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ABSTRACT
Human societies around the world interact with each other
by developing and maintaining social norms, and it is criti-
cally important to understand how such norms emerge and
change. In this work, we define an evolutionary game-
theoretic model to study how norms change in a society,
based on the idea that different strength of norms in soci-
eties translate to different game-theoretic interaction struc-
tures and incentives. We use this model to study, both an-
alytically and with extensive agent-based simulations, the
evolutionary relationships of the need for coordination in a
society (which is related to its norm strength) with two key
aspects of norm change: cultural inertia (whether or how
quickly the population responds when faced with conditions
that make a norm change desirable), and exploration rate
(the willingness of agents to try out new strategies). Our
results show that a high need for coordination leads to both
high cultural inertia and a low exploration rate, while a low
need for coordination leads to low cultural inertia and high
exploration rate. This is the first work, to our knowledge, on
understanding the evolutionary causal relationships among
these factors.

Keywords
Agent-based analysis of human interactions; Evolutionary
algorithms; Emergent behavior

1. INTRODUCTION
Human societies around the world are unique in their abil-

ity to develop, maintain, and enforce social norms. Social
norms enable individuals in a society to coordinate actions,
and are critical in accomplishing different tasks. Neuro-
science, field, and experimental research have all established
that there are marked differences in the strength of social
norms around the globe [1, 11, 12, 15, 17, 18, 19, 27].
Some cultures (e.g., some middle-eastern countries, India,
South Korea, etc.) are tight, in the sense that they tend
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to have strong social norms, with a high degree of norm-
adherence and higher punishment directed towards norm-
violators. Other cultures (e.g., Netherlands, New Zealand,
Australia, etc.) are loose, i.e., individuals tend to develop
weaker norms with more tolerance for deviance [12, 15, 27].
This indicates that the nature of human interaction and in-
fluence is vastly different across different cultures around the
world.

To date, there has been little research on the evolution-
ary processes of norm maintenance and the processes that
lead to norm change, and how these processes are substan-
tially different in societies around the world. However, re-
cent world events (e.g., recent social uprisings and turmoil)
show that it is critically important to develop such an un-
derstanding. In this paper, we draw ideas from recent social
science research to build culture-sensitive models that pro-
vide insights into the substantial societal differences that
exist in how individuals interact and influence each other.

Although evolutionary game theory (EGT) was first de-
veloped to model biological evolution [20, 29, 33], it also
has become useful as a way to model cultural evolution (for
examples, see Section 2). In this paper, we use EGT to
examine the relationships of the amount of need for coor-
dination (which psychological and sociological studies show
is related to norm strength [27]), with two key aspects of
norm change in societies: (i) the amount of cultural inertia,
i.e., the amount of resistance to changing a cultural norm,
and (ii) the exploration rate, i.e., the extent to which agents
are willing to try out new behaviors. More specifically, our
primary contributions in this paper are as follows:

• We provide a novel way to (i) model a society’s
strength of norms by using an agent’s need for co-
ordination in the society, and (ii) model the desir-
able/undesirable norms in a society. This is done by
characterizing how they affect the payoffs in a game-
theoretic payoff matrix, leading to different interaction
structures and incentives in a society.

• We investigate cultural evolution of norm change in
this model using two well-known models of change in
evolutionary game theory (the replicator dynamic [30]
and the Fermi rule [3]). Using mathematical analy-
ses and extensive agent-based simulations, we establish

An extended version of this paper, with proofs included, is
available in [10].
Code for all the simulations presented in this paper is avail-

able at: https://github.com/sohamde/inertia-aamas
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that: the higher the need for coordination is, the higher
the cultural inertia will be, and vice versa. When a
population faces conditions that make a norm change
desirable, a high need for coordination will make them
slower to change to the new norm compared to a so-
ciety with a lower need for coordination. Further, if
the need for coordination is high enough, the existing
norm will not change at all.

• In order to understand how norms change in different
cultures, we also examine whether the need for coor-
dination in a society has a causal evolutionary rela-
tionship to an agent’s tendency to learn socially (i.e.,
adopt a behavior that is being used by other agents in
the population) versus innovate/explore new random
behaviors. In order to be able to do so, we propose
a novel way to model this, where we let the explo-
ration rate, i.e., the probability that an agent tries out
a new action at random, evolve over time as part of the
agent’s strategy, rather than stay fixed as in previous
work [31].

• The cultural differences in the distribution of agent
strategies favoring social learning versus innovation or
exploration can have a critical impact on how atti-
tudes, beliefs and behaviors spread throughout the
population, and thus, is vital to understanding norm
change. At a societal level, such differences can affect
the rate at which new technologies, languages, moral
traditions, and political institutions are adopted, while
at local levels, they can alter the effectiveness of per-
suasion methods at the individual level. Using the
above model of evolving exploration rates, we verify
this by establishing, via extensive agent-based simula-
tions, that: the higher the need for coordination is, the
lower the exploration rate will be, and vice versa.

These results provide insight into the reasons why tight
societies are less open to change, and why cultural iner-
tia and high levels of social learning develop in such soci-
eties. To our knowledge, this is the first work to provide a
culturally-sensitive model of norm change and to show how
the processes of norm propagation differ across societies.

The rest of the paper is organized as follows. Section 2
includes background and related work. Section 3 provides
our model of the need for coordination, and mathematical
analyses and agent-based simulations showing how it affects
cultural inertia. Section 4 describes our model of evolv-
ing exploration rates, and shows how the degree of need for
coordination affects the evolution of exploration rates. In
Section 5 we discuss the significance of our results.

2. BACKGROUND AND RELATED WORK
EGT offers a simple framework for dealing with large pop-

ulations of interacting individuals, where individuals inter-
act using different strategies, leading to game-theoretic pay-
offs that denote an individual’s evolutionary fitness. EGT
was first developed to model biological evolution [20, 29, 33].
In such models, high-fitness individuals are more likely to re-
produce than low-fitness individuals, and hence, the strate-
gies used by those high-fitness individuals become more
prevalent in the population over time. Thus, EGT stud-
ies the evolution of populations, without requiring the usual

Mc =
A B

A ac, ac 0, 0
B 0, 0 bc, bc

Mf =
A B

A af , af af , bf
B bf , af bf , bf

Figure 1: Individual payoff matrices. Mc denotes the coor-
dination game and Mf denotes the fixed-payoff game used
in our model.

decision-theoretic ‘rationality’ assumptions typically used in
classical game theory models.

EGT models have also been used in studies of a wide va-
riety of social and cultural phenomena [9], e.g., cooperation
[4, 13, 23, 22, 25], punishment [5, 6, 7, 24, 26], ethnocen-
trism [8, 14, 16], etc. In EGT models of cultural evolution,
biological reproduction is replaced by social learning: if an
individual uses some strategy that produces high payoffs,
then others are more likely to adopt the same strategy.

EGT models of cultural evolution use highly simplified ab-
stractions of complex human interactions, designed to cap-
ture only the essential nature of the interactions of interest.
These models do not give exact numeric predictions of what
would happen in real life; but they are helpful for studying
the underlying dynamics of different social processes, by es-
tablishing causal relationships between various factors and
observed evolutionary outcomes. Since the evolution of a
human culture over time is virtually impossible to study in
laboratory settings or field studies, EGT modeling provides
a useful tool to apply to the study of culture and norms.

3. PROPOSED MODEL
Past field and experimental research have shown that tight

societies have stronger norms, where individuals adhere to
norms much more than loose societies, and face higher pun-
ishment when deviating. On the other hand, individuals in
loose societies typically have more tolerance for deviant be-
havior [12, 15, 27]. Past EGT studies have shown that a
society’s exposure to societal threat is a key mediating fac-
tor in its strength of norms [27], where threats can be either
ecological like natural disasters and scarcity of resources, or
manmade such as threats of invasions and conflict. In high-
threat situations, societies tend to develop strong norms
for coordinating social interaction, (i.e., to become tighter),
since coordination is vital for the society’s survival. In low-
threat situations, there is less need for coordination, which
affords weaker norms and looser societies.

Using this intuition, we hypothesize that individuals in
different societies interact using different payoff structures
and incentives. Tight societies tend to have a high need for
coordination, and we can model the extreme case as a coor-
dination game Mc, where one only gets a payoff if playing
the same action as the agent one is interacting with. In
loose societies, on the other hand, individuals’ payoffs are
less affected by others’ actions, and we can model the ex-
treme case as a fixed-payoff game Mf , in which an agent’s
payoff depends only on the action played by that agent, and
not on the actions of the other agent. For cases in between
the two extremes, we use a game in which the payoff ma-
trix is a weighted combination of a coordination game and
a fixed-payoff game, with the weighting factor 0 ≤ c ≤ 1
denoting the need for coordination.

As is done in many EGT studies, we consider games in
which individuals have two possible actions to choose from.
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M =
A B

A cac + (1− c)af , cac + (1− c)af (1− c)af , (1− c)bf
B (1− c)bf , (1− c)af cbc + (1− c)bf , cbc + (1− c)bf

Figure 2: Weighted payoff matrix M used in our model defined as M = cMc + (1− c)Mf .

M ′ =
A B

A a, a (1− c)a, (1− c)b
B (1− c)b, (1− c)a b, b

Figure 3: Updated payoff matrix after assuming ac − bc =
af − bc and adding a suitable constant to the payoffs in M
in Figure 2.

In our case, the two actions A and B correspond to possible
norms that the society could settle on. As shown in Figure
1, the coordination game has a payoff matrix Mc in which
ac and bc are the payoff parameters; and the fixed-payoff
game has a payoff matrix Mf in which af and bf are the
payoff parameters. The weighted combination of the two
games, shown in Figure 2, is M = cMc + (1− c)Mf , where
0 ≤ c ≤ 1 is the need for coordination.

We first present a lemma that shows that under a mild
assumption, the payoff matrix M can be much simplified on
adding a constant to all payoffs in the matrix.

Lemma 1. Consider the game matrix M defined in Figure
2, and assume that ac−bc = af−bf . Then, under a suitable
addition of a constant to the payoffs, and using ac = a and
bc = b, the game matrix M reduces to the matrix M ′ shown
in Figure 3.

Proof. On adding the constant value of (1 − c) ∗ (ac −
af ) = (1 − c) ∗ (bc − bf ) (where equality holds under the
assumption) to all payoffs inM , the payoff matrixM reduces
to M ′, shown in Figure 3, where we denote ac = a and
bc = b.

The assumption ac−bc = af −bf is very reasonable, since
this just ensures that switching from one norm to the other
always results in the same change in payoffs, regardless of
the weight c on the coordination game. Otherwise, there
would be an added causal factor for the dynamics of norm
change. Also note that, from Lemma 1, under additions with
a constant, this assumption reduces to just setting ac = af
and bc = bf . For the rest of the section, we will work with
payoff matrix M ′ where we set ac = af = a and bc = bf = b.
In subsequent sections, we will show why simplifying the
payoff matrix by adding a constant value to all payoffs (as
shown in Lemma 1) is a perfectly reasonable step to take.

From payoff matrix M ′, we see that whenever b < a, the
better action for the society to settle on (in terms of payoff)
is A, while if a < b then it is B. Let M ′AB be the payoff that
an agent receives when they play action A and their oppo-
nent plays action B. Let M ′AA, M ′BA and M ′BB be defined
similarly. Studying the Nash equilibrium of the game M ′,
we get the following lemma.

Lemma 2. Consider the game matrix M ′ defined in Fig-
ure 3, where all payoff values are positive, i.e., a, b > 0.
Then we have:

(i) If b > a, the strategy profile (B,B) is a Nash Equi-
librium. Further, if c ≥ b−a

b
, then (A,A) is also a

Nash equilibrium. Further, the strategy profile ((q, 1−
q), (q, 1−q)) is a Nash Equilibrium only when c ≥ b−a

b
,

where q = b−(1−c)a
c(a+b)

. Note that the mixed strategy

(q, 1 − q) denotes playing action A with probability q
and action B with probability 1− q.

(ii) Similarly, if a > b, the strategy profile (A,A) is a Nash
Equilibrium. Further, if c ≥ a−b

a
, then the strategy

profile (B,B), as well as ((q, 1− q), (q, 1− q)) are also

Nash Equilibria, with q = b−(1−c)a
c(a+b)

.

Proof. We present a short proof for the mixed strategy
Nash equilibrium when b > a. The other proofs follow sim-
ilarly. Note that ((q, 1 − q), (q, 1 − q)) is a mixed-strategy
Nash Equilibrium when the strategy (q, 1 − q) makes the
agent indifferent to the opponent’s strategy, i.e., when:

qMAA + (1− q)MBA = qMAB + (1− q)MBB .

Simplifying this, we get:

q =
b− (1− c)a
c(a+ b)

.

Since 0 ≤ q ≤ 1, we see that ((q, 1− q), (q, 1− q)) is a Nash
Equilibrium when both the following conditions are satisfied:

c ≥ b− a
b

and c ≥ a− b
a

.

When b > a, c ≥ a−b
a

is always satisfied. Thus, when c is

large enough such that c ≥ b−a
b

, ((q, 1 − q), (q, 1 − q)) is a
mixed-strategy Nash Equilibrium.

From Lemma 2, we see that only when c is high enough,
the sub-optimal action pair becomes a Nash Equilibrium,
where sub-optimal refers to the fact that the action pair
that has lower payoff than the optimal action pair. This
means that when b > a, (A,A) is the sub-optimal action
pair. Thus, from Lemma 2, we that see if the need for
coordination c is high, then the population may converge
to either of two different equilibria, one of which is sub-
optimal in terms of overall payoff. When c is low, on the
other hand, the society will converge to a single globally-
optimal equilibrium.

In the next two sub-sections we introduce two models for
studying norm change, using two well-known models of evo-
lutionary change (the replicator dynamic [30] and the Fermi
rule [3]). We show that both models of evolutionary change
are invariant to additions to the payoffs by a constant, and
thus the results from this section carry forward. We de-
rive results for how different societies respond to a need for
norm change using both mathematical analysis on infinite
well-mixed populations (where well-mixed denotes that any
agent can interact with any other agent in the population),
and extensive agent-based simulations on finite structured
populations (where agents are placed on a network and can
interact with only their neighbors).
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Figure 4: Figures show the change in the proportion of B agents with time with a well-mixed infinite population where
reproduction is determined by the replicator dynamic with b > a.

Figure 5: Figure shows the rate of change of B agents versus
the proportion of B agents, with a well-mixed infinite pop-
ulation where reproduction is determined by the replicator
dynamic with b > a.

3.1 Replicator dynamic on infinite well-mixed
populations

Consider a well-mixed infinite population of agents. This
is a standard setting used in evolutionary game theory,
since a well-mixed infinite population is usually analytically
tractable. Let the agents be interacting with each other us-
ing game matrix M ′ defined in Figure 3, and the proportion
of agents playing each strategy be denoted by x = (xA, xB),
i.e., xA proportion of agents with strategy A, and proportion
xB = 1−xA with strategy B. Also, let uA(x) and uB(x) de-
note the payoffs received by an agent playing actions A and
B respectively. The expected payoff for an agent is given by
interacting with a randomly chosen agent in the population.
Thus, we get the following:

E[uA(x)] = xAM
′
AA + xBM

′
AB ,

E[uB(x)] = xAM
′
BA + xBM

′
BB .

On analyzing the Nash Equilibria of this system, we observe
the following lemma.

Lemma 3. Consider a well-mixed infinite population
where agents interact using the game M ′ in Figure 3. As-
suming all payoff values are positive, i.e., a, b > 0, and using
Lemma 2, we have:

(i) When b > a, xA = 0 is a Nash Equilibrium. If

c ≥ b−a
b

, then xA = 1 and xA = b−(1−c)a
c(a+b)

(which

corresponds to the mixed-strategy Nash Equilibrium in
Lemma 2) are also Nash Equilibria.

(ii) Similarly, when a > b, xA = 1 is a Nash Equilibrium,

while if c ≥ a−b
a

, then xA = 0 and xA = b−(1−c)a
c(a+b)

also

are Nash Equilibria.

Proof. We present a short proof for the intermediate

case where xA = b−(1−c)a
c(a+b)

. Consider xA = p with 0 < p < 1.

For xA = p to be a NE, no A agent should have a strictly
better payoff if switching to B, and vice versa. Thus, the
following two conditions need to be simultaneously satisfied:

pM ′AA + (1− p)M ′AB ≥ pM ′BA + (1− p)M ′BB ,

and pM ′BA + (1− p)M ′BB ≥ pM ′AA + (1− p)M ′AB .

Both of these conditions are satisfied only when:

pM ′AA + (1− p)M ′AB = pM ′BA + (1− p)M ′BB .

This simplifies to:

p =
b− (1− c)a
c(a+ b)

,

and similar to Lemma 2, the results follow.

We assume that on each iteration, agents interact with
other randomly chosen agents, and the population evolves
according to the replicator dynamic. The replicator dy-
namic is based on the idea that the proportion of agents
of a type (or strategy) increases when it achieves expected
payoff higher than the average payoff, and decreases when
achieving lower payoff than the average payoff. Thus, over
time, the proportion of agents of a type that achieves pay-
off higher than the average payoff starts increasing in the
population, and eventually take over. More formally, the
replicator dynamic is given by the differential equation

ẋA =
dxA
dt

= xA · (E[uA(x)]− θ(x)), (1)

where θ(x) = xAE[uA(x)]+xBE[uB(x)] is the average payoff
received by all agents in the population. From (1), it is
clear that the rate of change remains the same on adding
a constant to the payoff matrix, since the added constants
would just cancel each other out. Thus, Lemma 1 follows
through to this section as well.
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Using the game matrix M ′, the rate of change in the pro-
portion xA is given by:

ẋA = xA(1− xA)(c(a+ b)xA − (b− (1− c)a)). (2)

The fixed points of this rate of change are given by:

xA = 0, xA = 1, and xA =
b− (1− c)a
c(a+ b)

. (3)

These correspond to the Nash Equilibria derived earlier.
Next, we study the stability of the Nash equilibria derived
above, where we define a stable Nash equilibrium under the
replicator dynamic to be one where: if an infinitesimal pro-
portion of agents change their strategy, the replicator dy-
namic always forces the population back to the original Nash
equilibrium. More precisely, let the Nash equilibrium be
xA = p. If xA increases an infinitesimal amount to p+ ε, the
Nash equilibrium is stable only if ẋA < 0, which drives the
population back to the Nash equilibrium xA = p. Similarly,
if xA decreases by ε, xA = p is stable only if ẋA > 0. Thus,
we state the following corollary.

Corollary 1. From Lemma 3 and Eq. (2) and Eq. (3),
we see that the Nash Equilibria xA = 0 and xA = 1 are sta-

ble, while the Nash Equilibrium xA = b−(1−c)a
c(a+b)

is unstable.

Proof. Let φ = b−(1−c)a
c(a+b)

. From Eq. (2), we notice that,

if xA = φ+ε, then ẋA > 0, while if xA = φ−ε, then ẋA < 0,

for any small ε > 0. Thus, xA = b−(1−c)a
c(a+b)

represents an

unstable fixed point. Similarly notice that if xA = ε, ẋA < 0,
while if xA = 1 − ε, ẋA > 0. Thus, xA = 0 and xA = 1
represent stable fixed points.

There is a further notion of equilibrium used in EGT
called evolutionarily stable strategies (ESS) [29]. A strat-
egy S is an ESS if there is a small proportion py such that,
when any other strategy T has a proportion px < py (where
the rest of the population has strategy S), the payoff of an
S agent is always strictly greater than a T agent. Using this
definition, we state the following theorem.

Theorem 1. From Lemma 3 and Corollary 1, we see:

(i) When b > a, B is an ESS. If c ≥ b−a
b

, then A is also
an ESS.

(ii) When a > b, A is an ESS. If c ≥ a−b
a

, then B is also
an ESS.

Due to lack of space, we omit the proof for Theorem 1. We
observe that the strategies A and B are Evolutionary Stable
Strategies (ESS), when adopted by everyone in the popu-
lation (corresponding to the stable Nash equilibria xA = 1
and xA = 0). The unstable Nash Equilibrium, on the other
hand, does not correspond to an ESS, since even a small
group with a different strategy is able to force the popu-
lation to a different equilibrium. Thus, only stable Nash
Equilibria correspond to evolutionarily stable strategies.

Theorem 1 indicates that a society is bound to end up at
one of the evolutionarily stable strategies: with every indi-
vidual on action A or everyone on action B, since even a
small perturbation moves the society away from the unsta-
ble Nash equilibrium. When c is low, there exists only a
single ESS, and thus the society adapts itself and settles on
the ESS. When c is high, there are two ESSs, and thus the

society might settle on either one, depending on the starting
point of the society.

Let us consider two societies: one with a lower need for
coordination c1, and one with a high need for coordination
c2 > c1. To avoid some awkward phrasing, we’ll call these
the “looser” and “tighter” societies, respectively. Suppose a
majority of both societies are playing norm A, and suppose
they evolve according to the replicator dynamic given in
Eq. (2). We are interested in how these two societies would
respond to the action B, when the payoff of action B is
higher than A, i.e., when b > a, or equivalently, M ′BB >
M ′AA. First notice that if c2 > (b−a)/b, and c1 < (b−a)/b,
it follows from Theorem 1 that the tighter society remains on
norm A while the looser one switches to the globally optimal
norm B.

Now suppose the difference in norm payoffs is large enough
such that c2 < (b − a)/b (and thus also, c1 < (b − a)/b).
This ensures that there is only a single equilibrium for both
societies at xA = 0. Thus, both societies would switch to
norm B, and we are interested in the rate at which this
change occurs. Let ẋB1 and ẋB2 denote the rate of change
when the need to conform is c1 or c2, respectively. Then we
can show that:

ẋB2 − ẋB1 = xB(1− xB)(c2 − c1)((a+ b)xB − b).

This simplifies to

ẋB2 − ẋB1

{
≤ 0, when xB ≤ b

a+b
;

> 0, when xB > b
a+b

.
(4)

Thus, ẋB2 < ẋB1 in the initial stages when xB < b/(a +
b). However, once the proportion of B agents become big
enough such that xB > b/(a+ b), then the higher the value
of c, the higher the rate of change will be. Thus, when c
is high, the switch from A to B takes time to speed up,
with more cultural inertia than when c is low, even when
the payoff of the new norm is arbitrarily large compared to
the previous norm. The initial cultural inertia results in the
society with a higher c value to take longer overall to switch
to the new norm.

Figure 4 illustrates these properties of well-mixed popula-
tions using the replicator dynamic. We start off the society
at the proportion xA = 0.95. In the first of the three graphs,
the tighter society (again using “tighter” as shorthand for
“higher need for coordination”) has c > (b − a)/b. Thus,
while the less-tight society switches to the more beneficial
norm B, the tighter society is resistant to the change (since
the difference in payoffs is small) and stays with norm A.
The second and third graphs show situations where both
societies switch to norm B. We observe that the tighter so-
ciety switches more slowly towards changing to norm B, but
the difference in speed decreases as the difference in payoffs
between B and A increases.

As derived in Eq. (4), the rate of change for a society with
higher c grows larger than with lower c only after xB > b

a+b
.

This is shown in Figure 5. This also indicates the initial in-
ertia that societies with a higher need for coordination expe-
rience towards changing norms. The need for coordination
in these societies lead to individuals being reluctant to try
out new norms, which in turn leads to inertia.

3.2 Agent simulations on finite networks
A limitation of the above model is that it assumes that the

population is infinite and well-mixed. While the assumption
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Figure 6: Simulations with the Fermi rule on a toroidal
grid of size 2500. From top to bottom: c = 1.0, c = 0.75,
c = 0.5. Initially: a = 1.0, b = 1.15. We use a structural
shock at 2500 iterations, after which the payoffs become:
a = 1.15, b = 1.0.

that a population is infinite is not a bad approximation for
very large populations (which is the scale that we are inter-
ested in), the assumption that agents are well-mixed, i.e.,
where any agent can interact with any other agent, is often
inaccurate. In this section, we show that the results derived
in the previous section, also extend to cases where agents are
structured on the nodes of a graph/network, where agents
can only interact with another agent if they are connected
by an edge in the graph.

More specifically, we now consider a structured popula-
tion where agents are arranged on the nodes of a toroidal
(wrap-around) grid, such that each agent can interact only
with the 4 other agents they are connected to. We consider
toroidal grids as a convenient example, however, the results
we describe below also extend to other network structures
like small-world networks [32], and preferential attachment
[2] models. Mathematical analysis of evolutionary games on
structured populations is not yet a well-developed field, and
thus we perform simulations of our model as follows.

Initially, we arrange agents with random strategies (A or
B) on each node of the grid. In each iteration, each pair of
agents connected by an edge interact in a two-player game
defined by the payoff matrix M . The total payoff of each
agent is computed by summing over the payoffs received by
an agent for each game that they play. Since the popula-
tion is finite, we use dynamics defined on finite populations.
After each interaction phase, agents use the Fermi rule to
update it’s strategy for the next iteration. Under the Fermi
rule, an agent ψa picks a random neighbor ψn and observes
its payoff, and the agent then decides to switch to the neigh-
bor’s strategy with probability p = (1+exp(−s(ua−un)))−1,
where ua and un are the payoffs of the agent and the neigh-
bor, and s is a user-defined parameter (in all our experi-
ments, we set s = 5). With probability 1 − p, the agent
retains its old strategy. With a small probability µ, called
the exploration rate, an agent then tries out an action com-

pletely randomly. This repeats for every iteration of the
simulation. Note that the Fermi rule also only depends on
a difference between payoff values, and thus, like the repli-
cator dynamic, is also invariant to addition of a constant to
the payoffs. Thus, for all our experiments in this section, we
use the simplified game matrix M ′ from Figure 3.

To study cultural inertia (i.e., resistance to changing a cul-
tural norm) or rapid cultural change in different societies, we
use a game-theoretic model of a structural shock. A struc-
tural shock represents a catastrophic incident in a society,
where suddenly there is abrupt change in the payoffs for ac-
tions A and B. We are interested in studying how societies
with different needs for coordination react to such an abrupt
and drastic shift in the payoffs of the possible actions. In
our EGT model, we implement a structural shock by simply
interchanging the payoffs of actions A and B, thus, denoting
a sudden change in the globally optimal action in a society.
This is equivalent to interchanging the payoff values a and
b. Thus, if initially, we have b > a, after a structural shock,
we get a > b.

Now consider that, initially, the action with a higher util-
ity (and the current norm) in a society is B, i.e., b > a with
xA = 0. Suppose, the society experiences a structural shock,
where now action A becomes more desirable with a > b. On
introducing a small proportion of agents playing norm A
(say xA = 0.01), if the need for coordination is low then the
population will switch to the new norm with xA = 1. This
is because, after the structural shock, the Nash Equilibrium
(and ESS) is xA = 1, as shown above. However, if the need
for coordination is high (i.e., c ≥ a−b

a
), then xA = 0 is still a

Nash Equilibrium (and ESS) and the population will remain
on the sub-optimal norm B even after the structural shock.

All experiments were run on a grid with 2500 nodes, and
the simulation goes on for 6000 iterations, with a structural
shock implemented at 2500 iterations. 100 independent sim-
ulations are run for each setting and the results are averaged
over the 100 runs. Figure 6 shows the results of our simula-
tions. The plots show the proportion of agents playing norm
A vs norm B. As before, the parameter c denotes the need
for coordination. When c is low, very little cultural inertia
develops and agents are more willing to innovate by explor-
ing behaviors other than the current societal norms. In this
case, the population will change more quickly to a different
norm if the new norm will be beneficial. By contrast, when
c is high, we see the evolutionary emergence of higher lev-
els of cultural inertia, with agents less willing to innovate
or to violate established cultural norms. In this case, the
population is slower to change to the new norm, and if c is
high enough it may not change at all. Thus, qualitatively,
the results with a structured populations match those from
the infinite well-mixed populations in Section 3.1, and the
mechanics that lead to the above results can be explained
using the same equilibrium results derived above.

4. EVOLVING EXPLORATION RATES
In addition to cultural inertia, another key aspect to un-

derstanding how norms change is to study an agent’s ten-
dency to learn socially (i.e., adopt behaviors used by others
in the population) or innovate and explore new behaviors.
Such tendencies are critical in understanding the rate at
which new technologies, languages, or moral traditions are
adopted in a population, and provide insight about the pro-
cesses of influence and persuasion at the individual level.
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Figure 7: Replicator-mutator dynamic on an infinite well-
mixed population with a = 0.4 and b = 0.6. The solid and
dotted lines denote c = 0.05 and c = 0.3, respectively. The
colors denote the exploration rates.

In the model presented in Section 3.2 for finite structured
populations, the exploration rate (i.e., the small probability
with which an agent tries out a new strategy at random)
was kept at a constant low value. This exploration rate de-
notes how much an agent is open to change and trying out
new actions at random. Thus, it seems that the need for
coordination in a society might affect how likely an indi-
vidual is to try out different actions, instead of conforming
to their neighbors. Particularly, it seems natural to assume
that individuals in tight societies are much less likely to try
out random actions than individuals in loose societies [12,
15]. In this section, we test this hypothesis by presenting a
model to study the evolution of exploration rates in different
societies.

To get some intuition about the hypothesis, we go back to
our setting of a well-mixed infinite population. Note that the
replicator dynamic does not have a provision for exploration
rates. Thus, we use a variant of the replicator dynamic called
the replicator-mutator equation [21]. Using this variant, one
can include exploration rates into the replicator dynamic.
Thus, if we fix µ to be the exploration rate, we can write
the replicator-mutator equation as:

ẋA = (1− µ)xAE[uA(x)] + µxAE[uB(x)]− xAθ(x),

= xA(E[uA(x)]− θ(x)) + µxA(E[uB(x)]− E[uA(x)]).

Thus, like the replicator dynamic, we can write the rate
of change in terms of payoff differences, which makes the
dynamic invariant to additions to the payoffs by a constant.
Thus, we again use the simplified game matrix M ′ from
Figure 3. Simplifying the equation for ẋA, we get:

ẋA =xA(1− xA)(c(a+ b)xA − (b− (1− c)a))

+ µ(xAxB(1− c)(b− a) + (x2Bb− x2Aa)). (5)

Figure 7 plots the replicator-mutator equation (Eq. (5))
with a well-mixed infinite population. The solid lines are
for a low need for coordination (c = 0.05), while the dot-
ted lines are for a high need for coordination (c = 0.3), and
we plot the proportion of B agents, as well as the rate of
change, for various exploration rate µ values. From the fig-
ure, we see that for all exploration rates µ, when the need
for coordination is high then there is higher cultural inertia.

To study the evolution of explorative behaviors, we let the
exploration rate (referred to as the mutation rate in biolog-
ical models) evolve. The exploration rate is the probability
µ with which an agent chooses a random new strategy at
each iteration (0 ≤ µ � 1). In biological evolution, muta-
tion occurs so rarely that game-theoretic biological models
often omit it. In cultural evolution, however, exploration is
an important step since individuals try out new behaviors
much more frequently [31]. Studying the evolution of explo-
ration rates helps us get insights about a society’s openness
to change. Low exploration rates suggest that individuals
are less likely to try out new strategies and are more likely
to coordinate with their neighbors. On the other hand, high
exploration rates mean that individuals are more open to
change and innovation.

To model the evolution of exploration rates, we first
create a set L of possible exploration rates. These can
be a finite discrete set of exploration rates. For all our
experiments, we use the set of exploration rates: L =
{0.0, 0.1, 0.2, 0.3, 0.4, 0.5}. The exploration rate is added as
part of the strategy of an agent, and each individual now
chooses an exploration rate in addition to the game action
(A or B). Thus, an agent now copies the exploration rate of
a neighbor, along with the game action, when updating its
strategy using the Fermi rule.

Note that, a regularly changing environment is essen-
tial for studying the evolution of exploration rates since,
if the environment is not changing frequently enough, an
exploration rate of 0 would always be evolutionarily sta-
ble. To model the changing environment, we will use the
same switch in dominant norms (structural shock) that we
used in our earlier experiments, except now we apply the
structural shock multiple times at much shorter and regular
intervals. We use a fixed interval of 75 iterations to apply
the structural shock. We run the simulation for a total of
2000 iterations. For these experiments, an agent’s strategy
set now becomes a size of 10: 5 possible exploration rates in
L × 2 possible game actions (norm A or norm B). We use
the same toroidal grid as described before. Figure 8 shows
the experimental results. Each column in Figure 8 shows,
for a specific c, the proportion of agents playing norm A vs
norm B (top plot), and the proportion of agents with each
exploration rate (bottom plot).

We see that when the need for coordination is high, low
exploration rates are adopted by the majority of the society.
Individuals in such a society are more likely to adopt the
strategies of their neighbors, and this leads to high cultural
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(a) c = 1.0 (b) c = 0.8 (c) c = 0.5

Figure 8: Simulations with the Fermi rule on a toroidal grid of size 2500, with structural shocks at intervals of 75 iterations.
From left to right: c = 1.0, c = 0.8, c = 0.5. Initially: a = 1.0, b = 1.15. The top row shows proportions of norms A and B.
The bottom row shows proportions of the population using different exploration rates.

inertia. In loose societies, however, higher proportions of
exploration rates µ > 0 evolve, and individuals are more
open towards change, leading to lower cultural inertia. This
fits well with our results in Section 3, and provides insights
into why cultural inertia develops in societies with a higher
need for coordination.

5. DISCUSSION
In this paper, we examined the processes underlying cul-

tural inertia and norm change. We build evolutionary game-
theoretic models that show that societies that have a higher
need for coordination – those that are tight – have higher
cultural inertia, with individuals being less likely to switch
to the new norm even when it might have a larger payoff.
Societies with a lower need for coordination – those that are
loose – on the other hand, have low cultural inertia, with
individuals more willing to innovate and open to change.

By letting the exploration rate evolve, we use it to study
an agent’s tendency to either learn using social interaction
or innovate and explore new random behaviors, and we show
that exploration rates evolve differently in different cultures.
When the need for coordination is high, the majority of the
population has very low exploration rates, and individuals
are more likely to adopt the strategies of their neighbors.
When the need for coordination is low, higher exploration
rates evolve, leading to lower cultural inertia, and more
openness to change. This explains why tight cultures tend
to have less deviant behavior among individuals with more
norm adherence.

To our knowledge, this is the first paper that predicts
the effects of the need for coordination on norm change and
cultural inertia, and how it affects an agent’s decision of

whether to learn from others or to innovate and explore ran-
dom behaviors. We found our main qualitative findings to
be robust to a wide range of parameter values, in both our
simulation and theoretical results.

In the future, it would be interesting to study how net-
work structures differ between tight and loose cultures. This
would provide the insights necessary to extend our work and
study the dynamics of the rate at which norm change occurs
in different cultures. Further, contrary to prior work on in-
formation diffusion (see [28] for a review), our work indicates
that the structure of interaction and incentives are vastly dif-
ferent across cultures. Thus, it would be interesting to study
culture-sensitive models for information diffusion and prop-
agation, that would be more accurate in predicting cascades
and epidemics in different societies around the world.

By studying how socio-structural factors such as the need
for coordination affect cultural inertia, this work aims to
establish a culturally-sensitive model of norm change. With
this model, we identify the conditions that lead to stability
or instability in established population norms in different
cultural contexts. Such knowledge is critical in providing
us the ability to identify early markers of impending drastic
shifts in populations’ norms and thus enable tools providing
alerts to potential social uprisings and turmoil.
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