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ABSTRACT
Inspired by psychological and evolutionary studies, we present
here theoretical models wherein agents have the potential to
express guilt with the ambition to study the role of this emo-
tion in the promotion of pro-social behaviour. To achieve
this goal, analytical and numerical methods from evolution-
ary game theory are employed to identify the conditions for
which enhanced cooperation emerges within the context of
the iterated prisoners dilemma. Guilt is modelled explicitly
as two features, i.e. a counter that keeps track of the number
of transgressions and a threshold that dictates when allevi-
ation (through for instance apology and self-punishment) is
required for an emotional agent. Such an alleviation intro-
duces an effect on the payoff of the agent experiencing guilt.
We show that when the system consists of agents that re-
solve their guilt without considering the co-player’s attitude
towards guilt alleviation then cooperation does not emerge.
In that case those guilt prone agents are easily dominated
by agents expressing no guilt or having no incentive to alle-
viate the guilt they experience. When, on the other hand,
the guilt prone focal agent requires that guilt only needs to
be alleviated when guilt alleviation is also manifested by a
defecting co-player, then cooperation may thrive. This ob-
servation remains consistent for a generalised model as is
discussed in this article. In summary, our analysis provides
important insights into the design of multi-agent and cogni-
tive agent systems where the inclusion of guilt modelling can
improve agents’ cooperative behaviour and overall benefit.
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1. INTRODUCTION

“...what do you think, if a person does something
very bad, do they have to be punished?”...”You
know the reason I think they should be pun-
ished?”...”It’s because of how bad they are go-
ing to feel, in themselves. Even if nobody did
see them and nobody ever knew. If you do some-
thing very bad and you are not punished you feel
worse, and feel far worse, than if you are.”

[In page 55 of “The love of a Good Woman”, by
Alice Munro (Nobel Prize in Literature 2013),
in ”Family Furnishings - Selected Stories, 1995-
2014”, Vintage Intl. Edition, 2015.]

Interest in machine ethics has significantly increased in
recent years [42, 34]. One pertinent theme within that con-
text addresses the computational modelling of human emo-
tions [29] like guilt. Guilt is defined in the online Merriam-
Webster dictionary as “The feeling of culpability especially
for imagined offences or a sense of inadequacy” [13], which
implies that guilt follows from introspection: An individual
experiencing guilt will detect this emotional state, and can
act upon it. Frank argued that guilt may provide a useful
mechanism, if operationalised properly, to miminise social
conflict and promote cooperation [9]. Notwithstanding the
importance of this emotion for the evolution of cooperation,
no in-depth numerical or analytical models have been pro-
vided to confirm or refute the hypothesis that this emotion
has evolved to ensure stable social relationships.

Evolutionary work related to guilt has been addressed in
[16, 30, 36]. These works focus on behaviours following from
feeling guilty, i.e. apology and forgiveness, but do not how-
ever explicitly model guilt as a behavioural feature of each
agent, which is the goal of the current work. In [16, 30],
apology occurs within the context of long-term commitment
behaviour, which assumes that prior agreements are made
before the iterated Prisoner’s Dilemma (IPD) is started and
a compensation is given once the agreement is broken and
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there is no apology. Moreover, apology leads to a payoff
advantage for the co-player, which as we show here is not
required for the evolutionary dynamics of guilt behaviour.
Modelling guilt explicitly will allow us to go beyond this
work and explore different aspects like the cumulative effect
of wrongdoings or using anticipation to decide what to do in
the context of a specific guilt level. Moreover, it will provide
insight into when the computational modelling of emotions
actually is relevant for autonomous agents in MAS, for in-
stance, to enforce social norms or implement cognitive agent
systems, as was argued in [29, 37, 45].

A non-evolutionary mechanistic model of guilt has been
put forth in [1], within the context of lethal actions by semi-
autonomous robots in the battlefield. A scalar value of guilt
is increased, if an untoward lethal action is taken by the
robot, whether by a human operator or by the robot itself
(if it so recognises its mistake). When a predefined guilt
threshold is reached, the robot is henceforth inhibited from
deploying further lethal actions.

This behavioural quantification of guilt provides us with a
basis to define our evolving agents (see Background section
for psychological as wells as evolutionary theories on which
this is based): Guilt is part of an agent’s representation or
genotype, i.e. they will all be equipped with a guilt threshold
G, with G ∈ [0,+∞], and a transient guilt level, g (g ≥
0). Initially g is set to 0 for every agent. If an agent feels
guilty after an action that she considers as wrong, then the
agent’s g is increased (by 1). When g reaches the agent’s
guilt threshold, i.e. g ≥ G, the agent can (or not) act to
alleviate her current guilt level. We assume here that guilt
alleviation can be achieved through a sincere apology to the
co-player or, otherwise, through self-punishment if it is not
possible to apologise [12, 3]. Different from prior work [16,
30], we do not assume here that apology leads to a benefit for
the co-player, considering it only as an honest signal of the
experiencing of guilt. In general, the cost of guilt alleviation
is modelled by a so-called guilt cost γ (γ ≥ 0). Whenever
the agent punishes herself, by paying γ, g is decreased (by
1). Using this genotype definition, one can imagine different
types of agents with different G thresholds, such as those
who never feel guilty (unemotional, with G = +∞) or those
who are very emotional, feeling guilty immediately after a
wrongdoing (with G = 0).

The objective of this work is to show that agents ex-
pressing this emotion, despite the disadvantage of the costly
guilt-alleviation acts, are evolutionary viable, can dominate
agents not expressing the emotion and that they induce sus-
tained social interactions, all of which will be shown in the
context of the iterated Prisoner’s Dilemma (IPD). To set
the stage for future work we first focus on two extreme be-
haviours, i.e. G = 0 and G = +∞, as will be explained in
more detail in the Models & Methods section. Afterwards
these results are generalised to situations where G > 0 yet
less than the number of rounds in the IPD, since when G is
larger this would correspond to G = +∞. We use a stochas-
tic evolutionary model incorporating frequency-dependent
selection and mutation to identify when agents with guilt
are evolutionary stable [38]. More importantly, we will show
that for guilt to be evolutionary viable, a guilt prone player
under focus should be reactive to the guilt-driven behaviour
of its co-player: If this other party is not behaving prop-
erly and/or does not show guilt-alleviating behaviour then
the focal agent’s guilt is alleviated automatically or even

non-existing. Pure self-punishment without social consid-
erations will not allow for guilt to evolve at the individual
level. In this sense, our work contrasts with for instance that
of Gadou et al. [11] which takes an utilitarian perspective to
model the behaviour resulting from guilt, not by introduc-
ing self-punishment but by introducing a guilt aversion level
term into a player’s utility function, which ignores the so-
cial role of guilt [9]. From a multi-agent perspective, consid-
ering socio-technical systems including autonomous agents,
our results confirm that decision making conflicts can be
reduced when including emotions to guide participants to
socially acceptable behaviours.

2. BACKGROUND
The realisation of working computational models inspired

by psychological theories, such as we strive to do here, per-
mits scientific advances by forcing concrete if simple evolv-
able models, which reveal hidden assumptions and allow
for empirical experimentation with dynamically pliable pro-
grammed artefacts [29]. Computational models of artificial
emotion can play an important decision-making and control
scheduling role in designing multi-agent autonomous sys-
tems [26]. Moreover, herein we reap inspiration from anthro-
pological arguments specifically about the character, usage
and evolutionary role of the emotion of guilt towards the en-
hancement of cooperation amongst autonomous agents, and
propound how such evolution can be modelled by Evolution-
ary Game Theory (EGT) computational models.

Psychology conceives of shame and guilt as belonging to
the family of self-conscious emotions [27, 7, 40], invoked
through self-reflection and self-evaluation. Though both
may have evolved to promote social relationships, guilt and
shame can be treated separately. Guilt is an inward pri-
vate phenomenon, though it can promote apology, and even
spontaneous public confession. Shame is inherently public,
though it may too lead to apology and to the request for for-
giveness [39]. It hinges on being caught, failing to deceive,
and the existence of a reputation mechanism. Guilt is also
more directly associated with morality than shame [35]: It is
closely associated with the idea of conscience, as an internal
guide informing us when an action is wrong. Moreover, it
is widely regarded as a fundamentally social emotion, which
plays a positive prosocial role [9]. It arises especially when
there is a threat of separation or exclusion. Guilt is an un-
pleasant emotion and, when experienced, people try to get
rid of it: the most common coping strategies are confession,
reparation, self-criticism, and punishment.

Guilt acts not only a posteriori, but functions as well a
priori, preventing harm by wishing to avoid guilt and the
necessity to alleviate it. For, guilt being unpleasant, peo-
ple may resist doing things when anticipating feeling guilty
about them. People will obey rules to avoid feeling guilty
when breaking them. Anticipation of guilt leads to norm
conformity even when retaliation won’t arise (as when we
might get away with being free-riders). Anticipating our
own guilt can defeat the temptation to engage in harmful
behaviour. If the cost of guilt was removed, then norm con-
formity might drop off dramatically. This lesson follows from
the empirical research [35].

Evolutionary theorists studying guilt have argued that an-
ticipatory guilt promotes cooperative behaviour by adding
an emotional cost to defection [44, 9]. The emotion of antic-
ipated guilt may function to deter the temptation to betray
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a friend to reap a short-term gain because of the long-term
cost of a lost friendship.

In many social dilemmas like the Prisoner’s Dilemma (PD),
defection is the dominant strategy: defectors do better than
cooperators regardless of whether their trading partners de-
fect or cooperate. But this fact makes it rational for both
parties to defect, even though mutual defection is worse than
mutual cooperation in many of these games. Trivers [44]
speculated that mutual evolution has promoted the emer-
gence of guilt because it makes defection less attractive.
People may gain materially from defecting, but guilt makes
them suffer emotionally, and that leads them to cooperate.
Frank [9] noted that this tendency is so deeply engrained
that people avoid defection even in cases where the other
party is not a likely partner in future exchanges.

Both Trivers and Frank assume that guilt is the result
of biological evolution. But it is equally possible that guilt
emerged under cultural pressure as a tool for ensuring that
people cooperate. If discovery of theft is inevitable, a set
of emotional, psychological, and behavioural mechanisms
should be activated, including genuine feelings and confes-
sions of guilt and remorse to appease the victim and victim’s
kin, verbal attempts to exculpate oneself from blame, and
the return of or reparations for stolen property [2].

Rephrasing [23]:

To the extent we decide guilt is an innate mecha-
nism we must conclude that humans have an in-
nate capacity to judge certain actions to be trans-
gressions of endorsed normative frameworks, mer-
iting reparative or punitive response. If fore-
seen guilt prevents harm and absence of harm
prevents possible retaliation and/or loss of rep-
utation, then it would seem that a priori guilt
would be evolutionarily advantageous. A poste-
riori guilt, on the other hand, would be evolu-
tionarily advantageous because conducive to in-
creased amount/possibility of apology, and we’ve
seen apology is advantageous. Also apology re-
duces the pain of guilt.

Evolutionarily, guilt is envisaged as an in-built mechanism
that tends to prevent wrong doing because of the internal
self suffering it creates, and, should the wrong doing have
taken place, it puts internal pressure on confession (admit-
ting the wrong) and follow-up costly apology and penance,
plus an expectation of forgiveness, so as to alleviate and
dispel the internal suffering produced by guilt [6, 41]. Be-
havioural experiments on the iterated Prisoner’s Dilemma
and Ultimatum games have shown that guilt is a key factor
in increasing cooperation among players [25].

Next, common sense stresses that feeling guilt for harm
done to another makes sense only if you perceive the other
is not attempting to harm you too. War is a case in point.
Hence, recognising whether such is the case should be taken
into account in any model of guilt. In fact, in our very
first guilt model below, where recognising the intention of
another is not considered [15, 17, 14], goes to show that
feeling guilty about our defections regardless of what others
feel about their defections is self-defeating. This view is
in line with the well-adopted appraisal theories of emotion,
in which emotions cannot be explained by solely focusing
on the environment or by solely focusing on the individual;
rather, they reflect the person-environment relationship [29].

Our work also contrasts with the model in [28], in that
instead of self-punishment in their case an agent’s payoff
is simply reduced if it violates some norm’s fairness with
respect to a measure of the agent’s sensitivity.

Finally, it is important to note the rich literature of com-
putational modelling of guilt in AI and MAS literature [29,
5, 8, 37, 18, 45, 4]. But in contrast to our aim and approach,
these studies aim to formalise guilt as part of a MAS, such
as virtual agent and cognitive agent systems, for the purpose
of regulating social norms (see survey in [4]) or improving
agent decision making and reasoning processes [45]. How-
ever, our results and approach provide novel insights into
the design of such MAS systems; for instance, if agents are
equipped with the capacity of guilt feeling even if it might
lead to costly disadvantage, that drives the system to an
overall more cooperative outcome where they are willing to
take reparative actions after wrongdoings.

3. MODELS AND METHODS
Considering the foregoing, an attempt to introduce guilt

in EGT models of cooperation seems unavoidable. The is-
sue concerning guilt within such models is whether its pres-
ence is more worthwhile than its absence, with respect to
an advantageous emergence of cooperation. One can intro-
duce guilt explicitly in models to show that it is worthwhile,
in further support of its appearance on the evolutionary
scene. Indeed, one may focus on emotions, like guilt, as
being strategies in abstract evolutionary population games,
sans specific embodiment nor subjective quale [33].

3.1 Iterated Prisoner’s Dilemma
Social interactions are modeled in this article as symmet-

ric two-player games defined by the payoff matrix

( C D
C R,R S, T
D T, S P, P

)
A player who chooses to cooperate (C) with someone who

defects (D) receives the sucker’s payoff S, whereas the de-
fecting player gains the temptation to defect, T . Mutual
cooperation (resp., defection) yields the reward R (resp.,
punishment P) for both players. Depending on the ordering
of these four payoffs, different social dilemmas arise [20, 38].
Namely, in this work we are concerned with the PD, where
T > R > P > S. In a single round, it is always best to
defect, because less risky, but cooperation may be reward-
ing if the game is repeated. In IPD, it is also required that
mutual cooperation is preferred over an equal probability of
unilateral cooperation and defection (2R > T + S); other-
wise alternating between cooperation and defection would
lead to a higher payoff than mutual cooperation. The PD
is repeated for a number of rounds, where the number of
rounds is modelled by Ω.

3.2 Guilt modelling in IPD
Starting from the definition of the agent-based guilt fea-

ture in the Introduction, we will focus in the current work
only on two basic types of (extreme) guilt thresholds (a more
generalised model for non-extreme guilt levels shall be anal-
ysed in Section 4.3):

• G = +∞: In this type of agents the guilt level g
will never reach the threshold no mater how many

1424



63. rN63. rN 1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

59. rN

85. rN

59. rN

C

D

CG

DGD

DGC 63. rN63. rN 1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

95. rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

C

D

CG

DGD

DGC 63. rN63. rN 1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

C

D

CG

DGD

DGC

63. rN

7.1 rN

1.6 rN1.6 rN

63. rN 9.5 rN

66. rN

9.5 rN

8.6 rN

C

D

DGC

CG

DGD

63. rN 39. rN

4.9 rN

7.3 rN

39. rN

36. rN

63. rN 39. rN

4.9 rN

C

D DGD

DGC

CG

63. rN63. rN 1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

1.0¥102 rN

59. rN

8.2 rN

59. rN

C

D

CG

DGD

DGC

0%

100%

0%

0%

0%

2%

30%

2%

0%

67%

0%0%

72% 14%

15%

0%

100%

0%

0%

0%

0%

100%

0%

0%

0%

0%

100%

0%

0%

0%

M
od

el
 1

M
od

el
 2

Ɣ=10 Ɣ=1.1 Ɣ=0.5

CGC CGCCGC

CGC CGC CGC

Figure 1: Stationary distribution and transition probabilities directions for the two models (top row for model
1 and bottom row for model 2) and for various values of γ (first, second, and third columns correspond to γ =
10, 1.1, 0.5, respectively). The arrows identify the transitions that are stronger than neutral, annotated with
the corresponding transition probability. In the first model, D always dominates the population, regardless
of the value of γ. In the second model, for an intermediate value of γ, DGC performs well against defective
strategies, taking over their population. When this value is too large, DGC is dominated by D (who does not
feel guilty) while when this value is too small, DGC is dominated by DGD (who feels guilty when defecting
but still can benefit more from the PD). Parameters: T = 2, R = 1, P = 0, S = −1; β = 1; N = 100; Ω = 10.

times they defect; hence, they never need to reduce
g, and consequently never pay the guilt cost γ. In
other words, this type of agents experiences no guilt
feeling. They are dubbed (guilt-)unemotional agents.

• G = 0: whenever this type of agents defects, it be-
comes true that g > G; hence, the agents need to
act immediately to reduce g, thus paying γ. In other
words, this type of agents always feel guilty after a
wrongdoing, viz. defection. They are dubbed (guilt-)
emotional agents.

Besides the guilt threshold, an agent’s strategy is described
by what she plays in a PD (C or D) and, when the agent’s
ongoing guilt level g reaches the threshold G, by whether
the agent changes her behaviour from D to C. Hence, there
are five possible strategies, labeled as follows

1. Unemotional cooperator (C): always cooperates, un-
emotional (i.e. G = +∞)

2. Unemotional defector (D): always defects, unemotional
(i.e. G = +∞)

3. Emotional cooperator (CGC): always cooperates, emo-
tional (i.e. G = 0)

4. Emotional non-adaptive defector (DGD): always de-
fects, feels guilty after a wrongdoing (i.e. G = 0), but
does not change behaviour.

5. Emotional adaptive defector (DGC): defects initially,
feels guilty after a wrongdoing (i.e. G = 0), and
changes behaviour from D to C.

In order to understand when guilt can emerge and pro-
mote cooperation, our EGT modelling study below analy-
ses whether and when emotional strategies, i.e. those with
G = 0, can actually overcome the disadvantage of the in-
curred costs or fitness reduction associated with the guilt
feeling and its alleviation, and in consequence disseminate
throughout the population. Namely, in the following we aim
to show that, in order to evolve, guilt alleviation through
self-punishment can only be evolutionarily viable when only
the focal agent misbehaves. In other words, an emotional
guilt-based response only makes sense when the other is not
attempting to harm you too. To that purpose, we analyse
two different models, which differ in the way guilt influences
the preferences of the focal agents, where the preferences are
determined by the payoffs in the matrices (1) and (2).

In the first model, an agent’s ongoing guilt level g increases
whenever the agent defects, regardless of what the co-player
does. The payoff matrix for the five strategies C, D, CGC,
DGD, and DGC, can be written as follows



C D CGC DGD DGC

C R S R S S+RΘ
Ω

D T P T P P+TΘ
Ω

CGC R S R S S+RΘ
Ω

DGD T − γ P − γ T − γ P − γ P+TΘ
Ω

− γ

DGC
T−γ+RΘ

Ω
P−γ+SΘ

Ω
T−γ+RΘ

Ω
P−γ+S(Θ)

Ω
P−γ+R(Θ)

Ω


,

(1)

where we use Θ = Ω − 1 just for the purpose of a neater
representation. Note that the actions C and CGC are essen-
tially equivalent; both considered for the sake of complete-
ness of the strategies set.
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In the second model, an agent feels guilty when defecting if
the co-player acted pro-socially or was observed to feel guilty
after defection, viz. through exercising self-punishment or
apologising. Thus in this second model, guilt has a par-
ticular social aspect that is missing from the first model.
In particular, DGC does not change behaviour to C if the
co-player played D and did not try to alleviate her guilt as
a result of her bad behaviour. Now, the payoff matrix is
rewritten as follows:



C D CGC DGD DGC

C R S R S S+RΘ
Ω

D T P T P P
CGC R S R S S+RΘ

Ω

DGD T − γ P T − γ P − γ P+TΘ
Ω

− γ

DGC
T−γ+RΘ

Ω
P

T−γ+RΘ
Ω

P−γ+SΘ
Ω

P−γ+RΘ
Ω


. (2)

Notice the differences in the payoff matrices for the interac-
tions between the emotional strategies that defect, i.e. DGD
and DGC, and the unemotional defector D. Note also that
these payoff matrices are conceptually different from those
used in the situation where commitment and costly apology
are used (see [30]): in the current work, apology does not
induce a benefit for the co-player.

3.3 Evolutionary Dynamics in Finite Popula-
tions

Our analysis of the two models above is based on EGT
methods for finite populations [32, 22]. In such a setting,
individuals’ payoff represents their fitness or social success,
and evolutionary dynamics is shaped by social learning [20,
38], whereby the most successful individuals will tend to be
imitated more often by the others. In the current work,
social learning is modelled using the so-called pairwise com-
parison rule [43], assuming that an individual A with fit-
ness fA adopts the strategy of another individual B with
fitness fB with probability given by the Fermi function,(

1 + e−β(fB−fA)
)−1

. The parameter β represents the ‘imi-

tation strength’ or ‘intensity of selection’, i.e., how strongly
the individuals base their decision to imitate on fitness com-
parison. For β = 0, we obtain the limit of neutral drift – the
imitation decision is random. For large β, imitation becomes
increasingly deterministic.

In the absence of strategy mutations or exploration, the
end states of evolution are inevitably monomorphic: once
such a state is reached, it cannot be escaped through imita-
tion. We thus further assume that, with a certain mutation
probability, an individual switches randomly to a different
strategy without imitating another individual. In the limit
of small mutation rates, the behavioural dynamics can be
conveniently described by a Markov Chain, where each state
represents a monomorphic population, whereas the transi-
tion probabilities are given by the fixation probability of a
single mutant [10, 22, 19]. The resulting Markov Chain has
a stationary distribution, which characterises the average
time the population spends in each of these monomorphic
end states.

Let N be the size of the population. Suppose there are
at most two strategies in the population, say, k individuals
using strategy A (0 ≤ k ≤ N) and (N −k) individuals using
strategy B. Thus, the (average) payoff of the individual that

Fr
eq
ue
nc
y

Fr
eq
ue
nc
y

ƔƔ

C D DGDCGC DGC

b/c=2 b/c=4

b/c=2 b/c=4

Figure 2: Frequency of each strategy as a function
of the guilt cost, γ, for the two models (top row for
model 1 and bottom row for model 2), and for dif-
ferent benefit-to-cost ratios b/c. In the first model,
D always dominates the population. In the second
model, for an intermediate value of γ, DGC is the
most frequent strategy; but when it is too small or
too large, DGD is dominant. Parameters: β = 1;
N = 100; Ω = 10.

uses A and uses B can be written as follows, respectively,

ΠA(k) =
(k − 1)πA,A + (N − k)πA,B

N − 1
,

ΠB(k) =
kπB,A + (N − k − 1)πB,B

N − 1
,

(3)

where πX,Y stands for the payoff an individual using strategy
X obtained in an interaction with another individual using
strategy Y .

Now, the probability to change the number k of individu-
als using strategy A by ±1 in each time step can be written
as

T±(k) =
N − k
N

k

N

[
1 + e∓β[ΠA(k)−ΠB(k)]

]−1

. (4)

The fixation probability of a single mutant with a strategy
A in a population of (N − 1) individuals using B is given by
[43, 10]

ρB,A =

(
1 +

N−1∑
i=1

i∏
j=1

T−(j)

T+(j)

)−1

. (5)

In the limit of neutral selection (i.e. β = 0), ρB,A equals the
inverse of population size, 1/N .

Considering a set {1, ..., q} of different strategies, these
fixation probabilities determine a transition matrix M =
{Tij}qi,j=1, with Tij,j 6=i = ρji/(q−1) and Tii = 1−

∑q
j=1,j 6=i Tij ,

of a Markov Chain. The normalized eigenvector associated
with the eigenvalue 1 of the transposed of M provides the
stationary distribution described above [10, 22], describing
the relative time the population spends adopting each of the
strategies.
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Figure 3: Panels a-c: Frequency of DGC in Model 2 as a function of γ and b/c, for different values of Ω.
In all cases, DGC performs best for an intermediate value of γ, reaching its highest frequency. In addition,
DGC is more frequent for larger Ω. Panel d: Frequency of DGC at optimal value of γ (outer panel) and the
optimal value of γ itself (inner panel), both as a function of b/c, and for different values of Ω. In all cases,
the frequency of DGC increases with b/c. It also slightly increases with Ω. The optimal value of γ increases
with Ω (see inner panel). For a fixed value of Ω, it does not depend on b/c when this ratio is sufficiently high.
Parameters: β = 1; N = 100.

3.4 Analytical condition for risk-dominance
An important criteria for pairwise comparison of strate-

gies in finite population dynamics is risk-dominance, that is,
whether it is more probable for an A mutant fixating in a
homogeneous population of individuals adopting B than a B
mutant fixating in a homogeneous population of individuals
adopting A. When the first is more likely than the latter
(i.e. ρB,A > ρA,B), A is said to be risk-dominant against B
[24, 31], which holds for any intensity of selection and in the
limit of large N when

πA,A + πA,B > πB,A + πB,B . (6)

4. RESULTS
This section starts by deriving analytical conditions for

when DGC can be a viable strategy, being risk-dominant
when playing against defective strategies (i.e. D and DGD).
We show that this strategy is always dominated by defective
strategies in the first model, while there is a wide range of
parameters in which it dominates both defective strategies
in the second model, resulting in high levels of cooperation
therein. We then provide numerical simulation results to
support the analytical observations. Furthermore, the re-
sults are generalised to consider non-radical guilt modelling
(i.e. 0 < G < ∞) , showing that the obtained results are
robust beyond the context of radical guilt strategies.

4.1 Analytical conditions for risk-dominance
of DGC against other strategies

To begin with, using inequality (6), we examine whether
and under which conditions DGC is risk-dominant against
other strategies. In the first model defined by Matrix (1),
DGC is always dominated by D, which follows from:

P − γ + S(Ω− 1)

Ω
< P (since S < P and γ > 0)

and

P − γ +R(Ω− 1)

Ω
<
P + T (Ω− 1)

Ω
(since R < T and γ > 0).

To the contrary, in the model defined by Matrix (2), DGC

is risk-dominant against D and DGD, respectively, when

γ < (Ω− 1)(R− P ) (7)

and

γ >
T + P −R− S

2
. (8)

These two inequalities indicate that the guilt cost γ needs
to be within certain limits for DGC to be dominant. To
make this more understandable one can simplify the PD
to a Donation game [38] — a famous special case of the
PD: T = b, R = b − c, P = 0, S = −c, satisfying that
b > c > 0, where b and c stand respectively for benefit and
cost of cooperation. We thus obtain

c < γ < (Ω− 1)(b− c). (9)

That is, in order for DGC to be a viable strategy against
defective strategies (i.e. D and DGD), the cost γ needs
to exceed the cost of cooperation c as otherwise it will be
exploited by DGD players who do not change to cooperation
when feeling guilty (and having to pay only a small cost);
and, on the other hand, it cannot be too large (less than
the benefit of mutual cooperation obtained in the rounds
after alleviating guilt) as otherwise it will be dominated by
D players who never pay the guilt cost after defecting.

This result shows that there is some intermediate value of
γ that would lead to an optimal performance of DGC, i.e.
reaching the highest frequency. Moreover, inequality (9) also
implies that for a fixed cost of cooperation c, the range in
which DGC can outperform defective strategies is larger for
less harsh PD (i.e. with a larger benefit-to-cost ratio, b/c)
and when the PD is repeated longer (i.e. the larger Ω) as
the cost γ used to sustain a (long-term) relationship is more
beneficial.

4.2 Numerical results for the radical guilt
emotions

Fig. 1 shows stationary distributions and transitions prob-
abilities directions among strategies in the two models. In
the first model, D always dominates the population. In the
second model, for an intermediate value of γ, DGC performs
well against defective strategies, taking over their popula-
tion. When this value is too large, DGC is dominated by D
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Figure 4: Frequency of each strategy as a function of the guilt cost, γ, and for different values of G, as well
as the cooperation level in the population (dotted lines with label C). Parameters: β = 1; N = 100; Ω = 10.

(who does not feel guilty) while when this value is too small,
DGC is dominated by DGD (who feels guilty when defect-
ing but still can benefit more from the PD). The results are
in accordance with the analytical conditions above, noting
that the risk-dominance conditions in inequalities (7) and
(8) for the current PD payoff matrix can be simplified just
to 1 < γ < 9.

These observations are robust for varying γ, as can be seen
in Fig. 2, which shows the frequency of each strategy in the
two models as a function of γ. In the first model, D always
dominates, leading to no cooperation in the population. In
the second model, for an intermediate value of γ, DGC is
the dominant strategy. The range in which DGC is the
most frequent strategy is larger for a less harsh PD (i.e.
larger benefit-to-cost ratio, b/c, comparing left and right
columns: namely, the range is roughly [1.0, 1.5] for b/c = 2
and [1.0, 5.0] for b/c = 4). When γ is too large, D dominates
while when this value is too small, DGD is dominant as it
can exploit DGC better than D (paying a small cost for
self-punishment, like in pretending to feel guilty).

Next we focus on analysing the second model as it is clear
by now that guilt can emerge only when guilt-capable play-
ers take into account whether their co-players are observed
to express similar emotions immediately prior to or after
a wrongdoing. Furthermore, to understand when guilt en-
hances cooperation we can focus on the DGC strategy as it
is the main strategy that generates cooperation in the pop-
ulation. Indeed, in Fig. 3 (panels a, b and c) we compute
the frequency of DGC in the second model as a function of
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Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú Ú

Ê

Ê Ê Ê Ê Ê Ê

Ê

Ê

Ê

Ê

‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡ ‡Ï Ï Ï Ï Ï Ï Ï Ï Ï Ï

Ï

Ù

Ù Ù Ù Ù Ù
Ù

Ù

Ù

Ù Ù

C

C

C

C

C

C

C

C

C
C

0 2 4 6 8 10
0.0

0.2

0.4

0.6

0.8

1.0

ÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚÚ

Ê

Ê
Ê
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊ
ÊÊÊÊ
ÊÊÊ
ÊÊ
ÊÊ
ÊÊ
Ê
Ê
Ê
Ê
ÊÊ
ÊÊ

‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡‡ÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏÏ
ÏÏÏÏÏÏ
ÏÏÏ
ÏÏ
Ï
Ï
Ï

Ï

Ù

Ù
Ù
ÙÙ
ÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙÙ

Ù
Ù
Ù
Ù
Ù

Ù

Ù

Ù

Ù
Ù

C
C
CC
CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC

0 20 40 60 80 100
0.0

0.2

0.4

0.6

0.8

1.0

C

G G

Fr
eq
ue
nc
y

Ω=10 Ω=100

Figure 5: Frequency of each strategy and the ac-
tual cooperation level, as a function of G, and for
different values of Ω. Parameters: β = 1; N = 100;
γ = 1.1.

γ and b/c, and for different values of Ω. In general, DGC
performs best for an intermediate value of γ (whenever b/c
is not too small), reaching its highest frequency. In addi-
tion, comparing the three panels we can see that DGC is
more frequent for larger Ω. This is because for larger Ω the
guilt cost γ is better justified, which is in accordance with
the analytical conditions above.

Furthermore, in panel d of this figure we show the fre-
quency of DGC (in the second model) at optimal value of γ
and the optimal value of γ itself, both as a function of b/c,
and for different values of Ω. In all cases, the frequency of
DGC increases with b/c and also slightly increases with Ω.
The optimal value of γ increases with Ω but, most interest-
ingly, when considering a concrete value of Ω, it does not
depend on b/c when this ratio is sufficiently high (namely
when ≥ 1.5). This independence suggests a way to measure
the optimal value of γ for a given Ω, although future work
will need to check analytically whether this independence
holds in general and what is the threshold of b/c (above
which the independence holds).

4.3 Numerical results for non-radical guilt
emotions

Above we analysed the competition of the radical guilt-
emotional strategy (G = 0) against the unemotional one
(G = ∞). We now consider that the emotional strategy is
not extreme, i.e. G > 0. Also note that if G ≥ Ω it would
be equivalent to G = ∞ as players would never feel guilty
within the Ω rounds of the IPD. Therefore we assume that
G < Ω. The new payoff matrix is the previous one plus the
following (noting the same payoff matrix as in the second
model is reproduced by substituting G = 0)



C D CGC DGD DGC

C 0 0 0 0
G(S−R)

Ω
D 0 0 0 0 0

CGC 0 0 0 0
G(S−R)

Ω

DGD
Gγ
Ω

0
Gγ
Ω

Gγ
Ω

G(P−T+γ)
Ω

DGC
G(T−R)

Ω
0

G(T−R)
Ω

G(P−S)
Ω

G(P−R)
Ω


. (10)

Let us consider for example DGD playing against C. Now
DGD keeps defecting and only at the (G + 1)-th round it
feels guilty and pays γ. The rest of the rounds would be the
same as before (DGD keeps defecting and paying γ without
changing behaviour. Hence, its payoff against C is

ΠDGD,C =
1

Ω
((G+ 1)T − γ + (Ω−G− 1)(T − γ))

= T − γ +
Gγ

Ω
.
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Similarly for DGC playing against C, just that now it is the
case that after the (G + 1)-th round this type of players
would keep cooperating for the rest of the IPD. Hence,

ΠDGC,C =
1

Ω
((G+ 1)T − γ + (Ω−G− 1)R)

=
T − γ +R(Ω− 1)

Ω
+
G(T −R)

Ω
.

Numerical results in Fig. 4 show that for not too large values
of G, DGC dominates the population. Moreover, as before,
we observe that this strategy performs best for an interme-
diate value of γ, reaching its highest frequency. When G is
too large, D players dominate the population. We obtain a
similar conditions for which DGC is risk-dominant against
the defective strategies (D and DGD)

T + P −R− S
2

< γ < (Ω−G− 1)(R− P ) (11)

Now the range is smaller for larger value of G.
Next, we also plot the actual cooperation level in the pop-

ulation, which is obtained as the total of the frequency of
C, CGC and (Ω − G − 1)/Ω × the frequency of DGC (as
this type of players only cooperates with each other after the
first G + 1 rounds of the IPD). Similarly to DGC, the fre-
quency of cooperation reaches its highest possible frequency
for intermediate values of γ.

These observations become clearer by looking at Fig. 5,
where we show the strategies frequency and the total coop-
eration level as a function of G. In general, DGC reaches
a high frequency for a wide range of intermediate G. How-
ever, given that the larger G, the more rounds it takes for
DGC players to start cooperating with each other (both feel
guilty and exhibit alleviation acts after G + 1 rounds), the
value of G leading to the optimal level of cooperation is the
smallest G that provides (close to) the highest frequency of
DGC. Next, comparing the two panels in Fig. 5 we observe
that a higher level of cooperation is achieved for larger Ω.

5. CONCLUSIONS AND FUTURE WORKS
On the basis of psychological and evolutionary under-

standings of guilt, and inspired by these, this paper prof-
fers and studies, for the first time, two analytical models of
guilt, within a system of multi-agents adopting a combina-
tion of diverse guilty and non-guilty strategies. To do so,
it employs the methods and techniques of EGT, in order to
identify the conditions when there does emerge an enhanced
cooperation, improving on the case when guilt is absent.

Guilt, depending on an agent’s strategy, may result in
self-punishment, with effect on fitness, and on a change in
behaviour. In the first model of guilt, a guilt prone agent is
insensitive to whether the co-player also feels guilt on defec-
tion. This model does not afford cooperation enhancement
because guilt prone agents are then free-ridden by non-guilt
prone ones. In our second model, guilt is not triggered in an
agent sensitive to the defecting co-player not experiencing
guilt too. It is this latter model that shows the improve-
ment on cooperation brought about by the existence of guilt
in the population, and how it becomes pervasive through
the usual EGT phenomenon of social imitation. Another
successful variation of this model allows to stipulate guilt
accumulation coupled with a triggering threshold.

Our results provide important insights for the design of
self-organised and distributed MAS: if agents are equipped

with the capacity for guilt feeling even if it might appear to
lead to disadvantage, that drives the system to an overall
more cooperative outcome wherein agents become willing to
take reparative actions after wrongdoings.

In future research, the model shall be complicated via
our existing EGT models comprising apology, revenge, and
forgiveness, by piggybacking guilt onto them [33, 16, 30].

In the IPD and other models of cooperation, players judge
others by their actions: whether they cooperate or defect.
However, we not only care about whether others cooperate,
but also about their decision-making process: We place more
trust in cooperators who never even considered defecting.
To quote Kant, “In law a man is guilty when he violates
the rights of others. In ethics he is guilty if he only thinks
of doing so.” [21]. Hence, detecting another’s proclivity to
cheat, albeit checked by guilt, allots intention recognition an
important role to play even when the intention is not carried
out [15, 17, 14].

Last but not least: Currently we only consider one type
of emotional strategy playing against unemotional strategy.
It is possible that strategies with multiple guilt threshold
are co-present in the population. We envisage that differ-
ent types might dominate in different game configurations,
which we will analyse in future work.
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