
lot of algorithms are known both for general networks and
for specific classes of graphs. In particular, it is possible to
efficiently compute the maximum spanning arborescence of
a graph through the Chu-Liu/Edmonds algorithm indepen-
dently proposed by Chu and Liu [5] and by Edmonds [7].
Moreover, even if the approach is so simple, it turns out to
perform very well in practice. In fact, in all the experiments
we run (see Section 4 for more details) our heuristic was
able to find the right source of misinformation in more than
70% of the cases, largely outperforming performance of the
algorithm proposed in [23].

Multiple Sources. Clearly, the assumption that misinfor-
mation originated in only one source is too restrictive and
in this paragraph we show how to relax it.

The heuristic proposed for the single source case appears
to be hard to extend to the case of multiple sources because
it is based on spanning arborescences. Thus, if we assume
that misinformation diffuses along the edges of an arbores-
cence it is not clear how to select sources out of the root of
the arborescence. For example, if we select nodes that are
close to the root, we are implicitly limiting the influence of
the root node, but nodes that are far away from the root
may be scarcely influential.

However, the idea on which the heuristic for single source
is based can still be fruitful. Suppose that misinformation
starts from k different sources and proceeds as in k parallel
threads. Then we can model the diffusion process by sim-
ply considering multiple arborescences, up to one for each
source. Hence, if we can identify these diffusion trees, we
can choose their roots as natural candidates for misinforma-
tion sources. This motivates us to use branchings in places
of arborescences.

A branching of the graph G is a forest of disjoint arbores-
cences. In a natural way, we can define the maximum span-
ning branching of G as a set of disjoint arborescences con-
taining all the vertices of G and such that the sum of their
edges’ weights is maximum.

Following the approach described for the single source
case, our heuristic computes a maximum spanning branch-
ing B for the subgraph H induced by the set A of infected
nodes and then take the sources of the arborescences in B as
sources of misinformation. As for the case of arborescences,
algorithms are known to efficiently computing a maximum
spanning branching (see, e.g., [4]).

We would like to highlight that our approach does not
need to know the number of sources that must be identified.
In fact, it simply returns all the roots of the arborescences
in the branching, regardless of their number.

Fixed Number of Sources. Suppose now that the number
of sources (or a bound to it) is given. Notice that this is the
problem studied in [23] and [18].

It is natural to ask if our approach can work also in this

case. Interestingly, the algorithm developed by Camerini et
al. [4] returns not only a maximal spanning branching, but
it also allows us to easily compute the next optimal branch-
ings through local transformations. Formally, once that the
best branching is given, one can compute the next maximal
branching by swapping a single edge in the branching with
a new edge that is actually not in the branching.

This property of the algorithm of Camerini et al. [4] sug-
gests the following approach for computing a given number
of misinformation sources: we compute a maximal spanning
branching and, if it has a number of arborescences differ-
ent from k, continue to transform it and compute next best
branchings as long as the algorithm produces a branching
with exactly k roots.

We remark that this approach is consistent with the idea
adopted in previous cases: the returned branching is the
most probable set of arborescences that model the diffusion
of misinformation from exactly k sources, and the roots of
its arborescences are natural candidates as misinformation
sources. However, this approach has the drawback to be
potentially very time consuming. In fact, the property that
the next best branching differs from the previous one in ex-
actly one edge implies that it frequently occurs that the next
best branching will have the same roots as the previous one.
Hence, the number of changes that one need to make before
a branching with exactly k roots is found can be very large.

To address this issue, we adopt a different approach: let
S be the set of candidate sources we already found. We
distinguish two cases. If |S| < k, then we first construct
graph H ′ from H by removing all the nodes in S and their
adjacent edges and then compute a new maximum spanning
branching for H ′. Then, we add the roots of this branching
to S and iterate until we obtain at least k sources.

If, instead, |S| > k (either after the first branching com-
putation or after the addition of the roots of a newly com-
puted branchings), we proceed as follows: order the arbores-
cences of the branching computed in the last iteration in
non-increasing order by their weight and take the roots of
the first k−` arborescences, where ` is the number of sources
found in previous iterations.

As for the single source case, we run extensive experiments
on our heuristic for the identification of multiple sources. In
particular, in order to compare our heuristic with other algo-
rithms proposed in literature we concentrated on the case of
a fixed number of sources. We run experiments for 2, 3 and
4 sources that show how our heuristic largely outperforms
[23]: in almost all the instances, our heuristic was able to
identify at least half of the sources and in more than 40% of
the instances it was able to identify all the sources.

3. MONITOR PLACEMENT
Having identified the misinformation sources we can now

consider the problem of limiting their capacity to continue
in diffusing misinformation.

In [30] Zhang et al. suggest to use monitors to limit the
spread of misinformation originated from a set of known
sources. The role of these nodes should be to filter the in-
formation they receive and block what they recognize as
misinformation. Their goal is to use as few monitors as pos-
sible and place them as close to the sources as possible to
limit the number of nodes reached by misinformation.

Specifically, Zhang et al. [30] considered the following
problem, named τ -Monitor Placement. Let G be a network
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and let S be a set of misinformation sources and t be a
target node that we have to protect from misinformation.
A set of monitors placed in a set M ⊆ V of vertices de-
tects misinformation if there is at least one path from a
node in S to a node in M on which there is a successful dif-
fusion. Specifically, we denote as LS,M the set of all paths
whose starting endpoints are in S and the final endpoints are
in M , and as D(S,M) the probability that monitors in M
detect the misinformation originated in S. The τ -Monitor
Placement problem then asks for a subset M of vertices cho-
sen among the vertices at distance at most δ from S, such
that t /∈ LS,M and the misinformation detection probability
D(S,M) ≥ 1 − τ . Zhang et al. proved that the τ -Monitor
Placement problem is #P -complete and presented a heuris-
tic to compute a monitor placement. Their solution is based
on the computation of a cut of the graph.

In this paper we consider a generalization of the τ -Monitor
Placement problem, called the MP problem. The extension
we consider is manifold. First, we assume to have a set T
of target nodes to protect from misinformation (not only a
single node). Moreover, we require that whenever misinfor-
mation spreads over the network starting from the known
set S of sources, then it will be detected and blocked by
monitors in M before it reaches nodes in T , i.e. τ = 0.
Finally, in order to limit more effectively the spread of mis-
information, we put an explicit bound on the number of
nodes that can receive misinformation before it is blocked
by monitors. Specifically, we require that the number of
nodes in V \ (S ∪M) that lie on paths in LS,M (these are
the only nodes that can be reached by misinformation) is
upper bounded by a parameter k. This requirement gener-
alizes and strengthens the request in [30] of placing monitors
in nodes within distance at most δ from S: if the number of
nodes close to S is small our requirement achieves the same
effect as the τ -Monitor Placement problem, but it allows to
keep low the number of infected nodes even if there are many
nodes around the sources.

Clearly, the hardness result for the τ -Monitor Placement
problem given in [30] extends to our problem. Moreover,
since our problem is much more constrained than the τ -
Monitor Placement problem, we should expect that more
monitors will be required and their placement would be more
difficult to compute. However, we next propose an heuristic
for the MP problem and we show that its performances are
comparable, and in some cases even better, to [30] both in
terms of number of monitors and of computation time.

Monitors and Cuts. Let us start by considering a simple
setting where we have a network represented by the graph
G = (V,E,w), with w(u, v) = 1 for each edge (u, v) ∈ E,
a single source s of misinformation and a single target t to
protect. Let C be a (s, t)-cut of the graph G. By definition
of cut, if we remove from G all edges in C then there will
be no paths from s to t. Thus, by placing monitors in the
endpoints of the edges in C we can guarantee that all the
information diffused by s will be blocked before it reaches t.

Observe that the number of monitors required by this ap-
proach depends on the size of the cut. Then, to reduce
the number of required monitors we need an (s − t)-cut of
minimum size. However, our requirements are not only to
protect t from the misinformation but also to have a small
number of nodes exposed to misinformation. Observe that
a minimum cut does not give any guarantee on the number
of nodes that can be reached by the misinformation before

monitors detect it. Suppose, for example, that the mini-
mum cut contains only edges adjacent to t. In this case, by
placing monitors on the endpoints of these edges we have
that only the target node t and the nodes hosting the mon-
itors are protected by the misinformation. Thus, we have
to impose another constraint to our cut: the set of nodes
reachable from s after the removal of the edges in the cut
must be small. To meet these additional requirement we will
consider unbalanced cuts.

Formally, given a graph G, a source s, a target t, and
an integer k, a k–unbalanced (s, t)-cut is a partition of the
nodes of the graph in two sets, L and R, such that s ∈ L,
t ∈ R, and |L| ≤ k. The size of the cut (L,R) is given by the
number of edges that have an endpoint in L and the other
endpoint in R, i.e. W (L,R) = |{(u, v) ∈ E : u ∈ L, v ∈ R}|.
A minimum k–unbalanced (s, t) cut is a cut (L∗, R∗) such
that W (L∗, R∗) = minL,R : s∈L,t∈R,|L|≤kW (L,R). Roughly
speaking, a minimum k–unbalanced (s, t)-cut is a (s, t)-cut
of minimum size among all the (s− t)-cuts where the source
side is bounded to contain at most k nodes.

Interestingly, a polynomial time algorithm is known for
computing a minimum k–unbalanced cut for every graph
G [11, 14]. The basic idea of this algorithm consists in
finding a minimum cut in a graph Gα obtained from G by
adding edges of weight α from all the nodes of the graph to
t. Clearly, if α = 0 then Gα = G. If α > 0, instead, the size
of a cut (L,R) of Gα is given by the size of the same cut
in the original graph G plus an additive factor of α|L|. As
α increases the size of L becomes more and more relevant
with respect to the size of the cut. Hence, if α is sufficiently
large, then a cut of Gα becomes a k–unbalanced cut of G.

Even if this algorithm seems to be very “expensive” in
computational terms (we could compute a lot of cuts to find
the correct value of α), Gallo et al. [11] proved that using the
parametric-flow technique we can efficiently build a new cut
on top of the previous one. Moreover, Gallo et al. [11] give
a procedure to compute the next α that rapidly converges
to a value that produces a minimum k–unbalanced cut.

The Heuristic. Even if the core of our solution is given by
the computation of an unbalanced cut, as described above,
there are still several aspects and optimizations that have to
be addressed in designing our heuristic.

First of all, the approach described above was designed
for a single source - single target scenario on an unweighted
graph (actually, we assumed that all edge weights are equal).
Here, we will explain how we can adapt our approach to
many sources - many targets scenarios on weighted graphs.
We address the problem of many sources and targets through
a source and target contraction. Let G = (V,E,w) be a
weighted graph representing our network and let S be the
set of sources and T be the set of targets. Then we consider
a new graph G∗ = (V ∗, E∗, w∗) in which we contract all
sources in a single node s∗, and all targets in a single node
t∗, i.e., V ∗ = (V \(S∪T ))∪{s∗, t∗} and E∗ =

⋃5
i=1E

∗
i , where

E∗1 = {(u, v) : u, v ∈ V ∗ \ {s∗, t∗}}, E∗2 = {(s∗, v) : (u, v) ∈
E and u ∈ S}, E∗3 = {(u, s∗) : (u, v) ∈ E and v ∈ S}, E∗4 =
{(t∗, v) : (u, v) ∈ E and u ∈ T}, and E∗5 = {(u, t∗) : (u, v) ∈
E and v ∈ T}. As for the weights, we clearly set w∗(u, v) =
w(u, v) for every (u, v) ∈ E∗1 . For edges (s∗, v) ∈ E∗2 , let
C(v) be the set of sources that are connected with v in the
original graph, i.e., C(v) = {s ∈ S : (s, v) ∈ E}. Then,
w∗(s∗, v) = 1−

∏
s∈C(1−w(s, v)), that is the probability that

at least one of the source nodes transmit the misinformation
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to v. Similarly, for edges (u, s?) ∈ E∗3 , let C(u) be the set
of sources at which u is connected in the original graph,
i.e., C(u) = {s ∈ S : (u, s) ∈ E}. Then, w∗(u, s∗) = 1 −∏
s∈C(1 − w(s, v)). A similar approach can be taken for

edges in E∗4 and E∗5 .
The graph G∗ has now a single source s∗ and a single

target t∗. Since this graph is weighted we need to specify
which cuts we should compute. A natural choice would be
to take minimum cuts (i.e. cuts that minimize the sum of
the weights of their edges). However, since an edge weight
represents the probability that information flows on that
edge, placing monitors on the endpoints of a minimum cut
would mean to place monitors on endpoints of edges where
it is unlikely that the misinformation spreads. Monitoring
these edges can then be a useless waste of resources.

We propose, instead, to place monitors on edges with large
transmission probability. This indeed would also help in
reducing the number of nodes infected by misinformation: in
fact, not only the monitor placement guarantees that target
nodes will not be reached by misinformation and there are
no more than k nodes reached by misinformation, but it
may be also the case the number of infected nodes is much
less than k since edges between nodes in L(S,M) have small
transmission probabilities. In order to achieve this goal, we
run the minimum k–unbalanced (s∗, t∗)-cut procedure on

the graph Ĝ = (V ∗, E∗, ŵ), where edge weights are integers
and they are inversely proportional to their weights in G∗.
We observe that the use of integer weights has the positive
side effect to make easier to compute the next α to use in
the computation of the unbalanced cut.

Another optimization is related to the placement of mon-
itors in the endpoints of the unbalanced cut’s edges. In our
informal discussion for the single source case we stated that
monitors can be placed on all the endpoints of the cut’s
edges. However, it is clearly unnecessary to place monitors
on all these nodes. Instead, we will use a more clever place-
ment algorithm in order to reduce the number of monitors.
Specifically, given a cut (L,R) of Ĝ, where L is the side of
the cut that contains s∗, we consider the unweighted graph
C = (W,F ) induced by the edges of (L,R), i.e, W = {u ∈
L : (u, v) ∈ E∗, v ∈ R} ∪ {v ∈ R : (u, v) ∈ E∗, u ∈ L} and
F = {(u, v) ∈ E∗ : u ∈ L, v ∈ R}. Then, we compute a
minimum vertex cover M of C and place monitors in all the
nodes in M . Notice that, since C is a bipartite graph, it is
possible to compute its minimum vertex cover in polynomial
time (via a reduction to a problem of min cut/max flow).

Summarizing, our procedure works as described in Algo-
rithm 1. Notice that our heuristic may place a monitor in
s∗. In this case, we simply replace s∗ with all its neighbors.

Input: Graph G, Sources S, Targets T , and integer k.
Output: Monitor vertices M .

1 G∗, s∗, t∗ = SourceContraction(G,S, T )

2 Ĝ = WeightConversion(G∗)

3 (L,R) = UnbalancedCut(Ĝ, s∗, t∗, k)
4 C = BipartiteGraphFromCut(L,R)
5 M = VertexCover(C)
6 return M

Algorithm 1: Algorithm for monitoring placement

4. EXPERIMENTS
To validate our proposed heuristics and compare their

performances to other known solutions we conducted exten-
sive experiments on three real-world data sets: Wiki-Vote,
Gnutella08, Epinions. We have chosen to use freely avail-
able graphs to enable the replication of our experiments.
Indeed, all these data sets are available at [19] In particular,
we considered Epinions to make our results comparable with
the one given in [23] and [30]. Remaining networks have been
chosen to test if the density of the graph may influence the
performance of our algorithm. Indeed, Wiki-Vote is a dense
network with of 7115 nodes and 103689 edges; Gnutella08
has comparable size, but it is much sparser, since it has 6301
nodes, but only 20777 edges.

All these networks are directed and unweighted. To run
our experiments we need to define transmission probabil-
ities for all their edges. For Wiki-Vote and Gnutella08,
these probabilities have been generated uniformly at ran-
dom in [0, 1]. As for Epinions, we adopted the approach
described by Richardson et al. [25]: to each node u, it has
been assigned a quantity γu ∈ [0, 1] chosen according to a
Gaussian distribution with mean 0.5 and standard deviation
0.25; then to an edge (u, v) it is assigned weight w(u, v) uni-
formly chosen from [max{γu+γv−1, 0},min{γu−γv+1, 1}].
Source Identification. For sake of comparison with other
known solutions we run our experiments with a fixed num-
ber k of sources, with k ranging from 1 to 4. For every
graph, we first placed the k sources uniformly at random in
the network and then run an Independent Cascade diffusion
process starting from the k sources. In this way we obtained
the set A of the infected nodes. Then the graph and the set
of infected nodes were given in input to our heuristic.

In order to test the heuristic’s performance with respect to
the number of infected nodes we grouped our experiments in
five groups, depending on the size of A: [100, 250], [500, 650],
[1000, 1200], [1500, 1700], and [2100, 2700]. To force each
test to be in one of these ranges, we choose a random integer
i within that range, and we stop the cascade process as soon
as i nodes have been infected by misinformation. For each of
these experimental settings, i.e., for every graph, each value
of k, and each range, the experiment has been repeated at
least 15 times.

First, we tested our heuristic for single source identifica-
tion. As you can see in Figure 1, it was able to find the right
sources in approx. 70% of the experiments, with a slight de-
crease of the success rate only when the number of infected
nodes is very large. As a matter of comparison, we note
that the algorithm proposed by Nguyen et al. [23], run on
the same inputs, finds the correct source in less than 10% of
experiments, and it never finds the correct source when the
number of infected nodes is within the range [2100, 2700].

We also evaluated the performances of our heuristic with
multiple sources. In order to compare our approach to the
previous proposals, we considered only the case in which the
number of sources is known. Clearly, in this case an algo-
rithm can correctly identify all the sources or only part of
them. Figure 2 shows the rate of (partial) successes of our
heuristic when k = 3 and when k = 4 (results for k = 2
are similar and we do not present here). As you can see, in
almost all the experiments our heuristic correctly identified
at least half of sources and in more than 70% of experiments
it correctly identified all sources except at most one. More-
over, it was able to correctly identify all the sources in at
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Figure 1: Success rate of the single source identification
heuristic with respect to the number of infected nodes.

least 40% of experiments, even if the success rate tends to
decrease as the number of infected nodes increases.

We remark that our success rate is more than five times
larger than the one achieved on the same inputs by Nguyen
et al. [23], and this rate is up to twenty times larger when
the number of infected nodes is large.

Monitor Placement. To test performances of our heuris-
tic for the MP problem we run experiments on Wiki-Vote,
Gnutella08 and on a subset of the Epinions network, named
SUB-Epinions, consisting of 7479 nodes and 25855 edges.
The network SUB-Epinions has been created by randomly
choosing an integer n between 7000 and 7500, selecting n
nodes at random from the largest strongly connected com-
ponent of Epinions, and considering the graph induced by
these nodes. Edge weights have been randomly assigned.

We decided to compare our heuristic with respect to the
algorithm MMSC proposed in [30]. For this reason, we followed
them in the choice of the sources of misinformation. We
considered a set S of sources, with |S| = 10, 20, . . . , 50, and
only one target node t. Sources are selected randomly among
the set of nodes with low out-degree that are neighbors of
the |S| nodes with the largest degrees. Target is selected
uniformly at random among nodes with low in-degree. Here,
we say that the degree of node is low (high) if it is below
(above) the average degree of the network.

For each graph G and each set of sources S, we first con-
tracted sources into a single source (see Section 3 for details)
and then we run algorithm MMSC with parameters τ = 0.1
and δ ∈ {1, 2} (recall that if we increase δ, then we are
allowing more nodes to be infected by misinformation).

In order to make the results of the algorithms comparable,
we would like to have more or less the same expected num-
ber of nodes that are reached by misinformation. For this
reason, we run 100 separate executions of the Independent
Cascade diffusion process on the network G with sources
from S and monitors placed according to algorithm MMSC,
and let k be the average number of nodes infected by misin-
formation in these executions. Then we run our heuristic on
input (G,S, t, k) For each graph, each value of |S| and each
value of δ we executed the experiment 10 times and evalu-
ated both the average number of monitors and the average
number of vertices reached by misinformation.

The results of our experiments show very different behav-
iors for the cases of δ = 1 and δ = 2. When δ = 1 our heuris-
tic places a number of monitors that is slightly greater than
algorithm MMSC. We remark that this slightly increase in the
number of monitors, never greater than 20%, is counterbal-

anced by the much more stronger results of our heuristic in
terms of limitations to the spread of misinformation. More-
over, with our heuristic the average number of nodes that
are reached by misinformation even in presence of monitors
is much less than MMSC and the difference between the two
algorithms explodes as the number of sources increases. In
Figure 3a and 3b, we show results only for the Wiki-Vote

network, since results for the other networks are similar.
When δ > 1 our heuristic outperforms the MMSC algorithm

with respect to both the number of monitors placed and he
number of nodes exposed to the misinformation. As you
can see in Figure 4a, the number of monitors placed by our
heuristic remains almost unchanged regardless of the value
of δ, whereas the number of monitors placed by MMSC ex-
plodes. Moreover, as shown in Figure 4b, even if MMSC places
much more monitors, our heuristic has much better perfor-
mances with respect to the number of infected nodes.

Finally, we compared running times of our heuristic and
the MMSC algorithm to check if the much better performances
of our heuristic could come at cost of a larger running time.
We run our experiments on a CPU Intel Core i7 860 2.8
GHz, 4 core with 8MB cache and 4GB RAM. Figure 5a and
Figure 5b show that the two algorithms run on Wiki-Vote

have comparable running times for δ = 1, but our heuristic
becomes significantly faster when δ increases.

5. CONCLUSIONS AND FUTURE WORK
In this paper we considered the problem of contrasting the

spread of misinformation in an online social network. We
proposed two heuristics for first identifying the sources of
misinformation and then placing a set of monitors on nodes
of the network to limit the spread of misinformation.

Our heuristics are based on well-studied graph-theoretic
algorithms, for computing the maximum spanning branch-
ing of a directed graph, or an unbalanced cut. Both our
heuristics can have arbitrarily large approximation guaran-
tees, due the previously known hardness results. However,
they performed very well in the extensive tests we run and
largely outperformed previously known algorithms.

As shown in the paper, the Monitor Placement heuris-
tic obtains much better results while having comparable
(in some cases even better) running times with previously
known algorithms. Our solution to the Source Identification
problem, instead, takes much more time than the previously
known heuristics. We believe that it would be interesting to
explore the possibility to either optimize our approach or de-
sign alternative and more efficient algorithms that achieve
performances comparable with the ours in less time.

In our setting infected nodes are surely recognized. It
would be very interesting to consider the case that infected
nodes are recognized only with some level of confidence. Our
feeling is that our techniques still work by simply down-
weighting the edges that leave a node with a factor that
corresponds to the probability that node is infected. How-
ever, we do not have run experiments on this extension.

Finally, we assume that misinformation spreads according
to a cascade model. However, it would be interesting to
evaluate the extent at which our approach works with other
well-known models, such as epidemics and threshold models,
and their noisy variants (see, e.g., [2, 1]).
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(a) k = 3 (b) k = 4

Figure 2: Success rate of the multiple source identification heuristic with respect to the number of infected nodes.

(a) Monitors (b) Infected

Figure 3: Performances of the two algorithms for Monitor Placement on Wiki-Vote, when δ = 1.

(a) Monitors (b) Infected

Figure 4: Performance of the two algorithms for Monitor Placement on Wiki-Vote, when δ = 2.

(a) δ = 1 (b) δ = 2

Figure 5: Running times of the two algorithms for monitor placement.
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