
Spoken Instruction-Based One-Shot Object and Action
Learning in a Cognitive Robotic Architecture

Matthias Scheutz
HRI Laboratory

Computer Science
Tufts University

Medford, MA 02111, USA
matthias.scheutz@tufts.edu

Evan Krause
HRI Laboratory

Computer Science
Tufts University

Medford, MA 02111, USA
evan.krause@tufts.edu

Brad Oosterveld
HRI Laboratory

Computer Science
Tufts University

Medford, MA 02111, USA
bradley.oosterveld@gmail.com

Tyler Frasca
HRI Laboratory

Computer Science
Tufts University

Medford, MA 02111, USA
tmfrasca@gmail.com

Robert Platt
College of Computer and

Information Science
Northeastern University

Boston 02115, USA
rplatt@ccs.neu.edu

ABSTRACT
Learning new knowledge from single instructions and being able
to apply it immediately is a highly desirable capability for artificial
agents. We provide the first demonstration of spoken instruction-
based one-shot object and action learning in a cognitive robotic
architecture and discuss the modifications to several architectural
components required to enable such fast learning, demonstrating
the new capabilities on two different fully autonomous robots.

CCS Concepts
•Human-centered computing → Natural language interfaces;
•Computing methodologies→ Online learning settings;

Keywords
One-shot learning; natural language instruction; learning actions
and objects

1. INTRODUCTION
Learning from natural language instructions is undoubtedly

among the most impressive feats of the human cognitive system.
It starts when children have acquired enough language to under-
stand instructions containing new words, and continues through
various developmental phases into adulthood where complex con-
cepts that could otherwise not be experienced can be conveyed
merely through natural language descriptions (think of large infi-
nite cardinal numbers ℵα). It is clear that such a learning capa-
bility would be of immense utility to artificial agents. Not only
could agents quickly acquire new knowledge, possibly in “one-
shot” from a single instruction, but they could also share this newly
acquired knowledge with other agents of the same ilk (i.e., if their
architectures represent it in a way that allows for knowledge shar-
ing), enabling massive parallel knowledge acquisition among a co-
hort of agents.

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

While most artificial cognitive systems have the ability to ac-
quire new knowledge, some even from natural language instruc-
tions (e.g., [13, 19]), the way new knowledge is acquired in these
architectures is not comparable to the human case. For one, cogni-
tive architectures make various assumptions about perceptual and
actuation capabilities (i.e., what primitive percepts and actions are
available) as well as internal representations (e.g., what concepts
and relations can be represented). They typically cannot accom-
modate truly novel objects or actions, or even novel object parts or
known actions performed on those parts. Some of these representa-
tional and functional assumptions made by cognitive architectures
carry over to cognitive robotic architectures (CRAs), e.g., to task
and motion planners which operate on given planning models that
consist of given predicates and relations, even though CRAs are
better equipped to acquire new primitive percepts or actions. In
learning new knowledge from instructions, however, an architec-
ture also has to cope with unknown words in the instruction, in
addition to the unknown concepts denoted by those words. This, in
turn, requires the natural language subsystem (NLS) of the archi-
tecture to be able to cope with all aspects of unknown words: from
their acoustic features, to their syntactic properties, to their seman-
tic meaning, and possibly their pragmatic implictures. Hence, to be
able to truly learn from natural language instructions as humans
do, CRAs need to allow for systematic representations of unknown
entities such as words, percepts, actions, etc. that can be processed
in almost every component of the architecture and subsequently
refined based on the semantics of the natural language instructions
(and possibly perceptual and other constraining contextual factors).
This, in turn, requires modifications to the component algorithms
to handle representations that are partial and underspecified. And it
requires deep interactions between the NLS and other components
in the architecture to allow for subsequent refinement and further
specification of those initially incomplete representations.

We tackle the problem of making a cognitive robotic architec-
ture fit for spoken instruction-based learning of objects and actions
in one shot, i.e., from a single instruction, in such a way that (1) the
acquired knowledge about objects and actions is integrated within
the existing knowledge, (2) the knowledge can be used immediately
by the learning agent for task performance, and (3) the knowledge
can be shared immediately with other agents using the same archi-
tecture. One-shot learning can be triggered either directly by ex-

1378

plicit statements such as “I will teach you how to do X” or “Look
at the object in front of you.” followed by an explicit definition
such as “First, do A, then B...” or “This is a Y”, or indirectly by
using an instruction that contains a word the agent does not know
“Pick up the knife by the blade” which will prompt it to ask for
its definition (“What part of the knife is the blade?”). To guide the
exposition, we use a running example, that of a robot which is first
taught what the handle of a knife is and then subsequently asked
to pick up a knife by its handle. Although nothing hinges on this
particular example, it will be useful in the discussion of the various
component algorithms, their operation, and the modifications that
were necessitated in order to allow for one-shot learning, which
follow next.

2. INSTRUCTION-BASED ONE-SHOT OB-
JECT AND ACTION LEARNING

Instruction-based one-shot object and action learning can be de-
fined as learning conceptual definitions for objects and actions as
well as their aspects (e.g., object parts and action parameters) from
natural language expressions that contain these definitions. For ex-
ample, an object definition such as “A medical kit is a white box
with red cross on it and a handle on top” defines a medial kit in
terms of other shape, color, and object concepts referred to by color
adjectives (e.g., “white” and “red”), shape nouns (e.g., “box” and
“cross”) and other object types (e.g., “handle”) as well as relational
expressions such as “on” and “on top” which relate the various ob-
ject parts. A vision system that knows how to recognize and de-
termine the various ingredients used in the definition can then rec-
ognize the new object by way of recognizing its constituent parts
and their relationships (cp. to [14]). Similarly, a definition such as
“To follow means to stay within one meter of me”, again assuming
that all concepts after “means” are known, should allow an action
execution component to construct an action script that captures the
procedural meaning of the expression (cp. to [2]).

Definition[Natural language object and action definition]. Let WO

be a set of natural language expressions denoting objects, object
properties, or object parts in a set O, Wr be a set of relation ex-
pressions denoting relations in R among object parts O, and Wv

be a set of natural language expressions denoting actions and ac-
tion sequences as well as action modifications in a set of actions
V . Then the natural language expression U(w,Wo,Wr,Wv) is a
definition of a concept denoted by w if U contains w in a way that
marks w as the definiendum (i.e., w is used to denote what is being
defined such as saying in “A table is...” or “I will teach you how
to pick up...”) and the rest of the U , the definiens, involves any
number of expressions from Wo, Wr , and Wv in a compositional
fashion (e.g., “white box with red cross on it” or “stay within one
meter”) such that the composite meaning denoting a new object or
action can be determined from the meaning of its parts.

One-shot object and action learning then amounts to (1) learn-
ing the linguistic aspects of the definiendum w, (2) determining the
semantics of the definiens U , and (3) associating the constituent
parts of the definiens U with different data representations in the
CRA. Assuming that CRA has all functional representations and
processes for all Wo, Wr , Wv (e.g., object, object part and relation
detectors in the vision system and action primitives and parame-
ters in the action execution system), then invoking w in subsequent
utterances will lead to retrieval and application of these data struc-
tures. In other words, by being able to understand natural language
definitions of concepts cast in terms of either known concepts or
other unknown concepts that are themselves defined in natural lan-

guage, a CRA can quickly acquire new knowledge by combining
existing knowledge in a way prescribed by those definitions.

To make this also practically possible, several changes and ad-
ditions must be made to a CRA to enable the architecture to han-
dle new words, generate novel data structures based on expressions
that refer to other knowledge, and associate those data structures
in ways that future invocations of the word will trigger the right
kind of retrieval and application processes of the knowledge. For
example, the speech recognizer must learn the acoustic signature
of the new word on its first occurrence and be able to recognize
it subsequently, the syntactic and semantic parsers have to be able
to assign a grammatical type, syntactic structure and descriptive
semantics to the word, and depending on whether it denotes an ac-
tion or object, the new term has to be associated with knowledge
in the vision and action components. Moreover, the CRA has to
detect when new knowledge is presented and understand from the
utterance what type of knowledge it is. In the following, we will
show in some detail how this can be accomplished in a CRA in way
that the NLS in conjunction with other components in the CRA can
process, store, retrieve, and apply the defined concepts.

3. ARCHITECTURAL MODIFICATIONS
As mentioned above, almost all components in a CRA are im-

plicated in instruction-based one-shot learning and the goal of this
section is to show what kinds of modifications are necessary to the
various component algorithms to allow them to handle unknown
words and concepts as part of the learning process. We will use
as a simple guiding example the instruction “Pick up the knife by
the handle.” given to a robot that does not know what a handle is.
Currently, most CRAs would simply fail, either because the speech
recognizer does not understand the word; or if the word were in
the vocabulary of the recognizer (which it should not be if it is
truly considered to be an unknown word), the parser will likely not
know what do to with it because it has no part-of-speech tag for
the word and thus does not know what grammar rules apply; or
if it does (again because the robot has already partial knowledge
of the word), the semantics are unknown; or if the semantics are
known, then the connection to the perceptual system are unknown,
etc. Current instruction-based learning architectures make varying
assumptions about what aspects of the unknown word and concepts
have to be assumed in order to be able to learn other aspects. No
current system, however, is able to learn all aspects in one shot.

Before we consider the architectural modifications, it is useful to
take a step back and consider how difficult this problem is. First,
how can the robot even understand the instruction when it does not
know the word “handle”, i.e., how can it recognize the word, de-
termine its syntactic features, and then infer its semantic role in the
instruction? How can it learn enough of the semantics of “handle”
to configure its vision system to be able to perceive the relevant part
of the object? And how can it perform the particular pick-up action
on the object part when it has never seen the object before and does
not know how to best grasp it for the pick-up?

We will address these questions one by one in the subsequent
sections in the context of the particular CRA we chose for the
project, the DIARC architecture (e.g., [26, 25]), although the mod-
ifications discussed below would equally apply to other CRAs.
Fig. 1 shows the relevant parts of DIARC that must be adapted in
order to allow for object and action-based one-shot learning (addi-
tional components might be required for learning additional more
abstract concepts). In particular, we will in the following describe
the modifications to the algorithms in four of these components
which are typically not part of classical cognitive architectures: the
Automatic Speech Recognizer, the Parser, the Vision component,

1379

the Action Manager, and the Text-to-Speech component, and show
how they are now able to systematically handle partial and incom-
plete information (we have to leave discussions of how to modify
other components for another occasion for space reasons).

Figure 1: Architecture overview with relevant components and
their information flow (components discussed below are shown
in white).

3.1 Speech recognition
The role of the Automatic Speech Recognition (ASR) system

is to convert acoustic speech signals into a textual representation.
While standard speech recognizers are typically able to detect when
a word is not in their vocabulary, they are not able to add it to their
vocabulary on the fly so that, ideally, it can be recognized the next
time it occurs. We thus developed a special one-shot speech recog-
nizer (OSSR) (which can be used independently or in conjunction
with existing large vocabulary speech recognizers) to appropriately
detect out-of-vocabulary utterances and learn them in one shot us-
ing a nearest neighbor classifier. While not as accurate as more
sophisticated classifiers used in ASR, it has the distinct advantage
that new classes, and their representations, can be added in very
small constant time. Another trade-off is that the cost of O(1) for
category insertion comes with the O(n) cost for search. Fortu-
nately, these comparisons are all independent from each other and
can thus be parallelized. The implementation used in this evalu-
ation can leverage the available hardware of its system, CPUs or
GPUs, to divide that O(n) search time by the number of available
threads available (details of the recognizer are described in [21]).

Another critical feature is how the similarity between two sound
tokens is measured by the recognizer. We use a version of the
Acoustic DP-Ngram Algorithm (DP-Ngrams) [1] modified for the
OSSR task. DP-Ngrams is able to not only distinguish when two
feature sequences are similar, but also to determine which parts of
those sequences are similar, and which are not. This allows for
words learned on the fly to be recognized compositionally as parts
of a longer utterance.

Previously, DP-Ngrams has been used to derive subword units
from sets of similar words [1]. We modified the algorithm weights
to favor longer subsequence alignments to focus on the discovery
of word level units in input acoustic signals. We also smoothed
the input feature sequences before comparison to reduce the effects
that minor variations have on alignment similarities.

If an input does not have any neighbors above a similarity thresh-
old it is determined to be a new word. A representation of that word
is generated which contains: the signal in the OSSR’s feature space,

the original acoustic signal, and a text label as a reference for the
rest of DIARC. The labels of new words are determined by the
order in which they are encountered, the first is labeled UT1 (for
“unknown token 1”) and so on. Future instances of words learned
on the fly are also stored. In the case of the utterance “Pick up the
knife by the handle” where the representation of “handle”, acoustic
and textual, is not previously known, the ASR component would
produce the text “Pick up the knife by the UT1”.

3.2 Syntactic and semantic parsing
The parser’s job is to generate both the syntactic structure and

the semantic interpretation of an utterance. This can be done ei-
ther in two steps – syntactic followed by semantic parsing – or in
one step together. The particular parser employed in DIARC is an
incremental and extended version of the Combinatory Categorial
Grammar (CCG) parser from [6]. It contains a dictionary of pars-
ing rules each composed of three parts: a lexical entry, a syntactic
CCG definition of the semantic type of the lexical entry, and the se-
mantics of the lexical entry in lambda calculus. Table 1 shows the
rules used for parsing the utterance "Pickup the knife by the UT1".1

Label Syntax Semantics
pickup C/NP[PP] λx.pickup(?ACTOR, x)
the NP/N λx.x
knife N knife
by (NP[PP]/NP)\NP λxλy.partOf(x, y)

Table 1: A subset of the rules used by the parser.

The parser stores information about the state of the parse as a
set of binary trees. Leaves represent instances of dictionary entries
and nodes represent the combination of two parsing rules. Input is
received incrementally, word by word, and as words get added to
the parse, the parser examines the syntactic rule of the root of all
existing trees in the parse space. If the new word can be combined
with an existing root, then the relevant trees are updated recursively.
If not, the new word is added as the root of a new tree. The parser
checks after each update whether the root of one of the parse trees
is of a terminal type, in which case the combined semantics are
generated from the tree and the parse space is cleared.

Since novel words like “UT1” obviously do not have entries in
the parser’s dictionary, new entries must be created for them, for
which semantic and syntactic definitions must be inferred, which
in some cases can be derived from the context in which the word
was used (e.g., see [2]). Specifically, the parser currently employs
the following heuristic: first, it checks whether the most recent root
has unresolved arguments (e.g., “pickup” needs an argument), then
it sets the type of the unknown to the argument type required by the
previous word. Otherwise, it waits to see whether a new word ar-
rives (within a certain time) and then checks whether the new word
expects preceding arguments, in which case it sets the type of the
unknown word accordingly, or else it marks the tree as unresolved.
If no additional word arrives, it assumes that the unknown word’s
type must be such that it expects a preceding argument of the type
of the preceding root and results in a terminal type.

Once the syntax of the new entry is defined, its formal descrip-
tive semantics can be generated from the label. In cases where the
new entry takes no arguments the semantics simply evaluate to the
label. When arguments are required, the name of the function in
the generated predicate is set to the value of the label. Figure 2
1Note that we treat “pickup” as one word in this paper solely to
simplify the presentation. In the actual representation, “up” is a
modifier for the “pick” action.

1380

shows the parse space before and after the addition of UT1, for the
utterance “Pickup the knife by the UT1”. The type of the new to-
ken is inferred to be “N”, and the resultant semantic representation
is pickup(?ACTOR, partOf(knife, UT1)).

Figure 2: Parse states before and after UT1 is added. Labels in
bold, semantics italicized.

3.3 Vision processing
The vision system’s job is to detect and track objects and their

features. It consists of several low-level modules as well as higher-
level search managers responsible for configuring and chaining
low-level modules into visual searches. The relevant low-level
modules in this work include Detectors, Validators, and Trackers,
and serve as the building blocks of the system’s visual search ca-
pabilities. A high-level view of the vision system architecture and
the visual search constructed in the proof-of-concept example can
be seen in Fig. 3.

Search ManagerSearch ManagerSearch Manager

Available
Validators

Available
Trackers

Validator

TrackerTrackerTracker

Advertisements

P
ro

c e
ss

in
g

F
lo

w

Cluster Detector

T
ra

ck
e

d
 O

b
je

ct
s

Available
Detectors

Detector Advertisements

Knife Validator

Grasp Detector

Color Detector

ValidatorValidator

DetectorDetector

AdvertisementsLearned Mappings Advertisements

Relation Validator

Tracker

Vision Component Interface

Figure 3: Simplified vision system overview and the informa-
tion flow during a visual search (see text for details).

Detectors are responsible for segmenting scenes into candidate
objects. Detectors can perform generic segmentation such as clus-

tering objects on a table plane without requiring knowledge of the
object types, or more specialized segmentation such as face detec-
tion that scans the entire image for a particular object type. Crit-
ically, Detectors can also process segmented candidate objects to
further segment objects into constituent parts. A search for the “or-
ange part of the knife”, for instance, might first employ a knife
detection pipeline to detect and segment knives from a scene, and
then pass the results to a color detector to detect the orange parts
of the detected knives. This flexibility not only prevents the color
detector from having to search the entire scene for orange, but also
enables the system to build rich object representations by allowing
recursive object labeling. Validators are similar to specialized De-
tectors, differing in that they only process pre-segmented candidate
objects, and do not scan images, or further segment objects. Clas-
sifiers are the most common use case for this type of module, but
relational processors (e.g., “part of” relation between two object
parts) also fall into this category. Trackers are the final stage of the
visual search pipeline. After an object has been segmented and la-
beled as the appropriate target object, it is passed to a tracker to not
only track the object from frame to frame, but also make the object
available to other components ion the CRA.

To instantiate a new visual search, a Search Manager is created
and tasked with taking the requested search descriptors and assem-
bling an appropriate set of modules to satisfy the search constraints.
Search requests come in the form of restricted quantifier-free first-
order predicate expressions and are then mapped to Validators and
Detectors which advertise their capabilities to the vision system
via predicate expressions. During the assembly phase, if a Search
Manager is unable to find a module to satisfy any part of a search
request, the search fails.

To facilitate one-shot learning of new visual concepts through
natural language, a vision system must be able to ground new con-
cepts to the real world. This grounding can be achieved in two
distinct ways: (L1) mapping new concepts directly to real world
object properties, and (L2) mapping new concepts to known con-
cepts. First, to achieve L1, a vision system must be able to segment
the object of interest from the scene and extract meaningful fea-
tures from the object or object part. This approach can be used, for
example, when a robot and object are co-located and an utterance
such as “this object is a knife” is used to teach a new concept.

To realize L2, a vision system must be able to map new con-
cepts to known concepts in order to ground them to the real world
(e.g., see [14]). “The orange part of the knife is the handle”, for
instance, requires existing knowledge of the “orange”, “knife”, and
“part of” concepts. The vision system presented here, builds in-
ternal mappings of these concepts (represented as “Learned Map-
pings” in Figure3) and is able to instantiate the appropriate mod-
ule(s) to satisfy requests for newly learned concepts. In this exam-
ple, a visual search for “handle” would result in the instantiation of
modules for “orange”, “knife”, and “part of” concepts.

Once all parts of a requested predicate expression are satisfied,
a search is automatically started and the Search Manager and its
modules begin to process captured frames. While performing a
visual search, the modules composing the search generate scene
graph representations of detected objects. This is a graph struc-
ture where nodes represent segmented objects or object parts, and
edges represent relationships between nodes (e.g., “part of”, “in”).
More specifically, nodes contain image masks indicating parts of
RGB images and/or RGB-D point clouds, labels indicating prop-
erties of the node (e.g., “knife”, “orange”, “grasp point”), and any
supplemental label information (e.g., orientation for grasp points).
In addition, each label, on a node or edge, contains a value in [0,1]
indicating the confidence of each property.

1381

It is important to note that visual one-shot learning is not capable
of learning a generalized concept through a single exposure. In the
case of L1, it is impossible to know what features are relevant to the
new concept (e.g., color, shape, affordance). Learning that color is
not a relevant property of the mug concept, for example, can only
be learned through several exposures (or additional NL input). The
vision system can only be expected to learn that the object that it
currently sees is an instance of the new concept. Similarly for L2,
it is only reasonable to assume the mapping holds for the current
object. “The orange part of the knife is the handle” clearly does not
hold for all handles. Thus, while visual one-shot learning can not
create generalized classes of objects and object parts on its own, it
does provide a mechanism for both quickly learning instances of
new concepts, and also providing labeled training data for general-
ized concept learning.

Grasping unknown objects. Traditional approaches to percep-
tion for robotic grasping are object-based [4]. First, they plan
grasps with respect to a known mesh model of an object of inter-
est. Then, they estimate the 6-DOF pose of the object and project
the grasp configurations planned relative to the object mesh into
the base frame of the robot. While these methods can work well in
structured environments where object geometries are known ahead
of time, they are less well suited for unstructured real world en-
vironments. By contrast, grasp detection methods treat perception
for grasping like a typical computer vision problem [23, 17, 22, 8,
5, 10, 12, 28, 9]. Instead of attempting to estimate object pose,
grasp detection estimates grasp configurations directly from image
or point cloud sensor data. These detected grasp configurations are
6-DOF poses of a robotic hand from which a grasp is expected to
be successful. Importantly, there is no notion of “object” here and
there is no segmentation as a pre-processing step. A successful
grasp configuration is simply a hand configuration from which it is
expected that the fingers will establish a grasp when closed.

Figure 4: Left: input object. Right: high scoring grasps on
segmented object.

Most grasp detection methods have the following two steps:
grasp candidate generation and grasp scoring. During candidate
generation, the algorithm hypothesizes a large number of robotic
hand configurations that could potentially be but are not necessarily
grasps. Then, during grasp scoring, some form of machine learn-
ing is used to rank the candidates according to the likelihood that
they will turn out to be grasps. There are a variety of ways of
implementing these two steps. These grasp candidates in our ap-
proach are generated by searching for hand configurations that are
obstacle free with respect to the point cloud and that contain some
portion of the cloud between the two fingers. Figure 4 shows a tar-
get object and the set of grasps that were scored very highly by the
machine learning subsystem. In our case, we use a four-layer-deep
convolutional neural network to make grasp predictions based on
projections of the portion of the point cloud contained between the
fingers. More details on this method can be found in [9].

3.4 Action Manager
The Action Manager (AM) in DIARC is responsible for exe-

cuting action scripts (it corresponds to action monitoring and se-

quencing component in hybrid robotic architectures). For space
reasons, we can only give a high-level overview of the function-
ality that enables it to learn new action scripts from instructions
(possibly spread over multiple dialogue moves). First, the ac-
tion manager must be notified of an action learning event to be
able to start monitoring and recording the instructed actions and
action parameters that will have to be assembled into an exe-
cutable action script. In the case of a direct instruction such as
“I will teach you how to do X” (e.g., X=squat), the AM can in-
fer from the semantics that this is an action or action sequence
that pertains to only the actor and does not have any additional
actor or object arguments, whereas an instruction such as “I will
teach you how to X Y ” indicates an action plus modifer or ob-
ject or agent (e.g., X=stand Y =up, X=empty Y =the box, or
X=greet Y =John, respectively). Since the NLS will mark Y ac-
cordingly, the AM can introduce variables for action parameters,
objects, and agents into the signature of the action script, in addi-
tion to the actor argument (e.g., squat(actor:a); compared to
empty(actor:a,object:y)). Then, while the to-be-learned
actions are instructed, the monitoring process keeps track of all
modifications, potentially creating additional typed variables for
additional action arguments, as well as state updates to be able to
explicitly track any known changes effected by the actions (e.g.,
after being instructed to “lift your arms”, the AM records a state
update about the position of the arms). Once the end of the instruc-
tion sequence is indicated, the newly formed action script is added
to the AM’s action database, indexed by the name of the new NL
expression denoting it as well as by its initial and goal conditions
(to the extent that they were produced during learning). Additional
information about the purpose of the action can be added to the
goal states if available (e.g., from additional NL instructions). An
example of an action scripts is given below in the demonstration
section.

3.5 Speech generation
Whenever the robot has to communicate with the human, a sur-

face text representation is generated from the logical semantic rep-
resentations the robot intends to communicate. The speech synthe-
sizer MaryTTS [27], generates synthetic speech based on known
mappings between phones and text. In the case of text that rep-
resents newly learned words, however, this mapping is not known
and the internal representation of learned words is not grounded in
a way that can be easily interpreted by humans. This poses dif-
ficulty when the robot needs to converse with the human about
newly learned topics using newly learned words, it cannot simply
ask “What is a UT1?”, for example, as “UT1” means nothing to the
human. The robot thus not only must be able recognize the acous-
tic forms of UT1, but it also must produce them. Ideally, the robot
would determine some phonological representation of the acoustic
signal of UT1, if it corresponds to a word in some language, that
could then be used to synthesize it. Since inferring phonological
representations from acoustic sigals encoding novel words is not
the focus of this project, we chose a simpler route – the “parrot-
ing approach” – namely to store the human’s acoustic signal orig-
inally associated with UT1 and play it back whenever UT1 is to
be uttered instead of synthesizing the word using the robot’s own
speech. While this approach obviously has its shortcomings – aside
from sounding funny when the robot plays back the user’s voice,
it cannot handle inflections or other speech modulations such as
stress, prosody, etc. – it is sufficient to demonstrate that the robot
can use the newly acquired word token UT1 appropriately in dia-
logues about establishing its meaning. It is, however, possible for
the robot to ask the human to spell the new word (e.g., upon hear-

1382

ing the new word), which will give it a textual representation that it
can then use directly to synthesize the new word in its own voice.

4. DEMONSTRATIONS
In this section, we briefly walk through two dialogue interac-

tions during which two different robots learns two different types
of knowledge from natural language instructions: (1) how to per-
form a new action sequence (i.e., how to do a squat) and (2) how
to recognize and pick up an object by a new part (i.e., the handle
of a knife). In both cases, the robot can apply the newly learned
knowledge immediately, in the former to do a squat, in the latter to
perform the pick-up action on the handle.

4.1 Learning Action Sequences in One-Shot
The first demonstration shows how the robot can learn a new

action sequence by being instructed to each individual action in
sequence:

Human: I will teach how to do a squat.
Robot: OK.

Human: Raise your hands.
Robot: OK.

Human: Crouch.
Robot: OK.

Human: Stand up.
Robot: OK.

Human: Lower your hands.
Robot: OK.

Human: That is how you do a squat.
Robot: OK.

The semantics of the initial instruction “I will teach you how to
do a squat” processed by the Dialogue Manager triggers the moni-
toring process in the AM that will observe instructions and demon-
strations until the end of the learning phase is indicated. When the
robot is then instructed to perform a squat:

Human: Do a squat.
Robot: OK.

the meaning of “squat”, the newly learned action script

script UT0(actor:a);
raise-hand(a,all);
crouch(a);
stand-up(a);
lower-hand(a,all);

bound to “UT0”, gets retrieved and executed in the ActionManager
(note that the argument “all” is used since the instruction refers to
the plural “hands”) . A video of the interaction is located here:
http://bit.ly/2eNVvVW.

4.2 Learning Object Parts in One-Shot
The second demonstration shows how the robot can learn to rec-

ognize a new object part and use that knowledge to pick up the
object by the newly learned part:

Human: Pick up the knife by the handle.
Robot: OK.

The ASR recognizes the utterance except for “handle” and cre-
ates a new unique identifier “UT1” for it. The recognized text
“Pick up the knife by the handle” is sent to the Parser which
generates semantics of the form “pickUp(self,partOf(UT1,knife))”
and passes it on to the Dialogue system. The utterance is inter-
preted as a literal command, acknowledged (“OK”) and passed
on to the KR and Inference component which generates a new

goal “pickUp(self,partOf(UT1,knife),leftArm)” that is sent to Ac-
tion Manager. The Action Manager converts the visual description
“partOf(UT1,knife))” to on(graspPoint, partOf(UT1, knife))
during the “pickUp” action in order to determine an appropriate
grasp point on the object part, and passes it on to the vision sys-
tem (this is done because the pickUp action requires appropriate
grasp points on the object to be detected). Since the vision system
does not know what “UT1” is, the visual search fails, and as a re-
sult so does the execution of the pick up action. The action failure
is communicated to the Dialogue component where a response is
generated to address the failure using the recorded sound of “UT1”.

Robot: But what is a handle?
Human: The orange part of the knife is the handle.
Robot: OK.

Here the ASR component recognizes the word “handle” as the
same “UT1” token learned from the first utterance, and passes
the recognized text to the Parser component where the semantics
“is(UT1,partOf(orange,knife))” is generated. The semantic repre-
sentation is then passed to Dialogue where pragmatic rules mod-
ify the semantics form “looksLike(UT1,partOf(orange,knife))” (as
this is an instruction about a perceivable object), asserts it into
the database of the KR and Inference component, and acknowl-
edges the information (“OK”). This assertion into KR and Infer-
ence component triggers a notification to the Vision component
which has requested to be notified of all facts of the form “look-
sLike(X,Y)”. It is then able to learn the new grounding of “UT1”
to “partOf(orange,knife))”. When the robot is then instructed again
to pick up the knife by the handle, the same goal as above is as-
serted, except that the visual search now completes and returns
a scene graph of objects to the Action component, which passes
it on to the Manipulation component together with the grasp con-
straints it determined (i.e., similar predicate form of the search re-
quest). The Manipulation component then uses the scene graph and
grasp constraints to select a grasp point from the subset of grasps
satisfying the constraints, and attempts to grasp the object. Af-
ter the grasp, and additional call to the Manipulation component
from the Action Manager is then executed to perform the lift part
of the pickUp action. A video of the interaction is located here:
http://bit.ly/2cfx3gL.

5. DISCUSSION
The above walk-throughs show how new, initially meaningless

token representations are generated as part of the learning process
and become increasingly associated with different meaning repre-
sentations in different architectural components (the acoustic sig-
nal in the ASR, the CCG type and the descriptive semantics in the
Parsers, object part descriptions in the Vision system, action se-
quences in the Action Manager etc.), eventually resulting in full
integrated distributed knowledge that is immediately available for
use. These are, to our knowledge, the first demonstrations of robots
learning how to perform action sequences or how to manipulate
unknown parts of known or unknown objects solely from natural
language instructions. And, in fact, the robots were able to apply
the knowledge in each case immediately, performing the squat or
picking up the object properly by the intended part right after hav-
ing been taught how to do a squat and what the relevant object part
looks like, respectively.

Note that above demonstrations also showed that (1) instructions
do not have to pertain to a particular set of sensors or actuators and
(2) that they do not depend on a particular robotic platform either.
Rather, it is possible to include perceptions and perform actions on
objects (as in the case of the handle pickup) or to leave out percep-

1383

Utterance Types
<manipulationCommand> (<subject>) <manipulation verb> <object>

<actionCommand> (<subject>) <actionVerb>
<propertyLearning> <object> <equality> <objectProperty> <relation> <object> |

<objectProperty> <relation> <object> <equality> <object>
<definition> <unknown> <identity> [<manipulationVerb>|<actionVerb>|<objectProperty>|<object>]

<actionTeachingStart> <startTeachingPrefix> [<actionVerb>|<manipulationVerb> <object>]
<actionTeachingEnd> <endTeachingPrefix> [<actionVerb>|<manipulationVerb> <object>]

<objectLearning> <learningPrefix> <object>
Expandable Definitions

<manipulationVerb> pick up | grab | look for | find | give me | point to | hand over | ...
<actionVerb> stop | start over | go <direction> | come here | follow me | relax | [raise|lower] your hands | crouch | stand up | ...

<object> <object property> <object> | <object> <relation> <object> | (a|an|the) [knife|ball|mug|box|...]
<objectProperty> <color> | <shape> | <size> | <texture> | <part> | ...

Fixed Definitions
<relation> part of | next to | on top of | to the [left | right] of | of the | ...
<equality> is | ...
<identity> means (the same thing as) | is the same as | is like | ...

<actionTeachingStart> I will [show | teach] you how to | this is how [you|to] | I will explain how to |...
<actionTeachingEnd> that is how you | ...

<objectLearning> [this|that|here] is | [the|this|that] object in front of you is |...
<color> red | blue | yellow | green | purple | orange | black | white | gray | ...
<shape> round | square | triangular | ...

<size> biggest | smallest | shortest | longest | ...
<texture> shiny | rough | checkered | ...

<part> top | bottom | side | end | ...
<direction> left | right | forward | backward

Table 2: Example set of possible utterances in JSpeech Grammar Format (JSGF).

tion and perform sequences of actions on various body parts (as in
the case of the squat) depending on the platform capabilities. Nor
do instructions have to be contained in one sentence (as in the case
of the handle), but can be spread over multiple sentences and dia-
logue interactions (as in the case of the squat). Moreover, learning
can be implicitly triggered using a novel word that the robot does
not understand (as in the case of the handle) or by explicit initiating
the learning interaction (as in the case of the squat). In both cases,
new acoustic, syntactic, and formal semantics representations are
generated that get associated with the content representations of
the instructed knowledge after the relevant parts of the utterances
were semantically analyzed (e.g., the visual representations of ob-
ject part or the action script representation of the action sequence).
Hence, together, the discussed architectural components implement
the one-shot learning scheme described in Section 2. Moreover,
since all knowledge representations in all components (i.e., the as-
sociations with the new token learned as part of the learning process
in different components) are purely additive, i.e., do not modify ex-
isting knowledge, it is possible to transmit the knowledge directly
to other agents who do not yet have that knowledge for integration
into their architectural components (e.g., see [24] for a discussion
on how to do this in the middleware used by DIARC).

It is important to point out that the proposed architectural aug-
mentations and the resultant one-shot learning scheme are not lim-
ited to the two particular examples demonstrated in the above walk-
through. Rather, being implementations of the general one-shot
learning definition in Section 2, they are very general themselves,
only limited by the robot’s knowledge of natural language as well
as its perceptual and actuation capabilities. For example, a robot
without legs like the PR2 cannot do a squat even though it can
learn how to do it, while a robot without sufficient gripper capabil-
ities like the Nao might not be able to pick up a knife by its handle.

To demonstrate the extent of learning possible in the current im-
plementation, consider Table 2 which provides the grammar (in
JSpeech Grammar Format, see https://www.w3.org/TR/

jsgf/) for the different types of one-shot learning utterance forms
that can be handled as well as several terminal expressions (i.e.,
actual words) that can be used in definitions. For example, the
instruction “grab the mug by the handle” is of the form “<manipu-
lationCommand> <object> <relation> <object>”. And if the robot
does not know what a mug is, asking “What is a mug”, it can be
instructed “this is a mug” using “<learningPrefix> <object>”.

The grammar together with the available object, object part, spa-
tial relation, actions, and action parameters knowledge in the CRA
(part of which is indicated in Table 2) can generate infinitely many
definitions of new objects and actions (and extending the robots’
perceptual and actuation capabilities will further increase the set of
possible definitions it can learn). Hence, it is not possible to evalu-
ate the system exhaustively by generating every possible definition
and checking whether the architecture has learned the appropriate
definition. Nor does it make sense to evaluate a random subset of
those expressions, for the same reason that it does not make sense
to evaluate a formally correct implementation of the multiplication
function by multiplying a subset of numbers: no successful run of
any instance can add to the formal correctness of the algorithm.
What such instances can show, however, is whether the implemen-
tation of the algorithm can practically handle them (and for large
numbers we know that this will not be possible). Similarly, teach-
ing the robot large complex definitions of objects and actions will
eventually exceed its computational resources and make it fail, even
though, in principle, as formalized, it can handle definitions of the
kind derivable in the grammar in Table 2.

This raises then the question of how a system like the proposed
system which implements a formally correct algorithm (i.e., using
meaning expressions in logical definitions cast in natural language
to associate the definiendum with the definiens) should then be
evaluated. Clearly, empirical runs are important in the robotic case,
since implementation details as well as real-time and real-world
constraints matter. For this purpose, we provided two uncut videos
showing the algorithms at work in real-time on two different fully

1384

autonomous robots. In addition, we provided the grammar of all
the utterance forms that can be used to define new object and action
concepts that the architecture can then immediately use, making the
learning truly one-shot. And the discussion of the NLS showed that
the architecture can truly handle new words acoustically, syntacti-
cally, and semantically as well on the natural language side.

It is an interesting question to determine the extent to which
knowledge acquired through one-shot learning is robust, and is
another interesting aspect deserving of further investigation. The
two demonstrations discussed above have a nearly 100% success
rate when repeatedly instructed after the initial learning instruc-
tions (i.e., if the robot is repeatedly instructed to squat or to pick
up the knife by the handle). Similarly robust results are obtained
using other definitions, but note that ultimately the robustness of
application of a newly learned knowledge item depends on the ro-
bustness of its constituent parts (e.g., the detectors in the vision sys-
tem that detect objects and their parts, the action and manipulation
algorithms that plan motion parts and carry out action sequences,
etc.). Critically, these are not evaluation criteria for one-short learn-
ing, but rather evaluation criteria for the learned content and should
thus not be conflated with the latter. However, they might be useful
in deciding whether knowledge learned quickly through one-shot
instructions is sufficiently robust for a task or whether it will have
to be altered or augmented to reach the required level of robustness.

There are also interesting open questions about knowledge trans-
fer between robots ensuring that transferred knowledge leads to
consistent knowledge bases (because it is still possible, that even
though learned knowledge is additive, it could lead to inconsisten-
cies in other systems that do not share exactly the same knowledge
bases as the learner), but these will have to be left for another occa-
sion. The important point here is that different from other learning
schemes (e.g., neural networks) where new information can alter
existing information, the learner itself will remain consistent (to
the extent that consistent knowledge is instructed) and can extend
its knowledge quickly from a series of instructions.

And, of course, there are many ways to improve different aspects
of the current system: the robustness of one-shot speech recogni-
tion can be improved (this is a separate research problem on its
own), parser grammar type inference and estimation can be ex-
tended (to allow for other words and unseen types), allowable ut-
terance forms can be extended, additional primitive actions and ob-
ject features detectors could be implemented and made available as
building blocks in one-shot learning, more natural dialogue moves
could be allowed, more complex script learning enabled in the AM,
better manipulation actions of novel objects and object parts, proper
speech synthesis of newly learned words could be developed, etc.
Yet, even without all of these improvements (some of which would
be whole research endeavors in their own right), the integrated sys-
tem demonstrates for the first time a general human-like capabil-
ity of quickly learning new objects and actions solely from natural
language instructions, a capability no other robotic architecture has
been able to fully demonstrate (i.e., without taking shortcuts on the
NLS, the vision, or the action systems).

6. RELATED WORK
While research involving teaching robots through spoken nat-

ural language instructions has achieved some successes for both
navigation-based tasks [16] and more general tasks [11], as well as
through more highly structured dialogues which mimic program-
ming [18], instruction-based one-short learning is still in its in-
fancy. Current approaches to one-short learning are very limited
with respect to the allowable teaching inputs and usually can only
learn simple behaviors, not complex action sequences (e.g., [2]).

And when more complex tasks can be learned through dialogues,
additional assumptions are typically made (e.g., the words for the
new concepts are already in the speech recognizer, the parser al-
ready knows what to do with the word, etc.). Moreover, several of
the so-called “one-shot” learning approaches really require multi-
ple trials (e.g., most approaches that focus on visual category, ob-
ject, and concept learning, in particular, those based on Bayesian
approaches, e.g., [7, 15]).

Other work successfully demonstrating robot learning does not
use spoken, but rather written instructions. Nyga and Beetz, for
example, demonstrated how a robot could learn to follow recipes
written in natural language on wikihow.com. Like most research
in learning through spoken language, Nyga and Beetz’ approach
relied on the statistical analysis and use of a variety of corpora
(in their case, the WordNet lexical database, the FrameNet action
database, the Stanford Parser and wikihow.com, as well as Amazon
Mechanical Turk for acquiring labels [20]). The KeJia project has
also made progress in allowing robots to learn from written natural-
language data [3]; when the OK-KeJia robot detects a gap in its
knowledge base (whether conceptual, procedural or functional), it
attempts to acquire openly available information to fill the gap (e.g.,
from the OMICS database).

7. CONCLUSION
We presented a general one-shot learning scheme together with

modifications to various component representations and algorithms
in a cognitive robotic architecture that allow for true one-shot learn-
ing of new objects and actions from spoken natural language in-
structions. Specifically, we demonstrate how the proposed mech-
anisms allowed different robots to learn how to manipulate an un-
known object part after it had received information about the part
or execute a newly learned action sequence, respectively. In both
cases, after learning, the robots were then able to immediately ap-
ply the acquired knowledge. Different from previous work for
instruction-based learning, the proposed modifications allow a cog-
nitive robotic architecture to truly acquire new knowledge at every
level: from the unknown word and its linguistic properties, to the
denoted object concepts and how to manipulate it, to how to per-
form whole sequences of instructed actions. Moreover, by way of
how the newly acquired knowledge is represented and integrated
with existing knowledge, it can be shared immediately with other
agents running the same architecture.

In a next step, we plan to further improve the various components
involved in one-shot learning such as extending the basic manipula-
tion capabilities of the robot beyond grasping objects and thus the
range of manipulation behaviors it could learn from natural lan-
guage instructions, the robot’s ability to recognize parts of objects
or novel objects, and the natural language understanding capabili-
ties. Moreover, we plan to develop a formal evaluation framework
for the performance of one-shot learning architectures, as there is
currently not agreed-upon methods for the evaluation of such in-
tegrated systems, let alone systems that can quickly acquire new
knowledge through natural language instructions.

8. ACKNOWLEDGEMENTS
This work has in part been funded by ONR grant #N00014-14-

1-0149 and #N00014-14-1-0751 to the first author.

REFERENCES
[1] G. Aimetti. Modelling early language acquisition skills:

Towards a general statistical learning mechanism. In
Proceedings of the 12th Conference of the European Chapter

1385

of the Association for Computational Linguistics: Student
Research Workshop, pages 1–9. Association for
Computational Linguistics, 2009.

[2] R. Cantrell, P. Schermerhorn, and M. Scheutz. Learning
actions from human-robot dialogues. In Proceedings of the
2011 IEEE Symposium on Robot and Human Interactive
Communication, July 2011.

[3] X. Chen, , J. Xie, J. Ji, and Z. Sui. Toward open knowledge
enabling for human-robot interaction. Journal of
Human-Robot Interaction, 1(2):100–117, 2012.

[4] S. Chitta, E. Jones, M. Ciocarlie, and K. Hsiao. Perception,
planning, and execution for mobile manipulation in
unstructured environments. IEEE Robotics and Automation
Magazine, 19(2), 2012.

[5] R. Detry, C. H. Ek, M. Madry, and D. Kragic. Learning a
dictionary of prototypical grasp-predicting parts from
grasping experience. In IEEE International Conference on
Robotics and Automation, 2013.

[6] J. Dzifcak, M. Scheutz, C. Baral, and P. Schermerhorn. What
to do and how to do it: Translating natural language
directives into temporal and dynamic logic representation for
goal management and action execution. In Proceedings of
the 2009 IEEE International Conference on Robotics and
Automation (ICRA ’09), Kobe, Japan, May 2009.

[7] L. Fei-Fei, R. Fergus, and P. Perona. One-shot learning of
object categories. IEEE Transactions on Pattern Analysis
and Machine Intelligence, 28(4), 2006.

[8] D. Fischinger, M. Vincze, and Y. Jiang. Learning grasps for
unknown objects in cluttered scenes. In Robotics and
Automation (ICRA), 2013 IEEE International Conference on,
pages 609–616. IEEE, 2013.

[9] M. Gualtieri, A. ten Pas, K. Saenko, and R. Platt. High
precision grasp pose detection in dense clutter. CoRR,
abs/1603.01564, 2016.

[10] A. Herzog, P. Pastor, M. Kalakrishnan, L. Righetti, T. Asfour,
and S. Schaal. Template-based learning of grasp selection. In
IEEE Int’l Conf. on Robotics and Automation, 2012.

[11] S. B. Huffman and J. E. Laird. Flexibly instructable agents.
arXiv preprint cs/9511101, 1995.

[12] D. Kappler, J. Bohg, and S. Schaal. Leveraging big data for
grasp planning. In Robotics and Automation (ICRA), 2015
IEEE International Conference on, pages 4304–4311. IEEE,
2015.

[13] J. Kirk and J. Laird. Interactive task learning for simple
games. Advances in Cognitive Systems, (3):11–28, 2014.

[14] E. Krause, M. Zillich, T. Williams, and M. Scheutz. Learning
to recognize novel objects in one shot through human-robot
interactions in natural language dialogues. In Proceedings of
Twenty-Eighth AAAI Conference on Artificial Intelligence,
2014.

[15] B. M. Lake, R. Salakhutdinov, and J. B. Tenenbaum.
Concept learning as motor program induction: A large-scale
empirical study. In Cognitive Science Conference, 2012.

[16] S. Lauria, G. Bugmann, T. Kyriacou, J. Bos, and A. Klein.
Training personal robots using natural language instruction.
Intelligent Systems, IEEE, 16(5):38–45, 2001.

[17] I. Lenz, H. Lee, and A. Saxena. Deep learning for detecting
robotic grasps. In Robotics: Science and Systems, 2013.

[18] C. Meriçli, S. D. Klee, J. Paparian, and M. Veloso. An
interactive approach for situated task teaching through verbal
instructions. 2013.

[19] S. Mohan, A. Mininger, J. Kirk, and J. E. Laird. Learning
grounded language through situated interactive instruction.
In AAAI Fall Symposium Series, pages 30–37, 2012.

[20] D. Nyga and M. Beetz. Everything robots always wanted to
know about housework (but were afraid to ask). In Intelligent
Robots and Systems (IROS), 2012 IEEE/RSJ International
Conference on, pages 243–250. IEEE, 2012.

[21] B. Oosterveld, R. Veale, and M. Scheutz. A parallelized
dynamic programming approach to zero resource spoken
term discovery. In Proceedings of the 42nd IEEE
International Conference on Acoustics, Speech, and Signal
Processing, 2017.

[22] J. Redmon and A. Angelova. Real-time grasp detection using
convolutional neural networks. In Robotics and Automation
(ICRA), 2015 IEEE International Conference on, pages
1316–1322. IEEE, 2015.

[23] A. Saxena, J. Driemeyer, and A. Ng. Robotic grasping of
novel objects using vision. International Journal of Robotics
Research, 27(4):157, 2008.

[24] M. Scheutz. “teach one, teach all” – the explosive
combination of instructible robots connected via cyber
systems. In IEEE Cyber, 2014.

[25] M. Scheutz, G. Briggs, R. Cantrell, E. Krause, T. Williams,
and R. Veale. Novel mechanisms for natural human-robot
interactions in the diarc architecture. In Proceedings of AAAI
Workshop on Intelligent Robotic Systems, 2013.

[26] M. Scheutz, P. Schermerhorn, J. Kramer, and D. Anderson.
First steps toward natural human-like HRI. Autonomous
Robots, 22(4):411–423, May 2007.

[27] M. Schröder, S. Pammi, and O. Türk. Multilingual mary tts
participation in the blizzard challenge 2009. In Proc.
Blizzard Challenge, volume 9, 2009.

[28] A. ten Pas and R. Platt. Using geometry to detect grasp poses
in 3d point clouds. In Proceedings of the International
Symposium on Robotics Research, 2015.

1386

