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ABSTRACT
The assignment problem is one of the most well-studied
settings in social choice, matching, and discrete allocation.
We consider this problem with the additional feature that
agents’ preferences involve uncertainty. The setting with
uncertainty leads to a number of interesting questions in-
cluding the following ones. How to compute an assignment
with the highest probability of being Pareto optimal? What
is the complexity of computing the probability that a given
assignment is Pareto optimal? Does there exist an assign-
ment that is Pareto optimal with probability one? We con-
sider these problems under two natural uncertainty models:
(1) the lottery model in which each agent has an indepen-
dent probability distribution over linear orders and (2) the
joint probability model that involves a joint probability dis-
tribution over preference profiles. For both of these models,
we present a number of algorithmic and complexity results
highlighting the differences and similarities in the complex-
ity of the two models.
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1. INTRODUCTION
When preferences of agents are aggregated to identify a

desirable social outcome, Pareto optimality is a minimal re-
quirement. Pareto optimality stipulates that there should
not be another outcome that is at least as good for all agents
and better for at least one agent. We take Pareto optimal-
ity as a central concern and consider a richer version of the
classical assignment problem where the twist is that agents
may express uncertainty in their preferences. The assign-
ment problem is a fundamental setting in which n agents
express preferences over n items and each agent is to be al-
located one item. The setting is a classical one in discrete
allocation and its axiomatic and computational aspects have
been well-studied [2, 3, 6, 8, 10, 15, 21, 22]. Our motivation
for studying assignment with uncertain preferences is that
agents’ preferences may not be completely known due to lack
of information or communication.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Our work is inspired by the recent work of Aziz et al. [7]
who examined the stable marriage problem under uncertain
preferences. Uncertainty in preferences has already been
studied in voting [16]. Similarly, in auction theory, it is
standard to examine Bayesian settings in which there is
probability distribution over the types of the agents. Al-
though computational aspects of Pareto optimal outcomes
have been intensely studied in various settings such as as-
signment, matching, housing markets, and committee vot-
ing [3, 5, 6, 9, 12, 17, 18, 19], there has not been much work
on Pareto optimal under uncertain preferences. In the pres-
ence of uncertainty, one can relax the goal of computing a
Pareto optimal outcome and focus on computing outcomes
that have the highest probability of being Pareto optimal.
We will abbreviate Pareto optimal as PO. If an assignment
is Pareto optimal with probability one, we will call it cer-
tainly PO.

We consider the following uncertainty models:

• Lottery Model: For each agent, we are given a prob-
ability distribution over linear preferences.

• Joint Probability Model: A probability distribu-
tion over linear preference profiles is specified.

Note that both the lottery model and the joint probability
model representation can be exponential in the number of
agents but if the support of the probability distributions is
small, then the representation is compact. Also note that
the product of the independent uncertain preferences in the
lottery model results in a probability distribution over pref-
erence profiles and hence can be represented in the joint
probability model. However, the change in representation
can result in a blowup. Thus whereas the joint probability
model is more general than the lottery model, it is not as
compact. In view of this, complexity results for one model
do not directly carry over to the other model.

The most natural computational problems that we will
consider are as follows.

• PO-Probability: what is the probability that a given
assignment is PO?

• AssignmentWithHighestPO-Probability: com-
pute an assignment with the highest probability of be-
ing PO.

We also consider simpler problems than PO-Probability:

• IsPO-ProbabilityNon-Zero: for a given assign-
ment, is its probability of being PO non-zero?
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Problems Lottery Model Joint Probability Model

PO-Probability
#P-complete
but in FPT w.r.t. parameter: in P
# uncertain agents

IsPO-ProbabilityNon-Zero in P in P
IsPO-ProbabilityOne in P in P

ExistsPossiblyPO-Assignment in P (trivially) in P (trivially)

ExistsCertainlyPO-Assignment NP-complete NP-complete

AssignmentWithHighestPO-Prob NP-hard NP-hard

Table 1: Summary of results.

• IsPO-ProbabilityOne: for a given assignment, is its
probability of being PO one?

We also consider a problem connected to Assignment-
WithHighestPO-Probability: ExistsCertainlyPO-
Assignment asks whether there exists an assignment that
is PO with probability one. Note that ExistsPossiblyPO-
Assignment—the problem of checking whether there exists
some PO assignment with non-zero probability—is trivial
for all uncertainty models in which the induced certainly
preferred relation is acyclic. An agent certainly prefers an
item to another if the preference is with probability 1. The
reason for the triviality is that the certainly preferred rela-
tion can be completed in a way so that it is transitive, and
then for the completed deterministic preferences there exists
at least one PO assignment.

We say that a given uncertainty model is independent
if any uncertain preference profile L under the model can
be written as a product of uncertain preferences La for all
agents a, where all La’s are independent [7]. Note that the
lottery model is independent but the joint probability model
is not.

Results.
We show that for both the lottery model and the

joint probability model, ExistsCertainlyPO-Assignment
is NP-complete. We also prove that AssignmentWith-
HighestPO-Probability is NP-hard for both models. In
view of these results, we see that as we move from deter-
ministic preferences to uncertain preferences, the complex-
ity of computing Pareto optimal assignments jumps signifi-
cantly. On the other hand, we show that for a general class
of independent uncertainty models, both problems IsPO-
ProbabilityNon-Zero and IsPO-ProbabilityOne can
be solved in linear time. Whereas PO-Probability is
polynomial-time solvable for the joint probability model, we
prove that it is #P-complete for the lottery model. This
problem becomes polynomial-time solvable for the lottery
model if there is a constant number of uncertain agents.
Moreover, we show that the problem PO-Probability for
the lottery model can be solved in fixed-parameter tractable
time when parameterized by the number of uncertain agents.

Our results are summarized in Table 1.

2. CONCLUSIONS
Computing Pareto optimal outcomes is an active line of re-

search in economics and computer science. In this paper, we
examined the problem for an assignment setting where the

preferences of the agents are uncertain. Our central techni-
cal results are computational hardness results. We see that
as we move from deterministic preferences to uncertain pref-
erences, the complexity of computing Pareto optimal out-
comes jumps significantly. The computational hardness re-
sults carry over to more complex models in which there may
be more items than agents, agents may have capacities, and
items may have copies. For future work, we have started
considering other uncertainty models [7]. If we allow for
intransitive preferences, even a possibly Pareto optimal as-
signment may not exist and the problem of checking whether
a possible Pareto optimal assignment exists becomes inter-
esting. An orthogonal but equally interesting direction will
be to consider other fairness, stability, or efficiency desider-
ata [4].
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