
Probabilistic Supervisory Control Theory (pSCT)
Applied to Swarm Robotics

Yuri Kaszubowski Lopes
The University of Sheffield,
Department of Automatic

Control and Systems
Engineering
Sheffield, UK

y.kaszubowski
@sheffield.ac.uk

Stefan M. Trenkwalder
The University of Sheffield,
Department of Automatic

Control and Systems
Engineering
Sheffield, UK

s.trenkwalder
@sheffield.ac.uk

André B. Leal
Santa Catarina State

University, Department of
Electrical Engineering

Joinville, SC, Brazil
andre.leal@udesc.br

Tony J. Dodd
The University of Sheffield,
Department of Automatic

Control and Systems
Engineering
Sheffield, UK

t.j.dodd@sheffield.ac.uk

Roderich Groß
The University of Sheffield,
Department of Automatic

Control and Systems
Engineering
Sheffield, UK

r.gross@sheffield.ac.uk

ABSTRACT
Swarm robotics studies large groups of robots that work to-
gether to accomplish common tasks. Much of the used source
code is developed in an ad-hoc manner, meaning that the cor-
rectness of the controller is not always verifiable. In previous
work, supervisory control theory (SCT) and associated de-
sign tools have been used to address this problem. Given
a formal description of the swarm’s agents capabilities and
their desired behaviour, the control source code can be au-
tomatically generated. However, regular SCT cannot model
probabilistic controllers (supervisors). In this paper, we pro-
pose a probabilistic supervisory control theory (pSCT) frame-
work. It applies prior work on probabilistic generators in
a way that allows controllers to be decomposed into multi-
ple local modular supervisors. Local modular supervisors
take advantage of the modularity of formal specifications to
reduce the size required to store the control logic. To val-
idate the pSCT framework, we model a distributed swarm
robotic version of the graph colouring problem and automat-
ically generate the control source code for the Kilobot swarm
robotics platform. We report the results of systematic experi-
ments with swarms of 25 and 100 physical robots.

CCS Concepts
•Computing methodologies→Multi-agent systems;

Appears in: Proceedings of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017), S.
Das, E. Durfee, K. Larson, M. Winikoff (eds.), May 8–12, 2017,
São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

Keywords
Swarm robotics, Supervisory control theory,
Probabilistic generator, Kilobot

1. INTRODUCTION
Swarm robotics studies large groups of robots and how

they can solve tasks by using simple rules and interactions [1,
2]. One of the challenges in swarm robotics is the design and
analysis of those rules and interactions, as they can cause un-
predictable behaviour. Many automated and formal meth-
ods were considered. Examples are the use of algebraic graph
theory to analyse stability properties of flocking agents [3],
the verification of swarm robotics properties with temporal
logic [4], a top-down design method that uses prescriptive
modelling and model checking [5], and methods for auto-
matically generating probabilistic finite state machines [6].

In this paper, we focus on supervisory control theory (SCT)
[7, 8], which has been used to formally control discrete event
systems. SCT has been mainly studied in the context of man-
ufacturing, where supervisors have been applied to program-
mable logic controllers (PLC) [9].

In SCT, languages are used to synthesise the control logic
using a formal approach. The class of regular languages—
expressed as generators—is widely used due to its simplic-
ity. Generators are similar to automata; the difference is that
automata verify if a word, given as an input, belongs to a lan-
guage whereas generators produce words that belong to the
language. In SCT, some generators—called free behaviour
models—represent the model of the system whereas others
represent the control specification. All generators can be com-
bined to obtain a monolithic generator called supervisor. The
supervisor restricts the behaviours of the system to those that
do not violate the control specification.

Systems are often a composition of many subsystems [10].
The composition of these subsystems may result in a rapid

1395

increase in the number of states, and render the monolithic
supervisor approach infeasible, especially when considering
swarms of robots with limited computational resources. To
alleviate this problem, supervisors can be divided into mod-
ules [11, 12, 10, 13]. This modularity allows the use of mul-
tiple supervisors that are smaller—regarding the number of
states and transitions—than the equivalent monolithic super-
visor.

The traditional SCT is unable to formulate probabilistic
controllers at the supervisor level. Probabilities, if needed,
must be considered on a lower layer called operational pro-
cedures [13], which is responsible for establishing the link
between the abstract events and the physical actuators and
sensors.

To formulate probabilistic controllers at the supervisor level,
we propose a probabilistic SCT (pSCT) framework in the con-
text of swarm robotics. The framework combines the concept
of probabilistic generators [14, 15] with support for marked
states1 and the synthesis of local modular supervisors [12,
10, 13]. The latter results in supervisors with more compact
memory representation.

Probabilistic generators differ from probabilistic automata.
Probabilistic automata are concerned with the uncertainty of
the system’s state, which is defined by a stochastic vector. In
a particular state, each event may have transitions to multi-
ple states (with associated probabilities). Note that this is one
approach to represent actuation uncertainty. In [16], actua-
tion uncertainty is represented by probabilistic computation
tree logic in the context of a stochastic motion planning task.

Probabilistic generators, on the other hand, are concerned
with the uncertainty of events occurring in the system’s state,
which is assumed to be known. Each event will result in a
transition to a single state.

In the context of SCT, the events can be uncontrollable or
controllable. Uncontrollable events are usually related with
the controller input, for example, from the sensors of a robot.
Controllable events are usually related with the controller
output (i.e., the system’s input), in other words, they can re-
late to a choosable action. The problem of selecting one of
multiple controllable events—associated with the transitions
in the current state—is referred to as the choice problem [17].
We show how the use of probabilistic generators in conjunc-
tion with the proposed pSCT represents a systematic and for-
mally explicit solution for the choice problem.

To didactically introduce pSCT, we make use of a case study
from the domain of swarm robotics. We apply the pSCT
framework to control a swarm of real robots that distribu-
tively solve the graph colouring problem [18]. pSCT auto-
matically generates the controller’s code, using the software
tool Nadzoru [19], and applies it on physical swarms of 25
and 100 Kilobot robots [20].

The paper is structured as follows. The choice problem
and its solution by generalising SCT to pSCT is presented in
Section 2. Sections 3, 4, and 5 present the modelling, the syn-
thesis, and the implementation of probabilistic generators,
respectively. The experimental validation on physical robots
is presented in Section 6. The paper is concluded in Section 7.

2. SCT AND PSCT
A generator G is defined as:

1Marked states are states that represents a goal for the sys-
tem (e.g., they could correspond to the end of a task).

q1

q2

q3

l\

r/

(a)

q1

q2

q3

q4

q5

l\

r/

a

a

b—

(b)
Figure 1: (a) A choice problem between two enabled control-
lable events from state q1. (b) A choice problem with live-
lock. If the same transition (l) is repeatedly chosen from q1, a
livelock can occur.

G = {Q,Σ,δ ,q0,Qm}, (1)
where Q is a finite set of states. Σ is the finite set of events.

Events can be either controllable (Σc) or uncontrollable (Σu),
in other words, Σ = Σc∪Σu and Σc ∩ Σu = /0. Controllable
events represent commands issued by the controller, uncon-
trollable events represent feedback signals. δ : Q×Σ→ Q is
the partial transition function. q0 is the initial state, where
q0 ∈ Q. Qm is the set of marked states where Qm ⊆ Q.

2.1 Limitations of traditional SCT
Ideally, at the implementation level, no state should have

more than one enabled controllable event. In this way, for
any input sequence, there is a single response. In reality, this
is not always the case, as the specifications may not restrict
all the possibilities.

For example, let us consider the supervisor shown in Fig-
ure 1(a). We represent generators using graphs where plain
arcs represent uncontrollable events, and arcs with a stroke
represent controllable events. Some states of the supervisors
are omitted, the transition from/to the omitted part of the
supervisor are represented by dashed lines. In state q1 two
controllable events, l and r, are enabled. Such case occurs if
a robot, which moves forward, encounters an obstacle (e.g.,
a wall) and can either avoid it by moving to the left (event
l) or the right (event r). From the perspective of the supervi-
sor both control responses are permissible, as respecting the
specification. The choice problem occurs at the implementa-
tion level. When in a particular state two or more control-
lable events are enabled, the controller’s implementation has
to choose which controllable event will be generated.

If the choice strategy is deterministic it can result in the
controller being trapped in a subset of non-marked states.
This is referred to as a livelock.2

2If a controller is trapped in a single non-marked state this
is called a deadlock. Deadlocks can be prevented during the
synthesis (see Section 4).

1396

Robot

p1p2

p3 p4

p5

(a)

q0 q1

q2

q3 q4

q5

q6
f

fr

fl

l
\

r
/

l
\

r
\

a

a

x
/

y
/

(b)
Figure 2: (a) A choice problem without livelocks. Some states
are omitted. (b) An example implementation that under-
performs due to the choice problem.

The supervisor shown in Figure 1(b) is deadlock free, as
each state has at least one path that reaches a marked state
(q5 in this case). Let us assume that the implementation al-
ways chooses the first option in state q1—the transition trig-
gered by event l. The result is equivalent to removing the
other transitions triggered by controllable events. In this case
a livelock occurs as the controller will be trapped in states q1,
q2, and q4 executing the events l,a,b in this order indefinitely.

Even when there is no livelock, the strategy of selecting the
same transition in a state can also lead to problems. Consider
a robot that starts moving upwards from the central position
of the arena, as shown in Figure 2(a). Once it has reached po-
sition p1, p2, · · · , or p5, its supervisor is assumed to be in state
q0 (see Figure 2(b)). The uncontrollable events f , f l, and f r
represent the sensing of an obstacle “in front”, “in front and
on the left”, and “in front and on the right”, respectively. Con-
trollable events l and r move the robot to the left or the right,
respectively. In the position p1, there is an obstacle in the
front, the supervisor thus reaches state q1 (Figure 2(b)). If
the controller always chooses l in state q1, this will not cause
a livelock, because it is possible for the generator to reach a
marked state (q6). In the positions p2, p3, and p4, there are ob-
stacles (walls) in the front and on the right side; accordingly,
the supervisor reaches state q3 (Figure 2(a)), which only al-
lows to turn left. Similarly to position p1, in position p5, the
supervisor reaches state q1. As the controller implementation
triggers only the controllable event l in state q1, the robot will
never turn right, even though the event related to turning
right, r, is enabled in state q1. As a result, the robot is only
exploring half of the arena. This behaviour is solely caused
by an inadequate implementation and is not restricted by the
supervisor.

Therefore, if multiple controllable events are enabled, the
controller should not always have to choose the same event.
It can be shown that if the choices are made deterministically,

the robot may repeat the same sequence of actions indefi-
nitely. A better, and more common, approach is to choose
one of the enabled controllable events randomly. This will
avoid livelocks and unspecified restrictions, as eventually all
the controllable transitions will be chosen.

A uniformly random selection among the enabled control-
lable events is only a basic solution. However, it may be de-
sirable that some events occur more often than others. For ex-
ample, moving forward may be required to be more promi-
nent than the turning movements. This was the case for
the random movement used in the segregation strategy pre-
sented in [21]. While the events move forward, turn left, and
turn right occurred, statistically, in the same proportion, at
the implementation level (the operational procedures), the
forward movement was performed for a longer time than the
turning movements. Consequently, the differences were not
part of the formal modelling and specifications.

2.2 Probabilistic generators and pSCT
Probabilistic generators are able to formally represent dif-

ferent likelihoods of controllable events. Different definitions
for probabilistic generators have been proposed. In [15] prob-
abilistic generators are defined as:

Gp′ = {Q,Σ,δ ,q0, p}, (2)

where Q,Σ,δ , and q0, are defined as in Equation 1. The prob-
ability of an event occurring in a particular state is:

p : Q×Σ→ [0,1], (3)

where the sum of the probabilities for each state is limited to
1, as:

∀q ∈ Q, ∑
e∈Σ

p(q,e)≤ 1. (4)

If each state q in a generator G holds ∑
e∈Σ

p(q,e) = 1, then G

is non-terminating. Otherwise, G is terminating—when no
event e occurs, the generator stops.

A different definition for probabilistic generators, given by
[14], includes marked states, Qm:

Gp = {Q,Σ,δ ,q0,Qm, p}. (5)

This definition has been applied to the synthesis of a super-
visor defined by a single free behaviour model and a single
specification [14].

The probabilistic supervisory control theory (pSCT) defines
probabilistic generators as in Equation 5 but drops the re-
striction of Equation 4. In pSCT there are no terminating
states. We use the p values to weigh the occurrence of events
in each state separately for each generator. When combin-
ing multiple generators, as will be shown later, their control
logic is only guaranteed to be preserved, if a normalisation
of weights is applied once, rather than for each individual
generator. For the sake of simplicity, we refer to the weights
as probabilities.

Non-probabilistic generators used by the traditional SCT
can be expressed as probabilistic generators in our pSCT fra-
mework. Figure 3 shows the probabilistic version of the gen-
erator presented in Figure 2(b). The label of each transition
is represented by ec : p, where ec is a controllable event and
0 ≤ p ≤ 1 is the probability of the transition. For this partic-
ular example, we assume that the controllable events in each
state should be chosen with equal probabilities, which is a
common workaround at the implementation level of the tra-
ditional SCT.

1397

q0 q1

q2

q3 q4

q5

q6
f

fr

fl

l:0.5
\

r:0.5
/

l:1.0
\

r:1.0
\

a

a

x
/

y
/

Figure 3: Example of a probabilistic generator derived from
a non-probabilistic generator.

2.3 Operations for the synthesis of probabilis-
tic supervisors

This section defines operations needed to synthesise su-
pervisors based on the proposed probabilistic generators. The
goal of the synthesis is to obtain a supervisor that enables
only those controllable events that cannot cause a violation
of the specification. More precisely, the supervisor must re-
alise a language that is controllable (and hence non-blocking)
and minimally restrictive. The use of such operations will be
detailed later using a case study.

2.3.1 Normalisation
The normalisation operation of a generator Gp, Norm(Gp),

guarantees that in each state the sum of all probabilities of
the transitions related to the controllable events is equal to 1.
The normalised probability pn(q,ecx), with ecx ∈ Σc, is given
by:

pn(q,ecx) =

{
p(q,ecx) / ∑

ec∈Σc

p(q,ec) if ∑
ec∈Σc

p(q,ec)> 0

0 otherwise.
(6)

2.3.2 Synchronisation
The synchronous composition (represented by ·||·) of two

probabilistic generators Gp
a and Gp

b with alphabet Σi, i∈ {a,b}
is defined as:

Gp
a ||G

p
b = (Qa×Qb,Σa∪Σb,δa||b,(q0a ,q0b),Qma ×Qmb , pa||b),

(7)
where

δa||b((qa,qb),e) =

(δa(qa,e),δb(qb,e)) if δa(qa,e)!∧δb(qb,e)!
(δa(qa,e),qb) if δa(qa,e)!∧ e /∈ Σb
(qa,δb(qb,e)) if δb(qb,e)!∧ e /∈ Σa
undefined otherwise,

(8)

with δ (x,y)! meaning that δ is defined for an input (x,y). The
probability of transitions triggered by controllable events is:

pa||b((qa,qb),ec) =

pa(qa,ec)× pb(qb,ec) if δa(qa,ec)!∧δb(qb,ec)!
pa(qa,ec) if δa(qa,ec)!∧ ec /∈ Σb
pb(qb,ec) if δb(qb,ec)!∧ ec /∈ Σa
0 otherwise.

(9)

Figure 4 shows an example of the synchronous composi-
tion of two probabilistic generators, Gp

1 and Gp
2 . Note that

the resulting generator (Figure 4(c)) is not necessarily nor-
malised.

3. GRAPH COLOURING CASE STUDY

q1 q2

a: 0.5, b: 0.4, c: 0.1
\
x

a: 1.0
\

x,y

(a) Gp
1 , Σ1

u = {x,y}, Σ1
c = {a,b,c}

q1 q2

b: 0.7, c: 0.2, d: 0.1
\

x

b: 0.5,c: 0.5
\

x

(b) Gp
2 , Σ2

u = {x}, Σ2
c = {b,c,d}

q1,1 q1,2

q2,1 q2,2

d: 0.1
\

a: 0.5—

b: 0.28,
c: 0.02

/

x

b: 0.2,
c: 0.05

\
a: 0.5/xa: 1.0—

d: 0.1
/

x,y

a: 1.0—

x,y

(c) Gp
1,2, Σ

(1,2)
u = {x,y}, Σ

(1,2)
c = {a,b,c,d}

Figure 4: Example of the synchronous composition of two
probabilistic generators. (a) Gp

1 and (b) Gp
2 , respectively are

combined to form (c) Gp
1,2.

Our case study derives from the classical graph colouring
problem [18]. The system comprises an arbitrary number of
robots, r, and an arbitrary number of colours that can be cho-
sen, c. Each robot can be seen as a node in a graph. Two
robots Ra and Rb share an edge and are therefore neighbours
if their distance is smaller than a threshold d. The goal is to
assign a colour to each robot in such a way that any pair of
neighbours do not have the same colour while the number
of different colours used by the entire swarm should be min-
imal. A practical application of the graph colouring problem
in swarm robotics is to assign locally unique identification
numbers to robots when the overall size of the swarm is not
a priori known.

In the following, we present a heuristic strategy for ad-
dressing the graph colouring problem. The free behaviour
models (i.e., models of the robot’s abilities) for the graph
colouring strategy are illustrated in Figure 5. Based on the
availability of c colours, free behaviour model G1 defines the
controllable events setx with x ∈ {1, · · · ,c}. setx sets the colour
of the robot to x and starts to broadcast a message inform-
ing the neighbour robots of its decision. Controllable event
keep preserves the previous selection. Free behaviour model
G2 defines the uncontrollable events getx and getNotx with

1398

q1

Set1, · · · , Setc,
keep

/

q1

get1, · · · , getc
getNot1, · · · , getNotc

(a) G1 (b) G2

q1 q2

startTimer
/

timeout

(c) G3

Figure 5: Free behaviour models for the graph colouring case
study. (a) The robot’s ability to assume one of c colours;
(b) the robot’s ability to receive messages informing it of the
colour of nearby robots; (c) robot’s internal timer.

x ∈ {1, · · · ,c}. getx occurs when at least one message over a
time interval of 2 s has been received stating that a neigh-
bour has chosen the colour x, otherwise getNotx occurs. Free
behaviour model G3 represents a timer that is triggered every
4 s.

Figure 6 shows the control specification realising the graph
colouring strategy. Specifications E(1,x) (Figure 6(a)), with x ∈
{1, · · · ,c}, set a lower probability for selecting a colour x, if it
is known that a neighbour already had selected it—in states
q2 and q4. The specifications also set a lower probability of
keeping the current colour (event keep) if a neighbour has the
same colour already selected—in state q4.

Specification E2 (Figure 6(b)) defines the default probabil-
ity of a colour being selected.3 The x-th colour, with x ∈
{1, · · · ,c}, has probability 9× 10−x of being selected. For ex-
ample, Set1 has probability 0.9, Set2 has probability 0.09, Set3
has probability 0.009, and so on.

Specification E3 (Figure 6(c)) establishes a waiting period
for any change of colour to happen.

4. SUPERVISOR SYNTHESIS
A monolithic supervisor, S, is obtained by the synchronous

composition of all free behaviour models and specifications
into a single generator [11]. We will illustrate this process
using the models for the graph colouring strategy shown in
Figures 5 and 6. First, all free behaviour models are com-
posed into a single generator:

G = G1||G2||G3. (10)

All specifications are composed into a single generator:

E = E(1,1)|| . . . ||E(1,c)||E2||E3. (11)

E and G are composed together into a target language:

K = G||E. (12)

Finally, the monolithic supervisor S is the maximal control-
lable sub-language of K. S is a generator for which bad states

3Note that during synchronous composition, the proba-
bilities defined in different specifications will get multiplied
and normalised.

∀ x ∈ {1, · · · ,c}, SetY = {Seti : i ∈ {1, · · · ,c}∧ i 6= x}:

q1 q2

q3 q4

SetY ,
keep : 1.0

/ getx

getNotx

Setx : 1.0 —

SetY ,
keep : 1.0

/

getNotx

getx

Setx : 10(−c+x−1)—

getx

getNotx

— SetY

Setx : 1.0,
keep : 1.0

/ getNotx

getx

Setx : 10(−c+x−1),
keep : 10(−c+x−1)

/

—SetY

(a) E(1,x)

q1

Set1 : 0.9, · · · , Setc : 9×10−c

/
q1 q2

timeout

Set1, · · · , Setc, keep
/

(b) E2 (c) E3

Figure 6: Specifications for the graph colouring case study.
(a) The probability of a robot to assume a colour is reduced
if a neighbour had already selected it; (b) specification of the
colours’ priorities; (c) waiting period for colour change.

and any states from which bad states can be reached through
a sequence of uncontrollable events, are removed. A bad
state is a state in the supervisor in which an uncontrollable
event is denied from occurring (according to the specifica-
tions) but physically possible (according to the free behaviour
models). The supervisor is non-admissible if it contains bad
states. The state is referred to as bad, as the uncontrollable
event cannot be disabled by the supervisor. The operation
that realises the removal of bad states and also guarantees
that all states can be reached (accessible) and can reach a
marked state (co-accessible) is called SupC. Therefore, the
monolithic supervisor is given by:

S = SupC(G,K). (13)

A local modular supervisor explores the modularity of the
free behaviour models and the specification to synthesise su-
pervisors that are potentially smaller than the monolithic su-
pervisor in the number of states and transitions [13]. This is
done by creating a local modular supervisor for each spec-
ification based on a local free behaviour. The local free be-
haviour model of a specification is obtained by composing
only the free behaviour models that contain the events used

1399

in the specification. The local free behaviour model, Gloc
x , are:

Gloc
1 = G1||G2

Gloc
2 = G1

Gloc
3 = G1||G3

(14)

Differently from the monolithic approach, specifications are
not composed together. Instead target languages, Kloc

x , are
obtained for each specification, as:

Kloc
(1,i) = E(1,i)||Gloc

1 : ∀i ∈ {1, · · · ,c}
Kloc

2 = E2||Gloc
2

Kloc
3 = E3||Gloc

3 .

(15)

Similarly to the monolithic approach, bad states must be
removed. Each target language results in a local modular
supervisor, for the current case study they are:

Sloc
(1,i) = SupC(Gloc

1 ,Kloc
(1,i)) : ∀i ∈ {1, · · · ,c}

Sloc
2 = SupC(Gloc

2 ,Kloc
2)

Sloc
3 = SupC(Gloc

3 ,Kloc
3).

(16)

5. IMPLEMENTATION
The use of probabilistic deterministic finite generators un-

der the pSCT framework requires two changes in the imple-
mentation, previously presented in [21]. First, the memory
representation must include the probabilities of each control-
lable transition. Second, the choice between enabled control-
lable events must take into account the probability of each
related transition in the current state.

5.1 Memory representation
Consider the probabilistic supervisor shown in Figure 7(a).

Figures 7(b–c) illustrate the data structure that stores the su-
pervisor in memory. In Figure 7(b) the representation of the
partial transition function, δ , is shown [22]. Each state is rep-
resented by a block of this data structure. Each block de-
scribes all output transitions from that state. The first byte of
each block is the amount of output transitions (o). It is fol-
lowed by o sets of 3 bytes, where each set represents a tran-
sition. The first byte of each set represents the event. The
other two bytes determine the target state. This data struc-
ture is limited to 256 events, 216 states and 255 output transi-
tions per state. As uncontrollable events do not have an asso-
ciated probability the probabilities of all controllable events
are stored in a separate data structure (see Figure 7(c)). Each
state is represented by a block of this data structure. Each
block describes the probabilities of output transitions trig-
gered by controllable events from that state. The first byte of
each block is the amount of output of controllable transitions
(oc). It is followed by oc sets of 2 bytes, where each set rep-
resents a transition’s probability. The event of each set can
be inferred from the partial transition function (δ) represen-
tation as each set is stored in the same order (see Figure 7b).

5.2 Probabilistic generator player
The probabilistic generator player (pGP) executes the gen-

erators realising the supervisors. We modify the traditional
generator player presented in [21] to incorporate the calcu-
lation of the probabilities of multiple local modular super-
visors. Probabilities of local modular supervisors are com-
puted at run-time for the specific current state. The joint
probability is calculated as defined in Equation 9 and it is

normalised as defined in Equation 6. The monolithic su-
pervisor can be normalised at the time it is being synthe-
sised (prior to run-time). However, the normalisation for
local modular supervisors can only occur after all synchro-
nisation operations are performed, as, in general:

Norm(S) = Norm(Sloc
1 || · · · ||Sloc

i) 6= Norm(Sloc
1)|| · · · ||Norm(Sloc

i).
(17)

For that reason, the probabilistic generator player needs to
incorporate the calculation of the normalised probabilities.

6. EXPERIMENTS
Experiments are performed to validate the implementa-

tion of our pSCT model. In particular, they test whether the
modelled specifications match with the synthesised control
logic, as observed during the trials. Video recordings from
all experimental trials and additional resources (models and
the used source code) can be found in the electronic supple-
mentary material [23].

The experiments took place on a two-dimensional glass-
floored arena. We performed two sets of experiments. The
first set is composed by trials using 25 Kilobot robots, dis-
tributed on a 5× 5 grid. Twelve trials were performed, each
lasting 25 minutes. To test the scalability of the approach
we performed a second set of experiments using 100 Kilobot
robots, distributed on a 10× 10 grid. Two trials were per-
formed, each lasting 45 minutes.

Robots are positioned on the grid in such way that their
communication range only reaches other robots in the next
or previous vertical and horizontal positions (so called Man-
hattan neighbourhood) but not in the diagonal. Therefore,
robots in the middle of the grid have four neighbours, the
four corner robots only have two neighbours, and the re-
maining robots in the border of the grid have three neigh-
bours. The optimum solution for this case requires the use of
two different colours and forms a checkered pattern. Robots
are initially programmed with a code to assist the position-
ing process. The program changes the colour of the RGB led
according to the number of neighbours a robot has.

We synthesised the supervisor using c= 4 (number of avail-
able colours), which resulted in a monolithic supervisor com-
prised of 240 states and 2480 transitions. By contrast, for
the local modular approach, all supervisors collectively com-
prise only 20 states and 220 transitions. The use of the local
modular approach corresponds to a reduction by 91.7% and
91.1% in states and transitions, respectively, compared to the
monolithic approach.

Figure 8 shows snapshots taken from one of the experi-
mental trials with 25 robots4.

Figure 9 shows snapshots taken from one of the experi-
mental trials with 100 robots.

To evaluate the performance of the controller we measured
the proportion of robots using up to 2 colours, ϕcolours:2, which
is known to be the optimal configuration for the experimen-
tal setup. We also measured the proportion of the connec-
tions among neighbours with different colours, ϕconnections.

The proportion of robots using up to 2 colours for the 25
robots trials is shown in Figure 10 and the proportion of con-
nections among neighbours with different colours is shown
in Figure 11.

4Environment lights were kept off to facilitate the record-
ing of the experiment.

1400

q0 q1 q2

a: 1.0
/
x

a: 0.4
/

b: 0.6
/

y

b : 0.5
/

c: 0.5
/

(a)

2

0

a

1

1

2 3

x

4

1

5 6

3

7

a

8

1

9 10

b

11

0

12 13

y

14

2

15 16

2

17

b

18

1

19 20

c

21

2

22 23

State q0

δ (0,a)→ 1

State q1

δ (0,x)→ 1

State q2

δ (2,b)→ 1 δ (2,c)→ 2δ (1,a)→ 1 δ (1,b)→ 0 δ (1,y)→ 2

number of
transitions

number of
transitions

number of
transitions

(b)

1

0

1.0

1 2

2

3

0.4

4 5

0.6

6 7

2

8

0.5

9 10

0.5

11 12

State q0 State q1 State q2

p(0,a) p(1,a) p(1,b) p(2,b) p(2,c)

number of
probabilities

number of
probabilities

number of
probabilities

(c)

Figure 7: The memory representation of a probabilistic generator. (a) The probabilistic generator; (b) the partial transition
function representation [22]. The first element of each state represents the number of outgoing transitions. It is followed by
blocks of three elements, which detail the event that triggers the transition and the resulting state. (c) Representations of the
probabilities of controllable transitions.

(a) (b) (c)

(d) (e) (f)
Figure 8: A sequence of snapshots of one of the 12 trials
where 25 Kilobots performed the distributed graph colour-
ing algorithm: Photos (a-f) show the experiment after 0 s,
300 s, 600 s, 900 s, 1200 s, and 1500 s.

The proportion of robots using up to 2 colours for the 100
robots trials is shown in Figure 12 and the proportion of con-
nections among neighbours with different colours is shown
in Figure 13.

Ideally, the robot’s communication range would allow it
to form connections only with their immediate neighbour

(a) (b)

(c) (d)
Figure 9: A sequence of snapshots of one of the two trials
where 100 Kilobots performed the distributed graph colour-
ing algorithm: Photos (a-d) show the experiment after 0 s,
900 s, 1800 s, and 2700 s.

1401

time, t (s)

p
ro
p
o
rt
io
n
o
f
ro
b
o
ts

u
si
n
g
u
p
to

tw
o
co
lo
u
rs

0
0
.5

1

0 500 1000 1500

Figure 10: The proportion of robots using up to 2 colours in
the 25 robots trials. Each coloured line represents one exper-
imental trial. The thick black dashed line indicates the mean.

time, t (s)

p
ro

p
or

ti
on

of
co

n
n
ec

ti
o
n
s

w
it

h
d
iff

er
en

t
co

lo
u
rs

0
0
.5

1

0 500 1000 1500

Figure 11: The proportion of the connections among neigh-
bours with different colours in the 25 robots trials.

time, t (s)

p
ro
p
or
ti
on

of
ro
b
ot
s

u
si
n
g
u
p
to

tw
o
co
lo
u
rs

0
0
.5

1

0 900 1800 2700

Figure 12: The proportion of robots using up to 2 colours in
the 100 robots trials.

time, t (s)

p
ro

p
or

ti
on

of
co

n
n
ec

ti
on

s

w
it

h
d
iff

er
en

t
co

lo
u
rs

0
0.

5
1

0 900 1800 2700

Figure 13: The proportion of the connections among neigh-
bours with different colours in the 100 robots trials.

on the vertical or horizontal line. However, due to noise
affecting the infrared communication among robots, addi-
tional connections were occasionally formed or broken. In
the last minute of the 25 robots trials, we obtained an aver-
aged success rate of 87% regarding ϕconnections and 93% re-
garding ϕcolours:2. The first minute of execution, just after
the initial setup, presented an averaged success rate of 68%
regarding ϕconnections and 52% regarding ϕcolours:2. For the
100 robots trials, we obtained an averaged success rate of
95% regarding ϕconnections and 87% regarding ϕcolours:2 by the
last minute of the trials. The success rate in the first minute
of the 100 robots trials was 87% regarding ϕconnections and
67% regarding ϕcolours:2. The results suggest that the strat-
egy reaches solutions that optimise both measured metrics
simultaneously. The strategy succeeds in rapidly converging
towards these solutions, though a small percentage of errors
remain.

7. CONCLUSION
In this paper, we proposed a probabilistic supervisory con-

trol theory (pSCT) framework. It uses a form of probabilistic
generators to model probabilistic processes and, thereby, can
prevent livelocks or indefinitely repetitive behaviour. Fur-
thermore, through decomposition into local modular super-
visors, the automatically generated controller code is smaller
than that for a monolithic supervisor and is thus more likely
to be applied successfully to a swarm robotic system.

To illustrate the advantages of the proposed framework,
we presented a case study where the robots distributively
and locally search for a solution to the graph colouring prob-
lem using a strategy modelled with pSCT. The local modular
supervisors were collectively 91% smaller than the mono-
lithic supervisor, both regarding the total number of states
and state transitions. The generated code was deployed on
physical swarms of 25 and 100 Kilobots, and systematic ex-
periments were conducted. The results demonstrate that prob-
abilistic solutions can be modelled successfully with pSCT.
Future work could explore the use of pSCT in a variety of
scenarios, for example, for controlling large groups of ani-
mals [24].

ACKNOWLEDGMENT
Y.K. Lopes acknowledges support by Coordination for the
Improvement of Higher Education Personnel (CAPES)–Brazil
(Grant Number: 0462/12-8). S.M. Trenkwalder is a recipient
of a DOC Fellowship of the Austrian Academy of Sciences.
A.B. Leal wishes to thank CAPES and UFSC by post-doctoral
fellowship (PNPD/CAPES - Graduate Program in Automa-
tion and Systems Engineering - PPGEAS/UFSC). This research
was supported as well by the Engineering and Physical Sci-
ences Research Council (Grant No. EP/J013714/1). The au-
thors are thankful for the proofreading and feedback from
Natalie E. Wood.

REFERENCES
[1] M. Brambilla, E. Ferrante, M. Birattari, and M. Dorigo,

“Swarm robotics: a review from the swarm engineering
perspective,” Swarm Intelligence, vol. 7, no. 1, pp. 1–41,
2013.

[2] J. C. Barca and Y. A. Sekercioglu, “Swarm robotics
reviewed,” Robotica, vol. 31, no. 3, pp. 345–359, 2013.

1402

[3] H. G. Tanner, A. Jadbabaie, and G. J. Pappas, “Flocking
in fixed and switching networks,” IEEE Transactions on
Automatic Control, vol. 52, no. 5, pp. 863–868, 2007.

[4] C. Dixon, A. F. Winfield, M. Fisher, and C. Zeng,
“Towards temporal verification of swarm robotic
systems,” Robotics and Autonomous Systems, vol. 60,
no. 11, pp. 1429 – 1441, 2012.

[5] M. Brambilla, A. Brutschy, M. Dorigo, and M. Birattari,
“Property-driven design for swarm robotics: A design
method based on prescriptive modeling and model
checking,” ACM Transaction on Autonomous and
Adaptive Systems, vol. 9, no. 4, pp. 17:1–17:28, 2015.

[6] G. Francesca, M. Brambilla, A. Brutschy, L. Garattoni,
R. Miletitch, G. Podevijn, A. Reina, T. Soleymani,
M. Salvaro, C. Pinciroli, F. Mascia, V. Trianni, and
M. Birattari, “Automode-Chocolate: automatic
design of control software for robot swarms,” Swarm
Intelligence, vol. 9, no. 2–3, pp. 125–152, 2015.

[7] P. Ramadge and W. Wonham, “Supervisory control of a
class of discrete event process,” SIAM J. Control and
Optimization, vol. 25, no. 1, pp. 206–230, 1987.

[8] ——, “The control of discrete event systems,”
Proceedings of the IEEE, vol. 77, no. 1, pp. 81–98, 1989.

[9] A. Vieira, E. Santos, M. De Queiroz, A. Leal,
A. DE Paula Neto, and J. Cury, “A method for plc
implementation of supervisory control of discrete
event systems,” IEEE Transactions on Control Systems
Technology, vol. 25, no. 1, pp. 175–191, 2017.

[10] M. Queiroz and J. Cury, “Modular supervisory control
of large scale discrete event systems,” in Proceedings of
International Workshop on Discrete Event Systems
(WODES). Berlin, Germany: Springer, 2000, pp.
103–110.

[11] W. Wonham and P. Ramadge, “Modular supervisory
control of discrete event system,” Mathematics of control,
signals and systems, vol. 1, no. 1, pp. 13–30, 1988.

[12] M. Queiroz and J. Cury, “Modular control of composed
systems,” in Proceedings of the 2000 American Control
Conference. Piscataway, NJ: IEEE, 2000, pp. 4051–4055.

[13] ——, “Synthesis and implementation of local modular
supervisory control for a manufacturing cell,” in
Proceedings of 6th International Workshop on Discrete
Event Systems (WODES). Piscataway, NJ: IEEE, 2002,
pp. 103–110.

[14] V. Pantelic, S. M. Postma, and M. Lawford,
“Probabilistic supervisory control of probabilistic
discrete event systems,” IEEE Transactions on Automatic
Control, vol. 54, no. 8, pp. 2013–2018, 2009.

[15] V. Pantelic, M. Lawford, and S. Postma, “A framework
for supervisory control of probabilistic discrete event
systems,” IFAC Proceedings Volumes, vol. 47, no. 2, pp.
477–484, 2014.

[16] C. Yoo, R. Fitch, and S. Sukkarieh, “Provably-correct
stochastic motion planning with safety constraints,” in
2013 IEEE International Conference on Robotics and
Automation, Karlsruhe,Germany, May 6-10, 2013, 2013,
pp. 981–986.

[17] M. Fabian and A. Hellgren, “PLC-based
implementation of supervisory control for discrete
event systems,” in 1998 IEEE 37th Conference on Decision
and Control, vol. 3. Piscataway, NJ: IEEE, 1998, pp.
3305–3310.

[18] D. P. Dailey, “Uniqueness of colorability and
colorability of planar 4-regular graphs are
NP-complete,” Discrete Mathematics, vol. 30, no. 3, pp.
289–293, 1980.

[19] L. P. Pinheiro, Y. K. Lopes, A. B. Leal, and R. S. U.
Rosso, “Nadzoru: A software tool for supervisory
control of discrete event systems,” in Proc. of the 5th
International Workshop on Dependable Control of Discrete
Systems (DCDS), vol. 5, 2015.

[20] M. Rubenstein, C. Ahler, and R. Nagpal, “Kilobot: A
low cost scalable robot system for collective
behaviors.” in ICRA 2012. Piscataway, NJ: IEEE, 2012,
pp. 3293–3298.

[21] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd,
and R. Groß, “Supervisory control theory applied to
swarm robotics,” Swarm Intelligence, vol. 10, no. 1, pp.
65–97, 2016.

[22] Y. K. Lopes, A. B. Leal, R. S. U. Rosso, and E. Harbs,
“Local modular supervisory implementation in
microcontroller,” in Proceedings of the 9th International
Conference of Modeling, Optimization and Simulation
(MOSIM 2012), 2012.

[23] Y. K. Lopes, S. M. Trenkwalder, A. B. Leal, T. J. Dodd,
and R. Groß, “Electronic Supplementary Material —
Probabilistic Supervisory Control Theory (pSCT)
Applied to Swarm Robotics,” 2016. [Online]. Available:
http://naturalrobotics.
group.shef.ac.uk/supp/2016-008/

[24] L. Bobadilla, O. Sanchez, J. Czarnowski, K. Gossman,
and S. M. LaValle, “Controlling wild bodies using
linear temporal logic,” in Proceedings Robotics: Science
and Systems. Cambridge, MA: MIT Press, 2011, pp.
17–24.

1403

