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ABSTRACT
Inverse reinforcement learning (IRL) has become a useful
tool for learning behavioral models from demonstration data.
However, IRL remains mostly unexplored for multi-agent
systems. In this paper, we show how the principle of IRL
can be extended to homogeneous large-scale problems, in-
spired by the collective swarming behavior of natural sys-
tems. In particular, we make the following contributions to
the field: 1) We introduce the swarMDP framework, a sub-
class of decentralized partially observable Markov decision
processes endowed with a swarm characterization. 2) Ex-
ploiting the inherent homogeneity of this framework, we re-
duce the resulting multi-agent IRL problem to a single-agent
one by proving that the agent-specific value functions in this
model coincide. 3) To solve the corresponding control prob-
lem, we propose a novel heterogeneous learning scheme that
is particularly tailored to the swarm setting. Results on two
example systems demonstrate that our framework is able to
produce meaningful local reward models from which we can
replicate the observed global system dynamics.
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1. INTRODUCTION
Emergence and the ability of self-organization are fascinat-
ing characteristics of natural systems with interacting agents.
Without a central controller, these systems are inherently
robust to failure while, at the same time, they show remark-
able large-scale dynamics that allow for fast adaptation to
changing environments [5, 6]. Interestingly, for large system
sizes, it is often not the complexity of the individual agent,
but the (local) coupling of the agents that predominantly
gears the final system dynamics. It has been shown [22, 31],
in fact, that even relatively simple local dynamics can re-
sult in various kinds of higher-order complexity at a global
scale when coupled through a network with many agents.
Unfortunately, the complex relationship between the global
behavior of a system and its local implementation at the
agent level is not well understood. In particular, it remains
unclear when – and how – a global system objective can be
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encoded in terms of local rules, and what are the require-
ments on the complexity of the individual agent in order
for the collective to fulfill a certain task. Yet, this under-
standing is key to many of today’s and future applications,
such as distributed sensor networks [13], nanomedicine [8],
programmable matter [9], and self-assembly systems [33].

A promising concept to fill this missing link is inverse re-
inforcement learning (IRL), which provides a data-driven
framework for learning behavioral models from expert sys-
tems [34]. In the past, IRL has been applied successfully
in many disciplines and the learned models were reported
to even outperform the expert system in several cases [1,
16, 27]. Unfortunately, IRL is mostly unexplored for multi-
agent systems; in fact, there exist only few models which
transfer the concept of IRL to systems with more than one
agent. One such example is the work presented in [18], where
the authors extended the IRL principle to non-cooperative
multi-agent problems in order to learn a joint reward model
that is able to explain the system behavior at a global scale.
However, the authors assume that all agents in the network
are controlled by a central mediator, an assumption which
is clearly inappropriate for self-organizing systems. A de-
centralized solution was later presented in [25] but the pro-
posed algorithm is based on the simplifying assumption that
all agents are informed about the global state of the system.
Finally, the authors of [7] presented a multi-agent framework
based on mechanism design, which can be used to refine a
given reward model in order to promote a certain system
behavior. However, the framework is not able to learn the
reward structure entirely from demonstration data.

In contrast to previous work on multi-agent IRL, we do
not aspire to find a general solution for the entire class of
multi-agent systems; instead, we focus on the important sub-
class of homogeneous systems or swarms. Motivated by the
above-mentioned questions, we present a scalable IRL so-
lution for the swarm setting to learn a single local reward
function which explains the global behavior of a swarm, and
which can be used to reconstruct this behavior from local in-
teractions at the agent level. In particular, we make the fol-
lowing contributions: 1) We introduce the swarMDP , a for-
mal framework to compactly describe homogeneous multi-
agent control problems. 2) Exploiting the inherent homo-
geneity of this framework, we show that the resulting IRL
problem can be e↵ectively reduced to the single-agent case.
3) To solve the corresponding control problem, we propose
a novel heterogeneous learning scheme that is particularly
tailored to the swarm setting. We evaluate our framework
on two well-known system models: the Ising model and the
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Vicsek model of self-propelled particles. The results demon-
strate that our framework is able to produce meaningful re-
ward models from which we can learn local controllers that
replicate the observed global system dynamics.

2. THE SWARMDP MODEL
By analogy with the characteristics of natural systems, we
characterize a swarm system as a collection of agents with
the following two properties:

Homogeneity: All agents in a swarm share a com-
mon architecture (i.e. they have the same dynamics,
degrees of freedom and observation capabilities). As
such, they are assumed to be interchangeable.

Locality: The agents can observe only parts of the
system within a certain range, as determined by their
observation capabilities. As a consequence, their deci-
sions depend on their current neighborhood only and
not on the whole swarm state.

In principle, any system with these properties can be de-
scribed as a decentralized partially observable Markov deci-
sion process (Dec-POMDP) [21]. However, the homogene-
ity property, which turns out to be the key ingredient for
scalable inference, is not explicitly captured by this model.
Since the number of agents contained in a swarm is typically
large, it is thus convenient to switch to a more compact sys-
tem representation that exploits the system symmetries.

For this reason, we introduce a new sub-class of Dec-
POMDP models, in the following referred to as swarMDPs
(Fig. 1), which explicitly implements a homogeneous agent
architecture. An agent in this model, which we call a swarm-
ing agent, is defined as a tuple A := (S,O,A, R,⇡), where:

• S,O,A are sets of local states, observations and ac-
tions, respectively.

• R : O ! R is an agent-level reward function.

• ⇡ : O ! A is the local policy of the agent which later
serves as the decentralized control law of the swarm.

For the sake of simplicity, we consider only reactive policies
in this paper, where ⇡ is a function of the agent’s current
observation. Note, however, that the extension to more gen-
eral policy models (e.g. belief state policies [11] or such that
operate on observation histories [21]) is straightforward.

With the definition of the swarming agent at hand, we
define a swarMDP as a tuple (N,A, T, ⇠), where:

• N is the number of agents in the system.

• A is a swarming agent prototype as defined above.

• T : SN ⇥AN ⇥SN ! R is the global transition model
of the system. Although T is used only implicitly
later on, we can access the conditional probability that
the system reaches state s̃ = (s̃(1), . . . , s̃(N)) when the
agents perform the joint action a = (a(1)

, . . . , a

(N)) at
state s = (s(1), . . . , s(N)) as T (s̃ | s, a), where s

(n),
s̃

(n) 2 S and a

(n) 2 A represent the local states and
the local action of agent n, respectively.

• ⇠ : SN ! ON is the observation model of the system.
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Figure 1: The swarMDP model visualized as a Bayesian
network using plate notation. In contrast to a Dec-POMDP,
the model explicitly encodes the homogeneity of a swarm.

The observation model ⇠ tells us which parts of a given sys-
tem state s 2 SN can be observed by whom. More precisely,
⇠(s) = (⇠(1)(s), . . . , ⇠(N)(s)) 2 ON denotes the ordered set
of local observations passed on to the agents at state s. For
example, in a school of fish, ⇠(n) could be the local alignment
of a fish to its immediate neighbors (see Section 4.1). Note
that the agents have no access to their local states s(n) 2 S
but only to their local observations o(n) = ⇠

(n)(s) 2 O.
It should be mentioned that the observation model can

be also defined locally at the agent level, since the observa-
tions are agent-related quantities. However, this would still
require a global notion of connectivity between the agents,
e.g. provided in the form of a dynamic graph which defines
the time-varying neighborhood of the agents. Using a global
observation model, we can encode all properties in a single
object, yielding a more compact system description. Yet,
we need to constrain our model class to those models which
respect the homogeneity (and thus the interchangeability) of
the agents. To be precise, a valid observation model needs to
ensure that agent n receives agentm’s local observation (and
vice versa) if we interchange their local states. Mathemati-
cally, this means that any permutation of s 2 SN must result
in the same permutation of ⇠(s) – otherwise, the underlying
system is not homogeneous. The same property has to hold
for the transition model T . A generalization to stochastic
observations is possible but not considered in this paper.

3. IRL IN SWARM SYSTEMS
In contrast to existing work on IRL, our goal is not to de-
velop a new specialized algorithm that solves the IRL prob-
lem in the swarm case. On the contrary, we show that the
homogeneity of our model allows us to reduce the multi-
agent IRL problem to a single-agent one, for which we can
apply a whole class of existing algorithms. This is possible
since, at its heart, the underlying control problem of the
swarMDP is intrinsically a single-agent problem because all
agents share the same policy.1 In the subsequent sections,
we show that this symmetry property also translates to the
value functions of the agents. Algorithmically, we exploit the
fact that most existing IRL methods, such as [2, 19, 20, 24,
29, 35], share a common generic form (Algorithm 1), which
involves three main steps [17]: 1) policy update 2) value
estimation and 3) reward update. The important detail to

1
However, the decentralized nature of the problem remains!
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note is that only the first two steps of this procedure are
system-specific while the third step is, in fact, independent
of the target system (see references listed above for details).
Consequently, our problem reduces to finding swarm-based
solutions for the first two steps such that the overall proce-
dure returns a “meaningful” reward model in the IRL con-
text. The following sections discuss these steps in detail.

Algorithm 1: Generic IRL

Input: expert data D, MDP without reward function
0: Initialize reward function R

{0}

for i = 0, 1, 2, ...
1: Policy update: Find optimal policy ⇡

{i} for R{i}

2: Value estimation: Compute corresponding value V

{i}

3: Reward update: Given V

{i} and D, compute R

{i+1}

3.1 Policy Update
We start with the policy update step, where we are faced
with the problem of learning a suitable system policy for a
given reward function. For this purpose, we first need to
define a suitable learning objective for the swarm setting in
the context of the IRL procedure. In the next paragraphs,
we show that the homogeneity property of our model natu-
rally induces such a learning objective, and we furthermore
present a simple learning strategy to optimize this objective.

3.1.1 Private Value & Bellman Optimality
Analogous to the single-agent case [28], we define the private
value of an agent n at a swarm state s 2 SN under policy ⇡

as the expected sum of discounted rewards accumulated by
the agent over time, given that all agents execute ⇡,

V

(n)(s | ⇡) := E
" 1
X

k=0

�

k

R(⇠(n)(s
t+k

)) | ⇡, s
t

= s

#

, (1)

Herein, � 2 [0, 1) is a discount factor, and the expectation
is with respect to the random system trajectory starting
from s. Note that, due to the assumed time-homogeneity of
the transition model T , the above definition of value is, in
fact, independent of any particular starting time t. Denoting
further by Q

(n)(s, a | ⇡) the state-action value of agent n at
state s for the case that all agents execute policy ⇡, except
for agent n who performs action a 2 A once and follows ⇡

thereafter, we obtain the following Bellman equations:

V

(n)(s | ⇡) = R(⇠(n)(s)) + �

X

s̃2SN

P (s̃ | s,⇡ )V (n)(s̃ | ⇡),

Q

(n)(s, a | ⇡) = R(⇠(n)(s)) + �

X

s̃2SN

P

(n)(s̃ | s, a,⇡ )V (n)(s̃ | ⇡).

Here, P (s̃ | s,⇡ ) denotes the probability of reaching swarm
state s̃ from s when every agent performs policy ⇡ and, anal-
ogously, P (n)(s̃ | s, a,⇡ ) denotes the probability of reaching
swarm state s̃ from state s if agent n chooses action a and all
other agents execute policy ⇡. Note that both these objects
are implicitly defined via the transition model T .

3.1.2 Local Value
Unfortunately, the value function in Eq. (1) is not locally
plannable by the agents since they have no access to the
global swarm state s. From a control perspective, we thus

require an alternative notion of optimality that is based on
local information only and, hence, computable by the agents.
Analogous to the belief value in single-agent systems [14, 15],
we therefore introduce the following local value function,

V

(n)
t

(o | ⇡) := E
Pt(s|o(n)=o,⇡)

h

V

(n)(s | ⇡)
i

,

which represents the expected return of agent n under con-
sideration of its current local observation of the global sys-
tem state. In our next proposition, we highlight two key
properties of this quantity: 1) It is not only locally plannable
but also reduces the multi-agent problem to a single-agent
one in the sense that all local values coincide. 2) In con-
trast to the private value, the local value is time-dependent
because the conditional probabilities P

t

(s | o(n) = o,⇡ ), in
general, depend on time. However, it converges to a station-
ary value asymptotically under suitable conditions.

Proposition 1. Consider a swarMDP as defined above and
the stochastic process {S

t

}1
t=0 of the swarm state induced by

the system policy ⇡. If the initial state distribution of the
system is invariant under permutation2 of agents, all local
value functions are identical,

V

(m)
t

(o | ⇡) = V

(n)
t

(o | ⇡) 8m,n. (2)

In this case, we may drop the agent index and denote the
common local value function as V

t

(o | ⇡). If, furthermore, it

holds that S
t

a.s.��! S for some S with law P and the common
local value function is continuous almost everywhere (i.e. its
set of discontinuity points is P -null) and bounded above, then
the local value function V

t

(o | ⇡) will converge to a limit,

V

t

(o | ⇡)! V (o | ⇡), (3)

where V (o | ⇡) = E
P (s|o(n)=o,⇡)

h

V

(n)(s | ⇡)
i

.

Proof. Fix any two agents, say agent 1 and 2. For these
agents, define a permutation operation � : SN ! SN as

�(s) := (s(2), s(1), s(3), . . . , s(N)),

where s = (s(1), s(2), s(3), . . . , s(N)). Due to the homogene-
ity of the system, i.e. since R(⇠(1)(s)) = R(⇠(2)(�(s))) and
P (s̃ | s,⇡ ) = P (�(s̃) | �(s),⇡), it follows immediately that
V

(1)(s | ⇡) = V

(2)(�(s) | ⇡) 8s. This essentially means: the
value assigned to agent 1 at swarm state s is the same as the
value that would be assigned to agent 2 if we interchanged
their local states, i.e. at state �(s). Note that this is e↵ec-
tively the same as renaming the agents. The homogeneity
of the system ensures that the symmetry of the initial state
distribution P0(s) is maintained at all subsequent points in
time, i.e. P

t

(s | ⇡) = P

t

(�(s) | ⇡) 8s, t. In particular, it
holds that P

t

(s | o(1) = o,⇡ ) = P

t

(�(s) | o(2) = o,⇡ ) 8s, t
and, accordingly,

V

(1)
t

(o | ⇡)� V

(2)
t

(o | ⇡)
= E

Pt(s|o(1)=o,⇡)

h

V

(1)(s | ⇡)
i

� E
Pt(s|o(2)=o,⇡)

h

V

(2)(s | ⇡)
i

=
X

s2SN

⇣

P

t

(s | o(1) = o,⇡ )V (1)(s | ⇡) . . .

. . . � P

t

(�(s) | o(2) = o,⇡ )V (2)(�(s) | ⇡)
⌘

= 0,

2
Since we assume that the agents are interchangeable, it follows nat-

urally to consider only permutation-invariant initial distributions.
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learning iterations

Figure 2: Snapshots of the proposed learning scheme applied to the Vicsek model (Section 4.1). The agents are divided into
a greedy set ( ) and an exploration set ( ) to facilitate the exploration of locally desynchronized swarm states. The size
of the exploration set is reduced over time to gradually transfer the system into a homogeneous stationary behavior.

which shows that the local value functions are identical for
all agents. Treating the value as a random variable and using
the fact that it is continuous almost everywhere, it follows
that V

(n)(S
t

| ⇡)
a.s.��! V

(n)(S | ⇡) since S

t

a.s.��! S. As
we assume the function to be finite, i.e. |V (n)(S

t

| ⇡)| < V

⇤

for some V

⇤ 2 R, it holds by conditional dominated con-

vergence theorem [4] that E
h

V

(n)(S
t

| ⇡) | o(n) = o,⇡

i

!
E
h

V

(n)(S | ⇡) | o(n) = o,⇡

i

, i.e. V
t

(o | ⇡)! V (o | ⇡).

3.1.3 Heterogeneous Q-learning
With the local value in Eq. (2), we have introduced a system-
wide performance measure which can be evaluated at the
agent level and, hence, can be used by the agents for local
planning. Yet, its computation involves the evaluation of an
expectation with respect to the current swarm state of the
system. This requires the agents to maintain a belief about
the global system state at any point in time to coordinate
their actions, which itself is a hard problem.3 However, for
many swarm-related tasks (e.g. consensus problems [26]),
it is su�cient to optimize the stationary behavior of the
system. This is, in fact, a much easier task since it allows
us to forget about the temporal aspect of the problem.

In this section, we present a comparably simple learning
method, specifically tailored to the swarm setting, which
solves this task by optimizing the system’s stationary value
in Eq. (3). Similar to the local value function, we start by
defining a local Q-function for each agent,

Q

(n)
t

(o, a | ⇡) := E
Pt(s|o(n)=o,⇡)

h

Q

(n)(s, a | ⇡)
i

,

which assesses the quality of a particular action played by
agent n at time t. Following the same line of argument
as before, one can show that these Q-functions are again
identical for all agents and, moreover, that they converge to
the following asymptotic value function,

Q(o, a | ⇡) = E
P (s|o(n)=o,⇡)

h

Q

(n)(s, a | ⇡)
i

, (4)

which can be understood as the state-action value of a generic
agent that is coupled to a stationary field generated by and
executing policy ⇡. In the following, we pose the task of
optimizing this Q-function as a game-theoretic one. To be

3
In principle, this is possible since – in contrast to a Dec-POMDP –

each agent knows the policy of the other agents.

precise, we consider a hypothetical game between each agent
and the environment surrounding it, where the agent plays
the optimal response to this stationary field,

⇡R(o | ⇡) := argmax
a2A

Q(o, a | ⇡),

and the environment reacts with a new swarm behavior gen-
erated by this policy. By definition, any optimal system
policy ⇡

⇤ describes a fixed-point of this game,

⇡R(o | ⇡⇤) = ⇡

⇤(o),

which motivates the following iterative learning scheme:
Starting with an arbitrary initial policy, we run the sys-
tem until it reaches its stationary behavior and estimate
the corresponding asymptotic Q-function. Based on this Q-
function, we update the system policy according to the best
response operator defined above. The updated policy, in
turn, induces a new swarm behavior for which we estimate
a new Q-function, and so on. As soon as we reach a fixed-
point, the system has arrived at an optimal behavior in the
form of a symmetric Nash equilibrium where all agents col-
lectively execute a policy which, for each agent individually,
provides the optimal response to the other agents’ behavior.

However, the following practical problems remain: 1) In
general, it can be time-consuming to wait for the system
to reach its stationary behavior at each iteration of the al-
gorithm. 2) At stationarity, we need a way to estimate the
corresponding stationary Q-function. Note that this involves
both estimating the Q-values of actions that are dictated by
the current policy as well as Q-values of actions that deviate
from the current behavior, which requires a certain amount
of exploratory moves. As a solution to both problems, we
propose the following heterogeneous learning scheme, which
artificially breaks the symmetry of the system by separating
the agents into two disjoint groups: a greedy set and an ex-
ploration set. While the agents in the greedy set provide a
reference behavior in the form of the optimal response to the
current Q-function shared between all agents, the agents in
the exploration set randomly explore the quality of di↵erent
actions in the context of the current system policy. At each
iteration, the gathered experience of all agents is processed
sequentially via the following Q-update [32],

Q̂(o(n)
t

, a

(n)
t

) (1�↵)Q̂(o(n)
t

, a

(n)
t

)+↵

�

r

(n)
t

+�max
a2A

Q̂(o(n)
t+1, a)

�

,

with learning rate ↵ 2 (0, 1). Over time, more and more
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Figure 3: Pictorial description of the proposed learning
scheme. (a) The next policy is obtained from the current
estimate of the system’s stationary Q-function. (b) Hetero-
geneous one-step transition of the system. (c) The estimate
of the Q-function is updated based on the new experience.

Algorithm 2: Heterogeneous Q-Learning

Input: swarMDP without policy ⇡

0: Initialize shared Q-function, learning rate and fraction
of exploring agents (called the temperature)
for i = 0, 1, 2, ...

1: Separate the swarm into exploring and greedy agents
according to the current temperature

2: Based on the current swarm state and Q-function,
select actions for all agents

3: Iterate the system and collect rewards
4: Update the Q-function based on the new experience
5: Decrease the learning rate and the temperature

exploring agents are assigned to the greedy set so that the
system is gradually transferred into a homogeneous station-
ary regime and thereby smoothly guided towards a fixed-
point policy (see Figure 2). Herein, the learning rate ↵ nat-
urally reduces the influence of experience acquired at early
(non-synchronized) stages of the system, which allows us to
update the system policy without having to wait until the
swarm converges to its stationary behavior.

The heterogeneity of the system during the learning phase
ensures that also locally desynchronized swarm states are
well-explored (together with their local Q-values) so that the
agents can learn adequate responses to out-of-equilibrium
situations. This phenomenon is best illustrated by the agent
constellation in third sub-figure of Figure 2. It shows a situ-
ation that is highly unlikely under a homogeneous learning
scheme as it requires a series of consecutive exploration steps
by only a few agents while all their neighbors need to be-
have consistently optimally at the same time. The final pro-
cedure, which can be interpreted as a model-free variant of
policy iteration [12] in a non-stationary environment, is sum-
marized in Algorithm 2, together with a pictorial description
of the main steps in Fig. 3. While we cannot provide a con-
vergence proof at this stage, the algorithm converged in all
our simulations and generated policies with a performance
close to that of the expert system (see Section 4).

3.2 Value Estimation
In the last section, we have shown a way to implement the
policy update in Algorithm 1 based on local information ac-
quired at the agent level. Next, we need to assign a suitable
value to the obtained policy which allows a comparison to
the expert behavior in the subsequent reward update step.

3.2.1 Global Value
The comparison of the learned behavior and the expert be-
havior should take place on a global level, since we want the
updated reward function to cause a new system behavior

which mimics the expert behavior globally. Therefore, we
introduce the following global value,

V

(n)
|⇡ := E

P0(s)

h

V

(n)(s | ⇡)
i

,

which represents the expected return of an agent under ⇡,
averaged over all possible initial states of the swarm. From
the system symmetry, i.e. since P0(s) = P0(�(s)), it follows
immediately that this global value is independent of the spe-
cific agent under consideration,

V

(m)
|⇡ = V

(n)
|⇡ 8m,n.

Hence, the global value should be considered as a system-
related performance measure (as opposed to an agent-specific
property), which may be utilized for the reward update in
the last step of the algorithm. We can construct an unbiased
estimator for this quantity from any local agent trajectory,

V̂

(n)
|⇡ =

1
X

t=0

�

t

R(⇠(n)(s
t

)) =
1
X

t=0

�

t

r

(n)
t

. (5)

Since all local estimators are identically distributed, we can
increase the accuracy of our estimate by considering the in-
formation provided by the whole swarm,

V̂|⇡ =
1
N

N

X

n=1

V̂

(n)
|⇡ =

1
N

N

X

n=1

1
X

t=0

�

t

r

(n)
t

. (6)

Note, however, that the local estimators are not indepen-
dent since all agents are correlated through the system pro-
cess. Nevertheless, due to the local coupling structure of a
swarm, this correlation is caused only locally, which means
that the correlation between any two agents will drop when
their topological distance increases. We demonstrate this
phenomenon for the Vicsek model in Section 4.1.

3.3 Reward Update
The last step of Algorithm 1 consists in updating the esti-
mated reward function. Depending on the single-agent IRL
framework in use, this involves an algorithm-specific opti-
mization procedure, e.g. in the form of a quadratic program
[2, 20] or a gradient-based optimization [19, 35]. For our ex-
periments in Section 4, we follow the max-margin approach
presented in [2]; however, the procedure can be replaced
with other value-based methods (see Section 3).

For this purpose, the local reward function is represented
as a linear combination of observational features, R(o) =
w

>
�(o), with weights w 2 Rd and a given feature function

� : O ! Rd. The feature weights after the ith iteration of
Algorithm 1 are then obtained as

w

{i+1} = argmax
w:||w||21

min
j2{1,...,i}

w

>(µ
E

� µ

(j)).

where µ
E

and {µ(j)}i
j=1 are the feature expectations [2] of the

expert policy and the learned policies up to iteration i. Sim-
ulating a one-shot learning experiment, we estimate these
quantities from a single system trajectory based on Eq. (6),

µ̂(⇡) =
1
N

N

X

n=1

1
X

t=0

�

t

�(⇠(n)(s
t

)).

where the state sequence (s0, s1, s2, . . .) is generated using
the respective policy ⇡. For more details, we refer to [2].
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(a) Uncertainty coe�cient for the interaction radii ⇢ = 0.125 (left) and ⇢ = 0.05 (right). The

values are based on a kernel density estimate of the joint distribution of two agents’ headings.
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(b) Learned reward model.

Figure 4: Simulation results for the Vicsek model. (a) The system’s uncertainty coe�cient as a function of the topological
distance between two agents, estimated from 10000 Monte Carlo runs of the expert system. (b) Learned reward model as a
function of an agent’s local misalignment, averaged over 100 Monte Carlo experiments. Dark color indicates high reward.

4. SIMULATION RESULTS
In this section, we provide simulation results for two di↵er-
ent system types. For the policy update, the initial number
of exploring agents is set to 50% of the population size and
the learning rate is initialized close to 1. Both quantities are
controlled by a quadratic decay which ensures that, at the
end of the learning period, i.e. after 200 iterations, the learn-
ing rate reaches zero and there are no exploring agents left.
Note that these parameters are by no means optimized; yet,
in our experiments we observed that the learning results are
largely insensitive to the particular choice of values. Since
the agents’ observation space is one-dimensional in both ex-
periments, we use a simple tabular representation for the
learned Q-function; for higher-dimensional problems, one
needs to resort to function approximation [12]. Videos can
be found at http://www.spg.tu-darmstadt.de/aamas2017.

4.1 The Vicsek Model
First, we test our framework on the Vicsek model of self-
propelled particles [30]. The model consists of a fixed num-
ber of particles, or agents, living in the unit square [0, 1] ⇥
[0, 1] with periodic boundary conditions. Each agent nmoves
with a constant absolute velocity v and is characterized by
its location x

(n)
t

and orientation ✓

(n)
t

in the plane, as sum-

marized by the local state variable s

(n)
t

:= (x(n)
t

, ✓

(n)
t

). The
time-varying neighborhood structure of the agents is deter-
mined by a fixed interaction radius ⇢. At each time instance,
the agents’ orientations get synchronously updated to the
average orientation of their neighbors (including themselves)

with additive random perturbations {�✓

(n)
t

},
✓

(n)
t+1 = h✓(n)

t

i
⇢

+�✓

(n)
t

,

x

(n)
t+1 = x

(n)
t

+ v

(n)
t

.

(7)

Herein, h✓(n)
t

i
⇢

denotes the mean orientation of all agents

within the ⇢-neighborhood of agent n at time t, and v

(n)
t

=

v · [cos ✓(n)
t

, sin ✓(n)
t

] is the velocity vector of agent n.
Our goal is to learn a model for this expert behavior from

recorded agent trajectories using the proposed framework.
As a simple observation mechanism, we let the agents in our
model compute the angular distance to the average orienta-
tion of their neighbors, i.e. o(n)

t

= ⇠

(n)(s
t

) := h✓(n)
t

i
⇢

� ✓

(n)
t

,
giving them the ability to monitor their local misalignment.
For simplicity, we discretize the observation space [0, 2⇡)

into 36 equally-sized intervals (Fig. 6), corresponding to the
features � (Section 3.3). Furthermore, we coarse-grain the
space of possible direction changes to [�60�,�50�, . . . , 60�],
resulting in a total of 13 actions available to the agents. For
the experiment, we use a system size of N = 200, an interac-
tion radius of ⇢ = 0.1 (if not stated otherwise), an absolute
velocity of v = 0.1, a discount factor of � = 0.9, and a zero-
mean Gaussian noise model for {�✓

(n)
t

} with a standard
deviation of 10�. These parameter values are chosen such
that the expert system operates in an ordered phase [30].

Local Coupling & Redundancy
In Section 3.2.1 we claimed that, due to the local coupling
in a swarm, the correlation between any two agents will de-
crease with growing topological distance. In this section, we
substantiate our claim by analyzing the coupling strength in
the system as a function of the topological distance between
the agents. As a measure of (in-)dependence, we employ the
uncertainty coe�cient [23], a normalized version of the mu-
tual information, which reflects the amount of information
we can predict about an agent’s orientation by observing
that of another agent. As opposed to linear correlation, this
measure is able to capture non-linear dependencies and is,
hence, more meaningful in the context of the Vicsek model
whose state dynamics are inherently non-linear.

Figure 4(a) depicts the result of our analysis which nicely
reveals the spatio-temporal flow of information in the sys-
tem. It confirms that the mutual information exchange be-
tween the agents strongly depends on the strength of their
coupling which is determined by 1) their topological distance
and 2) the number of connecting links (seen from the fact
that, for a fixed distance, the dependence grows with the in-
teraction radius). We also see that, for increasing radii, the
dependence grows even for agents that are temporarily not
connected through the system, due to the increasing chances
of having been connected at some earlier stage.

Learning Results
An inherent problem with any IRL approach is the assess-
ment of the extracted reward function as there is typically
no ground truth to compare with. The simplest way to check
the plausibility of the result is by subjective inspection: since
a system’s reward function can be regarded as a concise de-
scription of the task being performed, the estimate should
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Figure 5: Illustrative trajectories of the Vicsek model gener-
ated under the optimal policy and a learned policy. A color-
coding scheme is used to indicate the temporal progress.

0 100 200 300 400 500
0

0.2

0.4

0.6

0.8

1

optimal
swarm
single
hand-crafted
random

Figure 6: Slopes of the order parameter !

t

in the Vicsek
model. From top to bottom, the curves show the results
for the expert policy, the learned IRL policy, the result we
get when the feature expectations are estimated from just
one single agent, for a hand-crafted reward function, and for
random policies. For the optimal policy, we show the em-
pirical mean and the corresponding 10% and 90% quantiles,
based on 10000 Monte Carlo runs. For the learned policies,
we instead show the average over 100 conditional quantiles
(since the outcome of the learning process is random), each
based on 100 Monte Carlo runs with a fixed policy.

explain the observed system behavior reasonably well. As
we can see from Figure 4(b), this is indeed the case for the
obtained result. Although there is no “true” reward model
for the Vicsek system, we can see from the system equa-
tions in (7) that the agents tend to align over time. Clearly,
such dynamics can be induced by giving higher rewards for
synchronized states and lower (or negative) rewards for mis-
alignment. Inspecting further the induced system dynamics
(Fig. 5), we observe that the algorithm is able to reproduce
the behavior of the expert system, both during the transient
phase and at stationarity. Note that the absolute direction
of travel is not important here as the model considers only
relative angles between the agents. Finally, we compare the
results in terms of the order parameter [30], which provides
a measure for the total alignment of the swarm,

!

t

:=
1
Nv

�

�

�

�

�

N

X

n=1

v

(n)
t

�

�

�

�

�

2 [0, 1],

with values close to 1 indicating strong synchronization of
the system. Figure 6 depicts its slope for di↵erent system
policies, including the expert policy and the learned ones.
From the result, we can see a considerable performance gain
for the proposed value estimation scheme (Eq. (6)) as com-
pared to a single-agent approach (Eq. (5)). This again con-
firms our findings from the previous section since the in-
crease in performance has to stem from the additional infor-
mation provided by the other agents. As a further reference,
we also show the result for a hand-crafted reward model,
where we provide a positive reward only if the local obser-
vation of an agent falls in the discretization interval centered
around 0� misalignment. As we can see, the learned reward
model significantly outperforms the ad-hoc solution.

4.2 The Ising Model
In our second experiment, we apply the IRL framework to
the well-known Ising model [10] which, in our case, con-
sists of a finite grid of atoms (i.e. agents) of size 100⇥ 100.

Each agent has an individual spin q

(n)
t

2 {+1,�1} which,

together with its position on the grid, forms its local state,
s

(n)
t

:= (x(n)
, y

(n)
, q

(n)
t

). For our experiment, we consider a
static 5⇥ 5-neighborhood system, meaning that each agent
interacts only with its 24 closest neighbors (i.e. agents with
a maximum Chebyshev distance of 2). Based on this neigh-
borhood structure, we define the global system energy as

E

t

:=
N

X

n=1

X

m2Nn

1(q(n)
t

6= q

(m)
t

) =
N

X

n=1

E

(n)
t

,

where N
n

and E

(n)
t

are the neighborhood and local energy
contribution of agent n, and 1(·) denotes the indicator func-
tion. Like the order parameter for the Vicsek model, the
global energy serves as a measure for the total alignment
of the system, with zero energy indicating complete state
synchronization. In our experiment, we consider two possi-
ble actions available to the agents, i.e. keep the current spin
and flip the spin. The system dynamics are chosen such that
the agent transitions to the desired state with probability 1.
As before, we give the agents the ability to monitor their
local misalignment, this time provided in the form of their
individual energy contributions, i.e. o(n)

t

= ⇠

(n)(s
t

) := E

(n)
t

.
A meaningful goal for the system is to reach a global state

configuration of minimum energy. Again, we are interested
in learning a behavioral model for this task from expert tra-
jectories. In this case, our expert system performs a local
majority voting using a policy which lets the agents adopt
the spin of the majority of their neighbors. Essentially, this
policy implements a synchronous version of the iterated con-
ditional modes algorithm [3], which is guaranteed to trans-
late the system to a state of locally minimum energy.

Figures 7 and 8 depict, respectively, the learned mean
reward function and the slopes of the global energy for the
di↵erent policies. As in the previous example, the extracted
reward function explains the expert behavior well4 and we

4
Note that assigning a neutral reward to states of high local energy is

reasonable, since a strong local misalignment indicates high synchro-
nization of the opposite spin in the neighborhood.
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Figure 7: Learned reward function for the Ising model, av-
eraged over 100 Monte Carlo experiments.
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in the Ising model.
The graphs are analogous to those in Figure 6.

observe the same qualitative performance improvement as
for the Vicsek system, both when compared to the single-
agent estimation scheme and to the hand-crafted model.

5. CONCLUSION & DISCUSSION
Our objective in this paper has been to extend the concept of
IRL to homogeneous multi-agent systems, called swarms, in
order to learn a local reward function from observed global
dynamics that is able to explain the emergent behavior of
a system. By exploiting the homogeneity of the newly in-
troduced swarMDP model, we showed that both value es-
timation and policy update required for the IRL procedure
can be performed based on local experience gathered at the
agent level. The so-obtained reward function was provided
as input to a novel learning scheme to build a local policy
model which mimics the expert behavior. We demonstrated
our framework on two types of system dynamics where we
achieved a performance close to that of the expert system.

Nevertheless, there remain some open questions. In the
process of IRL, we have tacitly assumed that the expert be-
havior can be reconstructed based on local interactions. Of
course, this is a reasonable assumption for self-organizing
systems which naturally operate in a decentralized manner.
For arbitrary expert systems, however, we cannot exclude
the possibility that the agents are instructed by a central
controller which has access to the global system state. This
brings us back to the following questions: When is it possible
to reconstruct global behavior based on local information?
If it is not possible for a given task, how well can we approx-
imate the centralized solution by optimizing local values?

In an attempt to understand the above mentioned ques-
tions, we propose the following characterization of the re-
ward function that would make a local policy optimal in a
swarm. To this end, we enumerate the swarm states and ob-
servations by SN = {s

i

}K
i=1 and O = {o

i

}L
i=1, respectively.

Furthermore, we fix an agent n and define matrices P
o

and
{P

a

}|A|
a=1, where [P

o

]
ij

= P (s
j

| o(n) = o

i

,⇡) and [P
a

]
ij

=
P

(n)(s
j

| s
i

, a,⇡). Finally, we represent the reward function
as a vector, i.e. R = (R(⇠(n)(s1)), . . . , R(⇠(n)(s

K

)))T.

Proposition 2. Consider a swarm (N,A, T, ⇠) of agents
A = (S,O,A, R,⇡) and a discount factor � 2 [0, 1). Then,
a policy ⇡ : O ! A given by ⇡(o) := a1 is optimal5 with
respect to V (o | ⇡) if and only if the reward R satisfies

P
o

(P
a1 �P

a

)(I� �P
a1)

�1R � 0 8a 2 A. (8)

5
We can ensure that ⇡(o) = a1 by renaming actions accordingly [20].

Proof. Expressing Eq. (1) using vector notation, we get

V
s|⇡ = (I� �P

a1)
�1R,

where V
s|⇡ = (V (n)(s1 | ⇡), . . . , V (n)(s

K

| ⇡))T. According
to Prop. 1, the corresponding limiting value function is

V (o | ⇡) =
K

X

i=1

P (s
i

| o(n) = o,⇡ )V (n)(s
i

| ⇡).

Rewritten in vector notation, we obtain

V
o|⇡ = P

o

V
s|⇡, (9)

where V
o|⇡ = (V (o1 | ⇡), . . . , V (o

L

| ⇡))T. Now, ⇡(o) = a1

is optimal if and only if for all a 2 A, o 2 O
Q

(n)(o, a1 | ⇡) � Q

(n)(o, a | ⇡)

,
K

X

i=1

P (s
i

| o(n) = o,⇡ )
K

X

j=1

P

(n)(s
j

| s
i

, a1,⇡)V
(n)(s

j

| ⇡)

�
K

X

i=1

P (s
i

| o(n) = o,⇡ )
K

X

j=1

P

(n)(s
j

| s
i

, a,⇡)V (n)(s
j

| ⇡)

, P
o

(P
a1 �P

a

)V
s|⇡ � 0

, P
o

(P
a1 �P

a

)(I� �P
a1)

�1R � 0. ⇤

Remark. Following a similar derivation as in [20], we ob-
tain the characterization set with respect to V

s|⇡ as

(P
a1 �P

a

)(I� �P
a1)R � 0. (10)

Notice that, as Eq. (10) implies Eq. (8), an R that makes
⇡(o) optimal forV

s|⇡, also makes it optimal forV
o|⇡. There-

fore, denoting byR
L

andR
G

the solution sets corresponding
to the local and global values V

o|⇡ and V
s|⇡, we conclude

R
G

✓ R
L

,

with equality in the trivial case where observation o is su�-
cient to determine the swarm state s. It is therefore imme-
diate that, as long as there is uncertainty about the swarm
state, local planning can only guarantee globally optimal be-
havior in an average sense as pronounced byP

o

(see Eq. (9)).
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