
Parametric Runtime Verification of Multiagent Systems

(Extended Abstract)

Davide Ancona
∗

Angelo Ferrando Viviana Mascardi
DIBRIS, University of Genova, Italy

angelo.ferrando@dibris.unige.it, davide.ancona@unige.it, viviana.mascardi@unige.it

1. INTRODUCTION
Parametricity [14] is an important feature of a monitoring

system for making runtime verification (RV) more effective,
since, typically, correctness of traces depends on the specific
data values that are carried by the monitored events of the
trace, and that, in general, cannot be predicted statically.
Typically, the correctness of an interaction protocol may
depend on the values exchanged by agents; protocols may
also be parametric in the involved agents, and resources, and
this parametricity is naturally reflected on the data carried
by values.

In this work we propose parametric trace expressions, an
extension to trace expressions [7, 2], expressly designed for
parametric RV of multiagent systems. Such an extension is
achieved by introducing variables in trace expressions that
are substituted with data values at runtime, when events are
matched during monitoring.

2. PARAMETRIC TRACE EXPRESSIONS
Trace expressions [7, 2] are a specification formalism ex-

pressly designed for RV and inspired by initial work on mon-
itoring of agent interactions in multiagent systems [6, 11].

They have been successfully adopted in practice for both
the JADE and Jason [8] platforms, as discussed in [3, 9,
10, 4, 5, 12], and applications for other interesting domains
have emerged recently [1]. In particular, several experiments
based on real case studies have demonstrated that in most
practical examples monitoring through trace expressions ex-
hibits a time complexity which is linear in the length of the
analyzed event trace.

2.1 Syntax and semantics
Parametric trace expressions are built on top of event

types, each specifying a set of events. If ϑ is an event type,
possibly containing free variables, then match(e, ϑ) = σ
means that event e matches event type ϑ with computed
substitution σ which must be grounding for the event type
ϑ, that is, the domain on which σ is defined coincides with
the set of variables in ϑ.

A substitution σ is a finite partial map with domain de-
noted by dom(σ). The substitution with the empty domain
is denoted by ∅. The equality σ = σ1∪σ2 holds iff dom(σ) =

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

dom(σ1)∪dom(σ2), and for all X ∈ dom(σ), σ(X) = σ1(X)
if X ∈ dom(σ1), and σ(X) = σ2(X) if X ∈ dom(σ2) (hence,
σ1 and σ2 must coincide on dom(σ1)∩ dom(σ2)). The nota-
tion σ|X denotes the substitution where X is removed from
its domain: σ|X = σ′ iff dom(σ′) = dom(σ)\{X} and for all
X ∈ dom(σ′) σ′(X) = σ(X). The notation σϑ denotes the
event type obtained from ϑ by substituting all occurrences
of X ∈ dom(σ) in ϑ with σ(X).

As trace expressions, parametric trace expressions can be
recursive through cyclic terms expressed by finite sets of re-
cursive syntactic equations, as supported by modern Prolog
systems.

A parametric trace expression τ is built on top of the op-
erators defined below together with their meaning:
• ε (empty trace): the singleton set {ε} containing the empty
event trace ε.
• ϑ:τ (prefix): the set of all traces whose first event ematches
the event type ϑ, and the remaining part is a trace of τ .
• τ1·τ2 (concatenation): the set of all traces obtained by
concatenating the traces of τ1 with those of τ2.
• τ1∧τ2 (intersection): the intersection of the traces of τ1
and τ2.
• τ1∨τ2 (union): the union of the traces of τ1 and τ2.
• τ1|τ2 (shuffle): the set obtained by shuffling the traces of
τ1 with the traces of τ2.
• <X; τ> (binder): it binds the free occurrences of X in
τ ; accordingly, the trace expression στ obtained from τ by
substituting all free occurrences of X ∈ dom(σ) in τ with
σ(X), is coinductively defined as follows:

σ(ϑ:τ) = (σϑ):(στ)
σ(τ1op τ2) = (στ1)op (στ2) for op ∈ {∨,∧, |, ·}
σ(<X; τ>) = <X;σ|Xτ>

The transition system for parametric trace expressions is
defined in Figure 1. The main transition relation τ

e→ τ ′ is

defined in terms of the auxiliary relation τ
e
� τ ′;σ, where σ

is the substitution generated during the transition step. This
is required because it is not possible to predict from which
variable occurrence a certain substitution is generated; con-
sider for instance the trace expressions ϑ1(X):τ1|ϑ2(X):τ2,
where ϑ1(X) and ϑ2(X) are two distinct event types contain-
ing occurrences of variable X; if event e fires a transition on
the lhs operand of the shuffle operator, then the computed
substitution σ is s.t. σ = match(e, ϑ1), and the trace ex-
pression is rewritten into σ(τ1|ϑ2(X):τ2), otherwise, if the
transition is fired on the rhs, then σ = match(e, ϑ2), and
the trace expression is rewritten into σ(ϑ1(X):τ1|τ2).

Rule (main) defines the main transition relation in terms

1457

(main)
τ

e
� τ ′; ∅
τ

e→ τ ′
(prefix)

ϑ:τ
e
� τ ;σ

σ=match(e,ϑ) (or-l)
τ1

e
� τ ′1;σ

τ1∨τ2
e
� τ ′1;σ

(or-r)
τ2

e
� τ ′2;σ

τ1∨τ2
e
� τ ′2;σ

(and)
τ1

e
� τ ′1;σ1 τ2

e
� τ ′2;σ2

τ1∧τ2
e
� τ ′1∧τ ′2;σ

σ=σ1∪σ2 (shuffle-l)
τ1

e
� τ ′1;σ

τ1|τ2
e
� τ ′1|τ2;σ

(shuffle-r)
τ2

e
� τ ′2;σ

τ1|τ2
e
� τ1|τ ′2;σ

(cat-l)
τ1

e
� τ ′1;σ

τ1·τ2
e
� τ ′1·τ2;σ

(cat-r)
τ2

e
� τ ′2;σ

τ1·τ2
e
� τ ′2;σ

ε(τ1) (var-t)
τ

e
� τ ′;σ

<X; τ>
e
� στ ′;σ|X

X∈dom(σ)

(var-f)
τ

e
� τ ′;σ

<X; τ>
e
� <X; τ ′>;σ

X 6∈dom(σ) (ε-var)
ε(τ)

ε(<X; τ>)
(ε-empty)

ε(ε)
(ε-or-l)

ε(τ1)

ε(τ1∨τ2)

(ε-or-r)
ε(τ2)

ε(τ1∨τ2)
(ε-others)

ε(τ1) ε(τ2)

ε(τ1op τ2)
op∈{|,·,∧}

Figure 1: Transition system for parametric trace expressions

of the auxiliary transition relation which computes the sub-
stitution; at top level a correct trace expression cannot con-
tain free variables (that is, undeclared variables), hence the
main transition is fired only if the computed substitution is
empty.

In rule (prefix) a substitution is generated by applying
match to the current event e and the event type ϑ.

Rules for union, shuffle, and concatenation are straight-
forward.

In rule (and) the side condition requires that the sub-
stitutions σ1 and σ2 computed for the two operands must
coincide on the intersection of their domains; the final sub-
stitution σ is obtained by merging σ1 and σ2.

Rules (var-t) and (var-f) deal with the construct <X; τ>
for variable scoping. The former rule is applied when vari-
able X is contained in the domain of the computed substi-
tution σ for the transition starting from τ ; in such a case σ
is applied to the trace expression τ ′ in which τ rewrites to,
and the scoping construct is removed; furthermore, the com-
puted substitution is σ|X . The latter rule is applied when
variable X is not contained in the domain of the computed
substitution σ for the transition starting from τ ; in this case
the scoping construct is not removed, and the computed
substitution coincides with σ.

The auxiliary predicate ε() checking whether a trace ex-
pression is allowed to contain the empty trace.

3. CASE STUDY
We were able to formalize and monitor through a para-

metric trace expressions a slightly different version of the
English auction FIPA specification [13].

The protocol involves an auctioner agent, and two or more
bidder agents. The protocol starts with a preamble where
auctioner sends a single message to all bidders (in any or-
der) informing that the auction for selling a certain item is
going to start. It is assumed that all contacted bidders will
participate to the auction, until auctioner will notify bidders
about the closing of the auction.

The preamble is followed by an initial proposal round,
where auctioner sends a single message to all bidders with
a proposed item price, which is equal for all bidders; then
auctioner waits to receive a single reply from all bidders
before deciding to either closing the auction, or moving to
the next proposal round. Every bidder can either accept
or reject the proposal; a bidder b will keep attending the

auction, even when b decides to reject a proposal at a certain
round.

Agent auctioner moves to the next proposal round if at
least two bidders have accepted the previously proposed
price; in such a case, the new proposed price will be at least
greater or equal than p+ ∆p, where p is the price proposed
at the previous round, and ∆p is an a priori fixed positive
constant.

If a bidder b has accepted the last proposed price, then
auctioner closes the auction by sending a single message to
all bidders; bidder b is notified of the purchase of the item,
while all other bidders are informed that the item has been
sold.

Finally, if no bidder accepts the current proposal, then
auctioner closes the auction by sending a single message to
all bidders to notify them that the item is unsold.

3.1 Monitoring of the protocol
We have defined a parametric trace expression1 which al-

lowed us to successful monitor a system implementing the
auction protocol described above with an unspecified num-
ber of participants that can be fixed only at runtime.

This case study shows that parametric trace expressions
are a powerful but also efficient formalism for expressing
parametric specifications for RV; experiments with our im-
plemented tool for RV through parametric trace expressions
show that runtime verification is linear in TL · BN , where
TL is the total length of the analyzed trace, and BN is
the number of bidders; the tool is able to support runtime
verification of a Jade multiagent system with 500 bidders.
Beyond such a limit, the tool starts reporting protocol vio-
lations simply because the Jade platform is no longer able
to guarantee that messages sent from agent a to agent b are
received by b in the expected order.

To better assess our tool, we are planning to further ex-
periment with parametric trace expressions to constitute a
library of specifications for the most commonly used inter-
action protocols, and to individuate recurrent patterns that
can be usefully exploited to ease the specification of complex
protocols.

1The parametric trace expression together with the JADE
MAS and monitor can be downloaded from http://www.
ParametricTraceExpr.altervista.org.

1458

REFERENCES
[1] F. Aielli, D. Ancona, P. Caianiello, S. Costantini,

G. De Gasperis, A. Di Marco, A. Ferrando, and
V. Mascardi. FRIENDLY & KIND with your health:
Human-friendly knowledge-intensive dynamic systems
for the e-health domain. In Highlights of Practical
Applications of Scalable Multi-Agent Systems. The
PAAMS Collection - International Workshops of
PAAMS 2016, Sevilla, Spain, June 1-3, 2016.
Proceedings, pages 15–26, 2016.

[2] D. Ancona, V. Bono, M. Bravetti, J. Campos,
G. Castagna, P. M. Deniélou, S. J. Gay, N. Gesbert,
E. Giachino, R. Hu, E. B. Johnsen, F. Martins,
V. Mascardi, F. Montesi, R. Neykova, N. Ng,
L. Padovani, V. Vasconcelos, and N. Yoshida.
Behavioral types in programming languages.
Foundations and Trends in Programming Languages,
3(2-3):95–230, 2016.

[3] D. Ancona, D. Briola, A. El Fallah Seghrouchni,
V. Mascardi, and P. Taillibert. Efficient verification of
mass with projections. In F. Dalpiaz, J. Dix, and
M. B. van Riemsdijk, editors, Engineering Multi-Agent
Systems: Second International Workshop, EMAS
2014, Paris, France, May 5-6, 2014, Revised Selected
Papers, pages 246–270, Cham, 2014. Springer
International Publishing.

[4] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi.
Runtime verification of fail-uncontrolled and ambient
intelligence systems: A uniform approach. Intelligenza
Artificiale, 9(2):131–148, 2015.

[5] D. Ancona, D. Briola, A. Ferrando, and V. Mascardi.
Mas-drive: a practical approach to decentralized
runtime verification of agent interaction protocols. In
Proceedings of the 17th Workshop ”From Objects to
Agents” co-located with 18th European Agent Systems
Summer School (EASSS 2016), Catania, Italy, July
29-30, 2016., pages 35–43, 2016.

[6] D. Ancona, S. Drossopoulou, and V. Mascardi.
Automatic generation of self-monitoring MASs from
multiparty global session types in Jason. In DALT
2012, volume 7784 of LNAI, pages 76–95. Springer,
2012.

[7] D. Ancona, A. Ferrando, and V. Mascardi. Comparing
trace expressions and linear temporal logic for runtime
verification. In Theory and Practice of Formal
Methods - Essays Dedicated to Frank de Boer on the
Occasion of His 60th Birthday, pages 47–64. Springer
Verlag, 2016.

[8] R. H. Bordini, J. F. Hübner, and M. Wooldridge.
Programming Multi-Agent Systems in AgentSpeak
Using Jason (Wiley Series in Agent Technology). John
Wiley & Sons, 2007.

[9] D. Briola, V. Mascardi, and D. Ancona. Distributed
runtime verification of JADE and jason multiagent
systems with prolog. In L. Giordano, V. Gliozzi, and
G. L. Pozzato, editors, Proceedings of the 29th Italian
Conference on Computational Logic, Torino, Italy,
June 16-18, 2014., volume 1195 of CEUR Workshop
Proceedings, pages 319–323. CEUR-WS.org, 2014.

[10] D. Briola, V. Mascardi, and D. Ancona. Distributed
runtime verification of JADE multiagent systems. In
IDC, Studies in Computational Intelligence. Springer,
2014.

[11] A. D., M. Barbieri, and V. Mascardi. Constrained
global types for dynamic checking of protocol
conformance in multi-agent systems. In Proceedings of
the 28th Annual ACM Symposium on Applied
Computing, SAC ’13, pages 1377–1379, 2013.

[12] A. Ferrando, D. Ancona, and V. Mascardi.
Decentralizing mas monitoring with decamon. In
S. Das, E. Durfee, K. Larson, and M. Winikoff,
editors, International Conference on Autonomous
Agents and Multiagent Systems, AAMAS 2017.
Proceedings. IFAAMAS, 2017.

[13] Foundation for Intelligent Physical Agents. FIPA
english auction interaction protocol specification.
http:

//www.fipa.org/specs/fipa00031/XC00031F.pdf,
2001.

[14] Q. Luo, Y. Zhang, C. Lee, D. Jin, P. O. Meredith,
T. Serbanuta, and G. Rosu. Rv-monitor: Efficient
parametric runtime verification with simultaneous
properties. In Runtime Verification, RV 2014, pages
285–300, 2014.

1459

