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ABSTRACT
Centrality measures are widely used to identify leaders of
covert networks. We study how a group of such leaders can
avoid being detected by such measures. More concretely,
we study the hardness of choosing a set of edges that can
be added to the network in order to decrease the leaders’
ranking according to two fundamental centrality measures,
namely degree, and closeness. We prove that this problem is
NP-complete for each measure. We then study how the lead-
ers can construct a network from scratch, designed specif-
ically for them to hide in disguise. We identify a network
structure that not only guarantees to hide the leaders to a
certain extent, but also allows them to spread their influence
across the network.

Keywords
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1. INTRODUCTION
Mapping terrorist networks is of vital importance to any
counter-terrorism efforts. Not only does this help to under-
stand their operational structure and modus operandi, but
it also plays a key role in designing and implementing desta-
bilization strategies [5, 13, 28]. One of the most common
such strategies requires identifying individuals that are sus-
pected to play central roles in the organization [11, 12]. To
this end, centrality measures—metrics developed in graph
theory to quantify the importance of nodes in networks—
are often used in the analysis of covert networks [24, 26,
17]. Arguably, the three fundamental such measures are:
(i) Degree centrality, which ranks each node based on the
number of neighbours they it has; (ii) Closeness central-
ity, which ranks each node based on its average distance to
other nodes; and (iii) Betweenness centrality, which ranks
each node based on the relative number of shortest paths
that go through that node.

Unfortunately, understanding how criminals organize them-
selves in a network is challenging at various levels [22, 32]:
the data may be incomplete, the nature of the relationship
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between two criminals may be unclear, and the network may
evolve continuously. The literature on this research problem
generally agrees that criminals in general, and terrorists in
particular, face a trade-off between secrecy and efficiency
[29] though the way in which both factors are modelled dif-
fers. Overall, two approaches in this literature can be dis-
tinguished, which we briefly discuss next.

In the first approach, researchers study known topolo-
gies of historical or contemporary criminal networks, with
the aim being to understand why particular structures have
emerged [8, 9, 21]. Perhaps the most comprehensive study in
this body of research is due to Kilberg [21], who analyzed an
extensive dataset of more than 240 terrorist networks, and
provided a classification of those networks based on their
structure and functionality. Furthermore, using regression
analysis, the author tried to quantify the degree to which the
shape of terrorist networks is influenced by such variables as
the GDP level of the target country, the political rights and
civil liberties therein, and the inclination to attack police
and military targets in that country.

In this article we contribute to the second approach in the
literature, which is more theoretical in nature and aims to
explain the structural properties of covert networks by de-
veloping explicit models of the terrorists’ preferences and the
different choices they face [10, 18, 23]. With such analyses,
certain network topologies typically emerge as the result of
modelling the terrorists as rational decision makers. A no-
table example of such a model is that of Lindelauf et al. [23],
who consider the tradeoff between secrecy and operational
efficiency of a terrorist network and borrows concepts from
both game theory and graph theory to identify more fitting
topologies. Arguably, it is less efficient if a message has to
be passed many times from one person to another (i.e., the
shortest path from the sender to the receiver is relatively
long). Based on this, Lindelauf et al. defined efficiency as
the (normalized) reciprocal of the total distance of the graph
(i.e., the sum of shortest distances between any two nodes
in the network). Secrecy, in turn, is defined for each node
and is proportional to the fraction of the network that re-
mains unexposed when this node is detected. Secrecy of the
network is the sum of the secrecy scores over all nodes.

In this paper, we also propose a theoretical model to study
the secrecy-efficiency tradeoff. However, our model differs
from previous ones in a number of ways. Firstly, inspired by
studies of real-life covert networks [6, 25], we take a leader-
centric approach, i.e., we focus on the role played in terrorist
networks by their leaders. In more detail, we investigate how
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the topology of the network could be deliberately designed
to keep the leader(s) identity hidden. In this context, while
the previous literature on identifying leaders of terrorist net-
works typically assumed that such leaders are not aware of
the techniques and methods used by law-enforcement agen-
cies, we assume that this is not the case, i.e., in our model the
terrorist leaders strategically shape their network to shield
themselves from detection by the centrality measures. In
fact, recent media reports and academic studies of crim-
inal and terrorist organizations suggested that members of
such organizations are becoming increasingly tech-savvy [30,
19]. Hence, their obliviousness with respect to the available
social network analysis techniques should not be taken for
granted.

As already argued, secrecy is not the only objective that
the leaders of a terrorist network may have. Indeed, if they
were concerned only with hiding themselves, they would sim-
ply cut most (if not all) of their connections in the network.
This, however, would clearly impair the leaders’ efficiency.
In our model, the efficiency of the leaders is defined as their
influence over the network. In other words, the leaders in
our model face the trade off between hiding from central-
ity measures, and influencing the network members. Note
that a node’s influence over a network can be quantified ac-
cording to various models, most notably the Independent
Cascade model [16] and the Linear Threshold model [20].

In the first part of the paper, we focus on the compu-
tational aspects of modifying an existing network so as to
shield the leaders from centrality analysis by hiding them
among the followers. More in detail, we analyze the hard-
ness of identifying a set of edges to be added between the
followers so that the ranking of the leaders (based on one of
the three main centrality measures) drops below a certain
threshold. At first glance, this problem may appear to be
easy at least for the degree centrality, which is mathemat-
ically uninvolved. Indeed, it is straightforward to decrease
(the value of ) degree centrality—it simply requires to cut
edges [34]. Surprisingly, however, we find that our problem
of decreasing the ranking of a node according to degree cen-
trality is much more challenging. In particular, Theorems
1 state that the above problem is NP-Complete for degree
centrality. Theorem 2, in turn, states the same for closeness
centrality. This latter result is in line with the literature on
modifying a network to increase centrality [7].

Given this hardness of modifying an existing network, we
turn out attention to a different question, which is how a ter-
rorist network could be built from scratch so that the leaders
are hidden and, at the same time, have a reasonable influ-
ence over the network members. Here, the main idea is for
the leaders to surround themselves with an “inner circle” of
trustees, called “captains”, whose role is to conceal the lead-
ers, and to pass on their influence to the rest of the network.
We identify one such network structure, and prove that ev-
ery captain is guaranteed to be ranked higher than any of
the leaders (according to the three standard centrality mea-
sures). In fact, “inner circles” have been identified in various
real-life terrorist networks such as, e.g., Al-Quaeda [2] and
IRA [33]. While we do not have access to data that confirms
that those real-life “inner circles” have similar structure to
the ones obtained in this article, we hope that our results
shed more light on why such circles may exist in covert net-
works. In this context, charting the topology of covert net-
works became one of the key research directions.

2. PRELIMINARIES
In this section, we present some basic notation and concepts
that will be used throughout the paper.

2.1 Basic Network Notation
LetG = (V,E) ∈ G denote a network, where V = {v1, . . . , vn}
is the set of n nodes and E ⊆ V × V is the set of edges. We
denote an edge between nodes vi and vj by (vi, vj). In this
article we consider undirected networks, in which E is a set
of unordered pairs, i.e., we do not discern between edges
(vi, vj) and (vj , vi). We also assume that networks do not
contain self-loops, i.e., ∀vi∈V (vi, vi) /∈ E.

A path in a network G = (V,E) is an ordered sequence
of distinct nodes, p = 〈vi1 , . . . , vik 〉, in which every two con-
secutive nodes are connected by an edge in E. We consider
the length of a path to be the number of edges in that path.
We denote the set of all shortest paths between a pair of
nodes, vi, vj ∈ V by ΠG(vi, vj). The distance between a
pair of nodes vi, vj ∈ V , i.e., the length of a shortest path
between them, is denoted by dG(vi, vj). Furthermore, a net-
work is said to be connected if and only if there exists a path
between every pair of nodes in that network.

We denote by NG(vi) the set of neighbours of vi in G,
i.e., NG(vi) = {vj ∈ V : (vj , vi) ∈ E}. Finally, we denote
by NG(vi, vj) the set of common neighbours of nodes vi and
vj , i.e., NG(vi, vj) = NG(vi) ∩NG(vj).

To make the notation more readable, we will often denote
two arbitrary nodes by v and w, instead of vi and vj . More-
over, we will often omit the network itself from the notation
whenever it is clear from the context, e.g., by writing d(v, w)
instead of dG(v, w). This applies not only to the notation
presented thus far, but to also to all future notation.

2.2 Centrality Measures
The concept of centrality in human organizations was intro-
duced by Bavelas [3]. Intuitively, a centrality measure is a
function, c : G× V → R, that expresses the relative impor-
tance of any given node in any given network. Arguably, the
three best-known centrality measures are degree, closeness
and betweeness [15].

Degree centrality was introduced by Shaw [31]. It assumes
that the importance of a node is proportional to the number
of its neighbours. The normalized degree centrality of a node
vi ∈ V in a network G is defined as follows:

cdegr(G, vi) =
|N(vi)|
n− 1

.

Closeness centrality, introduced by Beauchamp [4], quan-
tifies the importance of a node in terms of shortest distances
from this node to all other nodes in the network. As such,
the most important node is the one with the shortest aver-
age path length to all other nodes. The normalized closeness
centrality of a node vi ∈ V in a connected network G can
be expressed as:

cclos(G, vi) =
n− 1∑

vj∈V d(vi, vj)
.

Betweenness centrality was developed independently by
Anthonisse [1] and Freeman [14]. This measure quantifies
the importance of a given node in the context of network
flow. In more detail, if we consider all the shortest paths in
the network, then the more such paths that traverse through
a given node, the more important the role of that node in
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the network. The normalized betweenness centrality of a
node vi ∈ V in a connected network G can be expressed as:

cbetw(G, vi) = 2
(n−1)(n−2)

∑
vj ,vk∈V \{vi}

|{p ∈ Π(vj , vk) : vi ∈ p}|
|Π(vj , vk)|

2.3 Models of Influence
The propagation of influence through the network is often
described in terms of node activation. When a certain node
is sufficiently influenced by its neighbours, it becomes “ac-
tive”. It then starts to influence any “inactive” neighbours,
and so on. To initiate this propagation process, a set of
nodes (known as the seed set) must be activated right from
the start. Assuming that time moves in discrete rounds,
we denote by I(t) ⊆ V the set of nodes that are active at
round t, implying that I(1) is the seed set. The way influ-
ence propagates to inactive nodes depends on the influence
model under consideration. Arguably, the two main models
of influence are:

• Independent Cascade [16]: In this model, every pair
of nodes is assigned an activation probability, p : V ×
V → [0, 1]. Then, in every round, t > 1, every node
vi ∈ V that became active in round t − 1 activates
every inactive neighbour, vj ∈ N(vi) \ I(t − 1), with
probability p(vi, vj). The process ends when there are
no newly activated nodes, i.e., when I(t) = I(t− 1).

• Linear Threshold [20]: In this model, every node vi ∈
V is assigned a threshold value, tvi , which is sampled
(according to some probability distribution) from the
set {0, . . . , |N(vi)|}. Then, in every round, t > 1, ev-
ery inactive node vi becomes active, i.e., becomes a
member of I(t), if |I(t−1)∩N(vi)| ≥ tvi . The process
ends when there are no newly activated nodes, i.e.,
when I(t) = I(t− 1).

In either model, the influence of a node, vi, on another
node, vj , is denoted by inf G(vi, vj) and is defined as the
probability that vj gets activated given the seed set {vi}. We
assume that inf G(vi, vi) = 0 for all vi ∈ V . The influence of
vi over the entire network G is then defined as inf G(vi) =∑

vj∈V inf G(vi, vj).

3. PROBLEM STATEMENT & ITS THEO-
RETICAL ANALYSIS

In this section we state the main theoretical problem of this
work and prove its NP-completeness.

As mentioned in the introduction, we assume that the
terrorist network is composed of two types of agents: the
leaders and the followers. Furthermore, we assume that
the leaders are aware that law-enforcement agencies may
use centrality analysis to identify them. Thus, the leaders
would like to strategically modify the existing network so
that their centrality becomes lower than a certain predefined
threshold d ∈ N that we refer to as safety margin. To achieve
this objective, no more than b ∈ N modifications can be
made to the network (b can be thought of as a “budget”
to spend). Since removing edges would mean that existing
communication link is severed, we assume that the network
can be modified only by adding edges. Furthermore, since
adding an edge to any leader increases this node’s degree

centrality, we assume that edges can be added only between
followers.

Formally, we define the problem of Hiding Leaders as fol-
lows:

Definition 1 (Hiding Leaders). This problem is de-
fined by a tuple, (G,L, b, c, d), where G = (V,E) ∈ G is a
network, L ⊂ V is a set of leaders to be hidden, b ∈ N is a
budget specifying the maximum number of edges that can be
added, c : G×V → R is a centrality measure, and d ∈ N is a
chosen safety margin. Then, if we denote by F = V \ L the
set of “followers”, the goal is then to identify a set of edges
to be added to the network, A∗ ⊆ F × F , such that |A∗| ≤ b
and the resulting network G′ = (V,E ∪A∗) contains at least
d followers that each have a centrality score higher than that
of any leader, i.e.:

∃F ′⊆∈F |F ′| ≥ d ∧ ∀f∈F ′∀l∈Lc(G′, f) > c(G′, l)

Intuitively, the above problem should be easy to solve for
the degree centrality measure. Indeed, adding an edge be-
tween any two (disconnected) followers, increases their de-
gree centrality with respect to all the leaders. However, we
prove below that the problem is in fact NP-complete for the
degree centrality measure.

Theorem 1. The problem of Hiding Leaders is NP-complete
given the degree centrality.

Proof. The problem is trivially in NP, since after the
addition of a given A∗ it is possible to compute the degree
centrality for all nodes in polynomial time.

Next, we prove that the problem is NP-hard. To this end,
we propose a reduction from the NP-complete problem of
Finding k-clique. The decision version of this problem is
defined by a network, G = (V,E), and a constant, k ∈ N,
where the goal is to determine whether there exist k nodes
in G that form a clique.

Let us assume that k ≥ 3 (if k = 2 then the problem
is trivial). Given an instance of the problem of Finding k-
clique, defined by some k ≥ 3 and a network G = (V,E), let
us construct a network, H = (V ′, E′), as follows:

• The set of nodes:: For every node, vi ∈ V , we create a
single node, vi, as well as n − 1 − |NG(vi)| other nodes,
denoted by X = {xi,1, . . . , xi,n−1−|NG(vi)|}. Additionally,
we create one node called y, as well as n + k − 1 other
nodes, namely L′ = l1, . . . , ln+k−1;

• The set of edges: We create an edge between two nodes
vi, vj ∈ V if and only if this edge was not present in G, i.e.,
(vi, vj) ∈ E′ ⇐⇒ (vi, vj) /∈ E. Additionally, for every
vi we create an edge (vi, y) as well as an edge (vi, xi,j)
for every xi,j . We also create an edge (li, lj) between
every pair of nodes li, lj ∈ L′, except for the edge (l1, l2).
Finally, we create two additional edges, (l1, y) and (l2, y).

An example of such a H network is illustrated in Figure 1.
Now, consider the following instance of the problem of

hiding leaders, (H,L, b, c, d), where:

• H = (V ′, E′) is the network we just constructed;

• L = V ′ \ V ;

• b = k(k−1)
2

;

1343



𝑣3

𝑣4

𝑣1

𝑣2
𝑣3

𝑣4

𝑣1

𝑣2

𝑦

𝑥3,1

𝑥2,1
𝑥4,1

𝑥1,1 𝑥1,2 𝑥1,3

𝑥2,2

𝑥3,2

𝑙2
𝑙3

𝑙4

𝑙5𝑙6

𝑙1

𝐺 𝐻

Figure 1: An illustration of the network used in
the NP-completeness proof of the problem of Hiding
Leaders given the degree centrality.

• c is the degree centrality measure;

• d = k.

Next, we reduce the problem of Finding k-cliques in G to
the aforementioned instance of Hiding Leaders in H. To this
end, from the definition of the problem of Hiding Leaders,
we know that the edges to be added to H must be chosen
from F × F . Since in our instance we have: F = V ′ \ L =
V ′ \ (V ′ \V ) = V , then the edges to be added to H must be
chosen from V ×V . However, since the edges in (V ×V )\E
are already present in H (see how H is created), then the
edges to be added to H must be chosen from E. Out of those
edges, we need to choose subset, A∗ ⊆ E, as a solution to
the problem. In what follows, we will show that a solution to
the above instance of the Hiding Leaders in H corresponds
to a solution to the problem of Finding k-clique in G.

First, note that each of the k nodes with the highest degree
centrality in H must be a member of L′. This is because
there are more than k nodes in L′, each of which has a
degree of n+k−2, while the degree of every node in V ′ \L′
is smaller than n + k − 2. Thus, in order for A∗ to be a
solution to the problem of hiding leaders, the addition of A∗

to H must increase the degree of at least k nodes in V such
that each of them has a degree of at least n + k − 1 (note
that the addition of A∗ only increases the degrees of nodes
in V , as we already established that A∗ ⊆ E). Now since in
H the degree of every node in V equals n (because of the
way H is created), then in order to increase the degree of
k such nodes to n + k − 1, each of them must be an end
of at least k − 1 edges in A∗. But since the budget in our

problem instance is k(k−1)
2

, then the only possible choice of
A∗ is the one that increases the degree of exactly k nodes
in V by exactly k − 1. If such a choice of A∗ is available,
then surely those k nodes would form a clique in G, since all
k(k−1)

2
edges in A∗ are taken from G.

Having proven the NP-completeness of the problem given
the degree centrality, we next prove its NP-completeness
given the closeness centrality.

Theorem 2. The problem of Hiding Leaders is NP-complete
given the closeness centrality.

Proof. The problem is trivially in NP, since after the
addition of a given A∗ it is possible to compute the closeness
centrality for all nodes in polynomial time.

𝑢1 𝑢2 𝑢𝑚
...

𝑆1 𝑆𝑘
...

𝑤1 𝑤2 𝑤𝑚
...

𝑧𝑡 ...
𝑦1

𝑦𝑘

...𝑥1

𝑥𝑘+𝑚+1

Figure 2: An illustration of the network used in
the NP-completeness proof of the problem of Hiding
Leaders given the closeness centrality.

Next, we prove that the problem is NP-hard. To this end,
we propose a reduction from the NP-complete 3-Set-Cover
problem. The decision version of this problem is defined
by a universe U = {u1, . . . , um} and a collection of sets
S = {S1, . . . , Sq} such that ∀iSi ⊂ U ∧ |Si| = 3, where the
goal is to determine whether there exist a ≤ b elements of S
the union of which equals U .

Given an instance of the 3-Set-Cover problem, let us con-
struct a network G as follows:

• The set of nodes:: For every Si ∈ S, we create a single
node denoted by Si, and for every ui ∈ U , we create
two nodes denoted by ui and wi. We denote the set of
every Si node by S, the set of every ui node by U , and
the set of every wi node by W . In addition, we create
k+m+1 nodes denoted by X = {x1, . . . , xk+m+1}, and k
nodes denoted by Y = {y1, . . . , yk. Lastly, we create two
additional nodes, denoted by t and z;

• The set of edges: First, we create the edge (t, z). Then,
for every node xi we create an edge (xi, t); for every node
yi we create an edge (yi, z), for every node wi we create
the edges (wi, z) and (wi, ui), and every node Si we create
an edge (Si, uj) for every uj ∈ Si. After that, we create
b edges, (z, S1), . . . , (z, Sb). Finally, we create edges such
that the nodes in S form a clique, and those in U also
form a clique. That is, we create an edge (ui, uj) for
every ui, uj ∈ U and an edge (Si, Sj) for every Si, Sj ∈ S.

An example of the resulting network, G, is illustrated in
Figure 2.

Now, consider the following instance of the problem of
hiding leaders, (G,L, b, c, d), where:

• G is the network we just constructed;

• L = {z} ∪X ∪ Y ∪W ∪ U ;

• b is the parameter of the 3-Set-Cover problem (where the
goal is to determine whether there exist a ≤ b elements of
S the union of which equals U);

• c is the closeness centrality measure;

• d = 1.
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From the definition of the problem of Hiding Leaders, we
see that the only edges that can be added to the graph are
edges between t and the members of S, i.e., A∗ ⊆ Â, where
Â = {(t, S1), . . . , (t, Sk)}. Notice that any such choice of A∗

corresponds to selecting a subset of |A∗| elements of S in the
3-Set-Cover problem. In what follows, we will show that a
solution to the above instance of Hiding Leaders corresponds
to a solution to the 3-Set-Cover problem.

First, we show that for every v ∈ V \{t, z} and every A∗ ⊆
Â we either have c(G′, v) < c(G′, t) or c(G′, v) < c(G′, z),
where G′ = (V,E ∪ A∗). To this end, we show that the fol-
lowing holds, where D(G′, v) = n−1

c(G′,v)
=
∑

w∈V \{v} d(v, w):

∀v ∈ V \ {t, z}∀A∗⊆ÂD(G′, v) > D(G′, t)∨D(G′, v) < D(G′, z)

Let dt denote
∑

ui∈U d(t, ui)+
∑

Si∈S d(t, Si). In what fol-

lows, we compute D(G′, v) for different types of v. While do-
ing so, the expression on the right-hand side of each equality
(or inequality) will have exactly seven terms: the 1st equals
d(v, z); the 2nd equals d(v, t); the 3rd equals

∑
xi∈X d(v, xi);

the 4th equals
∑

yi∈Y d(v, yi); the 5nd equals
∑

wi∈W d(v, wi);

the 6th equals
∑

ui∈U d(v, ui); the 7th equals
∑

Si∈S d(v, Si).
This will hold for every type of v, except for the case when
v = xi:

• D(G′, z) = (0)+(1)+(2(k+m+1))+(k)+(m)+(2m)+
(b+ 2(k − b)) = 5m+ 5k − b+ 3;

• D(G′, t) = (1)+(0)+(k+m+1)+(2k)+(2m)+(
∑

ui∈U d(t, ui))+

(
∑

Si∈S d(t, Si)) = 3m+ 3k + 2 + dt;

• D(G′, xi) = (2) + (1) + (2k + 2m) + (3k) + (3m) + (m +∑
ui∈U d(t, ui)) + (k+

∑
Si∈S d(t, Si)) = 6m+ 6k+ 3 + dt

> D(G’,t);

• D(G′, yi) = (1)+(2)+(3(k+m+1))+(2(k−1))+(2m)+
(3m) + (2b+ 3(k − b)) = 8m+ 8k − b+ 4 > D(G′, z);

• D(G′, wi) ≥ (1) + (2) + (3(k + m + 1)) + (2k) + (2(m −
1)) + (1 + 2(m − 1)) + (2k) = 7m + 7k + 3 > D(G′, z)
because we have d(wi, Sj) ≥ 2;

• D(G′, ui) ≥ (2) + (2) + (3(k+m+ 1)) + (3k) + (1 + 2(m−
1)) + (m− 1) + (k) = 6m+ 7k+ 5 > D(G′, z) because we
have d(ui, t) ≥ 2 and d(ui, Sj) ≥ 1;

• D(G′, Si) ≥ (1) + (1) + (2(k + m + 1)) + (2k) + (2m) +
(3 + 2(m − 3)) + (k − 1) = 6m + 5k > D(G′, z); because
we have d(Si, z) ≥ 1 and d(Si, t) ≥ 1.

Therefore, either t or z has the highest closeness central-
ity. Since z ∈ L and t ∈ F , then A∗ ⊆ Â is a solution
to the problem of problem of Hiding Leaders if and only if
D(G′, t) < D(G′, z). This is the case when:

dt < 2m+ 2k − b+ 1.

Let UA = {ui ∈ U : ∃Sj∈Sui ∈ Sj ∧ (t, Sj) ∈ A∗}. We
have that dt = |A∗|+2(k−|A∗|)+2|UA|+3(m−|UA|) which
gives us:

dt = 3m− |UA|+ 2k − |A∗|

Since by definition |UA| ≤ m and |A∗| ≤ b, it is possible
that dt < 2m+2k− b+1 only when |UA| = m and |A∗| = b,
i.e., ∀ui∈U∃Sj∈Sui ∈ Sj ∧ (t, Sj) ∈ A∗. This solution to the

problem of Hiding Leaders corresponds to a solution to the
given instance of the 3-Set-Cover problem, which concludes
the proof.

The main idea behind the technique we used to prove
Theorems 1 and 2 was to introduce certain sets of nodes
(namely X in the proof Theorem 1, and X,Y in the proof
of Theorem 2) such that the difference in centrality between
leaders and followers can only be reduced by adding edges in
a way that solves the corresponding NP-complete problem.
While this idea worked well for degree and closeness cen-
trality, things become more complicated when dealing with
betweenness centrality. Specifically, while the addition of a
single node usually has a slight impact on the degree and
closeness centrality of other nodes, the same is not true for
betweenness centrality. This is because a new node intro-
duces at least n−1 new shortest paths that can be controlled
by other nodes, which may end up changing their between-
ness centrality significantly.

4. CAPTAIN NETWORK
In the previous section, we proved the NP-completeness of
modifying an existing network in order to hide its leaders.
However, in certain cases, the leaders are to develop a new
terrorist network (e.g. a subnetwork in a foreign country)
rather than to modify an existing one. In this section we
show that it is possible to efficiently create a network from
scratch, designed specifically to hide its leaders without lim-
iting their ability to influence the other nodes in the network.
We call this the “captain” network. Here is how it works.
First the leader nodes, L, form a clique, to provide the best
possible communication among them. Each leader li ∈ L is
then assigned a group of k “captains”, C = {ci,1, . . . , ci,k},
which are connected to that leader. All captains are then
connected into a complete |L|-partite graph. A captain, ci,j
servers two purposes: the first is to conceal the leaders in
L, by ensuring that it is ranked higher than each of them
(according to the three standard centrality measures); the
second purpose of ci,j is to pass on the influence of li to the
rest of the network. The remaining nodes, the set of which is
X = {x1, . . . , xm}, are each connected to one captain from
each group. Note that the set of followers in this network is
F = X ∪C1 ∪ . . .∪Ch Figure 3 illustrates a sample captain
network with |L| = 3, whereas Algorithm 1 summarized the
steps that create such a network.

Note that if the above steps are followed given a single
leader, the result would be a tree structure. While a tree
is a fairly common organizational structure, it may not pro-
vide adequate disguise of the leader, especially if the leader
is identified as a root of the tree. With this in mind, when-
ever there is a single leader, we create two groups of captains
to avoid the tree structure. The resulting structure is illus-
trated in Figure 4.

Next, we prove that every captain has a higher centrality
value than any of the leaders.

Theorem 3. Given a captain network, let r =
⌊
m
k

⌋
de-

note the minimal number of connections that a captain, ci,j,
has with nodes from X. Then, if either (h ≥ 2 and r ≥ 1), or

(h = 1 and k <
√
|F |+ 1−1), then all captains have greater

degree, closeness and betweenness centrality than any of the
leader nodes.

Proof. Starting with degree centrality and multiple lead-
ers, the degree of a leader node, l, is cdegr(G, l) = h+k−1

n−1
,
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Figure 3: An illustration of a captain network with
|L| = 3. Edges including leaders are depicted as solid
black lines; edges between captains are depicted as
gray lines; edges between captains and other nodes
are depicted as dotted lines.

since it is only connected to other leaders and captains from
its group. On the other hand, the degree of a captain, ci,j ,

is cdegr(G, ci,j) ≥ 1+k(h−1)+r
n−1

, since it is connected to one of
the leader nodes, to all captains from other groups, and to
at least r other nodes from X. As such, we have:

cdegr(G, ci,j)− cdegr(G, l) ≥ 1 + k(h− 1) + r − (h+ k − 1)

n− 1

which gives us:

cdegr(G, ci,j)− cdegr(G, l) ≥ (h− 2)(k − 1) + r

n− 1

Therefore, since h ≥ 2, k ≥ 1, and r ≥ 1, we have that
cdegr(G, ci,j) > cdegr(G, l) for any ci,j .

As for the case with a single leader, the degree of the leader
node, l, is cdegr(G, l) = 2k

n−1
, since it is only connected to

captains from both groups. On the other hand, the degree of
a captain ci,j , is cdegr(G, ci,j) ≥ 1+k+r

n−1
, since it is connected

to the leader node, to all captains from other groups, and to
at least r members. As such, we have:

cdegr(G, ci,j)− cdegr(G, l) ≥ 1 + k + r − 2k)

n− 1

which gives us:

cdegr(G, ci,j)− cdegr(G, l) ≥ 1 + r − k
n− 1

Therefore, since r =
⌊
m
k

⌋
, we have that cdegr(G, ci,j) >

cdegr(G, l) for k <
√
|F |+ 1− 1.

Moving on to closeness centrality, for any given node, v,
this centrality depends inversely on the sum of the lengths of
shortest paths from v to every other nodes, i.e.,

∑
w∈V d(v, w).

For every leader and every captain, the distance to every
other node is either 1 or 2. More precisely, for every v ∈ V ,
we have:

∑
w∈V d(v, w) = 1|N(v)| + 2(n − |N(v)|) = 2n −

|N(v)|. Consequently, whenever all captains have greater de-
gree centrality than all leaders, they must also have greater
closeness centrality. Since we have already proven this fact

Algorithm 1 The construction of a captain network with
multiple leaders

Input: The set of leaders L = {l1, . . . , lh}, the set of fol-
lowers F = {f1, . . . , f|F |}, the number of captains in each

group, i.e., k (where 1 ≤ k ≤ |F ||L| ).
Output: The set of edges E that constitutes the captain

network
h′ ← max(2, h)
for i = 1, . . . , h′ do

for j = 1, . . . , k do
ci,j ← f(i−1)k+j

Ci ← Ci ∪ {ci,j}
X ← F \

⋃h′

i=1 Ci

for li, lj ∈ L do
E ← E ∪ {(li, lj)}

for li ∈ L do
for ci,j ∈ Ci do

E ← E ∪ {(li, ci,j)}
if h = 1 then

for c2,j ∈ C2 do
E ← E ∪ {(l1, c2,j)}

for Ci 6= Cj do
for c ∈ Ci do

for c′ ∈ Cj do
E ← E ∪ {(c, c′)}

j ← 0
for x ∈ X do

for i = 1, . . . , |L| do
E ← E ∪ {(x, ci,j)}

j ← (j + 1) mod k

for the degree centrality, then this implies that cclos(G, ci,j) >
cclos(G, l).

Finally, regarding betweenness centrality, let ζ(v) denote:∑
u,w∈V \{v}

|{p∈Π(u,w):v∈p}|
|Π(u,w)| . Then the betweenness central-

ity of a node v ∈ V can be written as:

cbetw(G, v) =
2

(n− 1)(n− 2)
ζ(v).

For a network with multiple leaders, every leader node l
belongs to one of (h− 1)k + 1 shortest paths between pairs
of captains from its group (alternative shortest paths run
through captains from other groups), as well as one of k+ 1
shortest paths between each captain from its group and all
other leaders (alternative shortest paths run through cap-
tains from the group of the chosen leader). Since the leader
node l belongs to no other shortest paths, we have:

ζ(l) =
k(k − 1)

2((h− 1)k + 1)
+
k(h− 1)

k + 1

Having analyzed ζ(l), let us now analyze ζ(ci,j) for a captain,
ci,j . In particular, since ci,j belongs to one of (h − 1)k +
1 shortest paths between pairs of captains from all other
groups, as well as one of k + 1 shortest paths between each
captain from other groups and the leader of its group, we
have:

ζ(ci,j) >
(h− 1)k(k − 1)

2((h− 1)k + 1)
+
k(h− 1)

k + 1

Therefore, we have that ζ(ci,j) > ζ(l), which results in
cbetw(G, ci,j) > cbetw(G, l).
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Figure 4: An illustration of a captain network with
one leader. Edges including leaders are depicted as
solid black lines; edges between captains are de-
picted as gray lines; edges between captains and
other nodes are depicted as dotted lines.

For a network with a single leader, the leader node l be-
longs to one of k+1 shortest paths between pairs of captains
from each group (alternative shortest paths run through cap-
tains from other group). Since the leader node l belongs to
no other shortest paths, we have:

ζ(l) =
k(k − 1)

(k + 1)

Having analyzed ζ(l), let us now analyze ζ(ci,j) for a captain,
ci,j . In particular, since ci,j belongs to one of k+ 1 shortest
paths between pairs of captains from the other group, and
to only shortest path between member nodes connected to
it and captains from the other group, we have:

ζ(ci,j) >
k(k − 1)

2(k + 1)
+ rk =

k(k − 1) + 2rk(k + 1)

2(k + 1)

Therefore, we have that ζ(ci,j) > ζ(l), which implies that
cbetw(G, ci,j) > cbetw(G, l).

As for the followerâĂŹs centrality values, they will be
lower than those of the captain. Intuitive argument is that
the follower has fewer neighbours than the captain that she
is connected to, and she lies on no shortest paths, as her
neighbours form a clique.

5. SIMULATION RESULTS
As stated in Theorem 3, a captain network can indeed con-
ceal its leaders as far as centrality is concerned. On the
other hand, as far as influence is concerned, we evaluate
the network empirically to see how the different parameters
affect the influence of the leaders. To this end, given a cap-
tain network with 400 nodes, we varied the parameters of
the network, either k (the size of each captain group) and q
(the number of captains from each group, connected to any
given member) for a network with a single leader, or k (the
size of each captain group) and h (the number of leaders)
for a network with multiple leaders. For every pair of pa-
rameters, we measure the difference in centrality between a

leader node, and any given captain (the greater the differ-
ence, the greater the leaders’ disguise), and measured the
influence of a leader to see how this influence is affected by
the disguising process. When measuring the influence, we
use either the Independent Cascade model with probability
0.15 on each edge, or the Linear Threshold model with the
threshold value sampled uniformly at random.

The results are depicted in Figures 5 and 6. Both figures
should be read as follows. The x-axis represents the number
of captains in each group. The y-axis represents the number
of leaders of the network. The more intense the color in
Figure 5, the higher the difference in centrality between a
leader node and a captain, and the safer the leader. The
more intense the color in Figure 6, the higher the influence
of a leader node.

Roughly speaking, the results can be categorized into three
categories:

• small k: This yields relatively high levels of disguise in
terms of degree, closeness, and betweenness. On the
other hand, it yields rather low levels of Independent-
Cascade influence and Linear-Threshold influence;

• large k and small h: This yields relatively low levels
of disguise in terms of degree, closeness and between-
ness. On the other hand, it yields relatively high levels
of Linear-Threshold influence, but not Independent-
Cascade influence;

• large k and large h: This yields relatively high levels
of disguise in terms of degree and closeness, but not
betweenness. On the other hand, it yields relatively
high levels of Independent-Cascade influence, but not
Linear-Threshold influence.

6. DISCUSSION & CONCLUDING
REMARKS

The model studied in this paper offers new insights into
the secrecy-efficiency tradeoff faced by the covert organiza-
tions. The novelty of our approach comes from our defini-
tion of secrecy, which assumes that the members of a terror-
ist network act strategically to evade detection by central-
ity measures. Indeed, it is well established that centrality
measures belong to the key social network analysis (SNA)
tools used to analyse covert networks. Unfortunately, cen-
trality measures—like most other SNA tools—were designed
to analyse social networks among members of the general
public, rather than among adroit members of covert orga-
nizations who are well aware of the possibility of attracting
unwanted attention from the authorities. However, recent
findings—for, instance, with respect to ISIS—strongly sug-
gest that such an assumption is too far-fetched.

Our work constitutes a step to analyse such issues and a
contributed to the line of research on strategic analysis of
social networks [27]. In particular, we showed that choosing
a set of edges to add to the network in order to decrease
the leaders’ ranking (according to both degree and closeness
centrality measures) is NP-complete. While this is a “neg-
ative” result from the computational point of view, it is in
fact rather positive news for law-enforcement agencies.

The above hardness results are general in the sense that
they were obtained without any considerations of the “effi-
ciency” part of the aforementioned secrecy-efficiency trade-
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Figure 5: Given a captain network of 400 nodes, with different number of captains in each group (the x-axis)
and number of leaders (the y-axis), the figure depicts the difference in centrality between a leader and a
captain.
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Figure 6: Given a captain network of 400 nodes,
with different number of captains in each group (the
x-axis) and number of leaders (the y-axis), the figure
depicts the influence value of a leader. Top figure -
IC Influence; bottom figure - LT Influence.

off. We introduced such efficiency into the model by in-
vestigating how the leaders could construct a network from
scratch so that they are adequately hidden from the three
fundamental centrality measures, and adequately influential
at the same time.

The network that we construct from scratch has a group
of leaders forming a clique (to assure efficient communica-
tion among them), and has a well-defined core “captains”
who are densely connected among themselves and who act
as intermediaries between leaders and other members of the
organization. It is known that such “inner circles” exist in

some real-life terrorist networks such as, e.g., Al-Quaeda [2]
and IRA [33]. Unfortunately, we did not have any access to
real-life data that we could use for comparison. Neverthe-
less, we hope that our results shed more light on why such
circles may exist in covert networks.

Our model can be extended in various directions. First,
we assume that the “evaders” (i.e., the members of covert
organization) are strategic whereas the “seeker” (who is us-
ing centrality measures to identify key terrorist) is not, i.e.,
he or she is unaware of any potential strategic efforts by the
evaders. It would be interesting to see new SNA tools, and
centrality measures in particular, that are immune (at least
to some extent) against such evasion techniques.

Second, although our captain networks appear to be ef-
fective in terms of influence (i.e., they are empirically shown
to grant the leaders a reasonable level of influence), they do
not provide any worst-case guarantees on solution quality in
this regard. This problem constitutes another direction for
future research.

Finally, another interesting direction is to investigate whether
there exist special classes of networks for which the problem
of hiding leaders can easily be solved.

Acknowledgements
Marcin Waniek was supported by the Polish National Sci-
ence Centre grant 2015/17/N/ST6/03686. Tomasz Micha-
lak was supported by the European Research Council under
Advanced Grant 291528 (“RACE”) and by the Polish Na-
tional Science Centre grant 2014/13/B/ST6/01807. Michael
Wooldridge was supported by the European Research Coun-
cil under Advanced Grant 291528 (“RACE”).

REFERENCES
[1] J. M. Anthonisse. The rush in a graph. Amsterdam:

University of Amsterdam Mathematical Centre, 1971.

[2] V. Barber. The evolution of al qaeda’s global network
and al qaeda core’s position within it: A network
analysis. Perspectives on Terrorism, 9(6), 2015.

[3] A. Bavelas. A mathematical model for group
structures. Human organization, 7(3):16–30, 1948.

1348



[4] M. A. Beauchamp. An improved index of centrality.
Behavioral Science, 10(2):161–163, 1965.

[5] K. M. Carley. Destabilization of covert networks.
Computational & Mathematical Organization Theory,
12(1):51–66, 2006.

[6] J. T. Chatagnier, A. Mintz, and Y. Samban. The
decision calculus of terrorist leaders. Perspectives on
Terrorism, 6(4-5), 2012.

[7] P. Crescenzi, G. D’Angelo, L. Severini, and Y. Velaj.
Greedily improving our own centrality in a network.
In Proceedings of the 14th International Symposium on
Experimental Algorithms - Volume 9125, pages 43–55,
New York, NY, USA, 2015. Springer-Verlag New
York, Inc.

[8] N. Crossley, G. Edwards, E. Harries, and
R. Stevenson. Covert social movement networks and
the secrecy-efficiency trade off: The case of the {UK}
suffragettes (1906-1914). Social Networks, 34(4):634 –
644, 2012.

[9] F. Demiroz and N. Kapucu. Anatomy of a dark
network: the case of the turkish ergenekon terrorist
organization. Trends in organized crime,
15(4):271–295, 2012.

[10] W. Enders and X. Su. Rational terrorists and optimal
network structure. Journal of Conflict Resolution,
51(1):33–57, 2007.

[11] S. F. Everton. Network topography, key players and
terrorist networks. Connections, 2009.

[12] S. F. Everton and N. Roberts. Strategies for
combating dark networks. Paper presented at the
Sunbelt XXIX: The Annual Meeting of the
International Network of Social Net work Analysis.,
2011.

[13] J. D. Farley. Breaking al qaeda cells: A mathematical
analysis of counterterrorism operations (a guide for
risk assessment and decision making). Studies in
Conflict & Terrorism, 26(6):399–411, 2003.

[14] L. C. Freeman. A set of measures of centrality based
on betweenness. Sociometry, pages 35–41, 1977.

[15] L. C. Freeman. Centrality in social networks
conceptual clarification. Social networks, 1(3):215–239,
1979.

[16] J. Goldenberg, B. Libai, and E. Muller. Using complex
systems analysis to advance marketing theory
development: Modeling heterogeneity effects on new
product growth through stochastic cellular automata.
Academy of Marketing Science Review, 9(3):1–18,
2001.

[17] I. Hamed, M. Charrad, and N. B. Ben Saoud. Which
Centrality Metric for Which Terrorist Network
Topology?, pages 195–208. Springer International
Publishing, Cham, 2016.

[18] R. Janssen and H. Monsuur. Stable network topologies
using the notion of covering. European Journal of
Operational Research, 218(3):755–763, 2012.

[19] N. F. Johnson, M. Zheng, Y. Vorobyeva, A. Gabriel,
H. Qi, N. Velasquez, P. Manrique, D. Johnson,
E. Restrepo, C. Song, and S. Wuchty. New online
ecology of adversarial aggregates: Isis and beyond.
Science, 352(6292):1459–1463, 2016.

[20] D. Kempe, J. Kleinberg, and É. Tardos. Maximizing
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