
A Modular Framework for Decentralised
Multi-Agent Planning

(Extended Abstract)
Rafael C. Cardoso, and Rafael H. Bordini

Faculdade de Informática, PUCRS
Porto Alegre – RS, Brazil

rafael.caue@acad.pucrs.br,rafael.bordini@pucrs.br

ABSTRACT
Multi-agent systems often require runtime planning, which
remains an open problem due to the existing gap between
planning and execution in practice. Extensive research has
been carried out in centralised planning for single-agent sys-
tems, but so far decentralised multi-agent planning has not
been fully explored. In this paper, we extend existing multi-
agent platforms to enable decentralised planning at runtime.
In particular, we put forward a planning and execution
framework called Decentralised Online Multi-Agent Plan-
ning (DOMAP). Experiments with a planning domain we
developed on flooding disaster scenarios show that DOMAP
outperforms 4 other state-of-the-art multi-agent planners,
particularly in the most difficult problems.

Keywords
multi-agent planning; multi-agent systems; distributed
problem solving; online planning

1. INTRODUCTION
Research on automated planning has been mostly focused

on centralised planning. Although it is possible to adapt
single-agent techniques to work in a decentralised way, as
in [6], distributed computation is not the only advantage
of using Multi-Agent Planning (MAP). By allowing agents
to do their own individual planning, the search space is ef-
fectively pruned, which can potentially decrease planning
time on domains that are naturally distributed, and allow
agents to keep some privacy within the system. MAP has re-
ceived increasing attention recently [3, 8, 9, 19, 14], tackling
new and complex multi-agent problems that require decen-
tralised solutions. One such problem is to combine planning
and execution [13].

Multi-Agent Systems (MAS) development platforms also
changed the focus from agent- to organisation-centred ap-
proaches. Recent research in MAS, as evidenced in [1, 16],
shows that considering other programming dimensions such
as environments and organisations as first-class abstractions
(along with agents) allow developers to create more complex
MAS.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

2. PLANNING FRAMEWORK
DOMAP uses a factored representation to interface with

a MAS in order to obtain knowledge necessary for plan-
ning. It serves as a bridge between planning and execution.
DOMAP has three modular components: (i) goal alloca-
tion mechanism – agents use the contract net protocol [17]
to pre-select goals that they believe to be more appropriate
for them (see [4]); (ii) individual planner – the SHOP2 [12]
planner is used by each agent for individual planning so as
to make the most of the HTN-like structure of the plan li-
brary in typical BDI agents; (iii) coordination mechanism –
social laws [15] are employed to coordinate agents at execu-
tion time, in order to avoid possible conflicts created during
(individual) planning. Algorithm 1 gives an overview of how
planning in DOMAP works. The solution is then executed
and monitored so as to coordinate agents at runtime.

Algorithm 1 DOMAP overview.

1: function DOMAP (Social Goals)
2: for each agent ∈ Agents do
3: create own factored representation
4: end for
5: banned← ∅
6: repeat
7: announce(Social Goals, banned(List))
8: for each agent ∈ Agents do
9: for each sg ∈ Social Goals do

10: if (agent, sg) /∈ banned(List) then
11: agent calculates and places a bid for sg
12: end if
13: end for
14: end for
15: award(Social Goals, bids)
16: // goalsagent are SGs allocated to agent
17: for each agent ∈ Agents do
18: individual planning(goalsagent)
19: if planning failed(goalsagent) then
20: for each sg ∈ goalsagent do
21: banned← banned ∪ {(agent, sg)}
22: end for
23: end if
24: end for
25: until banned 6= ∅

1487



p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

0

50

100

150

200

250

300

350

400

Problems

N
u

m
b

er
 o

f 
ac

ti
o

n
s

Plan Quality - Average

SIW+ -then-BFS(f)

ADP-legacy

PMR

CMAP-t

DOMAP

(a)

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

0

20

40

60

80

100

120

Problems

N
u

m
b

er
 o

f 
ac

ti
o

n
s

Parallel Plans - Minimum

SIW+ -then-BFS(f)

ADP-legacy

PMR

CMAP-t

DOMAP

(b)

Figure 1: (a) Average plan cost across 10 runs; (b) Shortest parallel plan found across 10 runs.

p01 p02 p03 p04 p05 p06 p07 p08 p09 p10

0.25

0.5

1

2

4

8

16

32

64

128

256

512

1024

2048

4096

Problems

Se
co

n
d

s

Real Time - Average

SIW+ -then-BFS(f)

ADP-legacy

PMR

CMAP-t

DOMAP

Figure 2: Average planning time across 10 runs.

3. EXPERIMENTS AND RESULTS
To evaluate our framework we implemented DOMAP in

JaCaMo [1], a platform for the development of MAS. To
the best of our knowledge, DOMAP is the only recently de-
veloped multi-agent online planner that is able to take ad-
vantage of the different programming abstractions in MAS
(agent, environment, and organisation). Thus, in order
to proper evaluate our framework, we isolated the online-
planning components of DOMAP, and ran offline experi-
ments using a novel multi-agent domain, the Floods domain,
to compare DOMAP against four state-of-the-art planners
that took part in the 2015 Competition of Distributed and
Multi-Agent Planners (CoDMAP-15) [18].

One of our research projects aiming to address real-world
problems related to (flooding) disasters led us to design a
new domain with the essential characteristics of MAP and
MAS, such as heterogeneous agents and multiple types of
goals. In the Floods domain, a team of heterogeneous au-
tonomous robots are dispatched to monitor flooding activity
and execute search and rescue operations within a geograph-
ical region. We generated 10 problem variations, increasing
the number of goals and agents for each problem. We gave
all problems a time limit of 60 minutes. We ran each plan-
ner 10 times for each of the 10 problems, resulting in a total
of 500 executions, 100 for each planner. The computer used

to run the experiments has the following specification: Intel
Xeon Processor E5645 (12M Cache, 2.40 GHz, 6 cores, 12
threads), 32 GB of memory, Ubuntu 16.04 operating system.

Average plan cost is shown in Figure 1a, and shortest
parallel plans in Figure 1b. CMAP-t [2], ADP-legacy [7, 5],
and PMR [10] found some of the lowest-cost plans. PMR
does much worse on problems 6 and 9, when it has to use
multiple planners, but it is able to find the lowest cost plan
for the hardest problem (p10). DOMAP and SIW+ -then-
BFS(f) [11] have mediocre average plan lengths when com-
pared to other planners for the most difficult problems. Pri-
oritising fairness among agents in goal distribution pays off
when we consider plan parallelism, where DOMAP shows
excellent parallel solutions for all problems.

In Figure 2, we show the results for planning time for each
problem. Time in seconds is on the y-axis; it is in logarith-
mic scale to improve readability. Our results in this new do-
main show a larger gap between planners when compared to
the results reported in CoDMAP-15. We suspect that this
discrepancy occurred because the domains from the com-
petition were too simplistic, with a low number of agents
and goals, resulting in planning times low enough that the
winner could have been any of the top performing planners.
SIW+ -then-BFS(f), the winner of CoDMAP-15 w.r.t. plan-
ning time, performed the worst in our experiments (it does
not separate goal allocation from planning).

Our results show DOMAP scales rather well, provides ex-
cellent parallel solutions, and it is the fastest multi-agent
planner for the most difficult problems, while maintaining a
reasonable plan length compared to other planners. Our re-
sults also indicate that allocating goals before planning can
lead to significant improvement in planning time for some
problems. Moreover, decentralising planning and running in
computers with multiple cores can also lead to faster plan-
ning times (only DOMAP and PMR do so). The planners
ADP-legacy, CMAP-T, and PMR all use relaxed planning
graphs for goal allocation, which could be added to DOMAP
to improve plan length. Planning times of decentralised
planners could be potentially improved when running in dis-
tributed settings, as planned for future experiments.

Acknowledgments
We are grateful for the support given by CNPq and CAPES.

1488



REFERENCES
[1] O. Boissier, R. H. Bordini, J. F. Hübner, A. Ricci, and

A. Santi. Multi-agent oriented programming with
JaCaMo. Science of Computer Programming, 2011.

[2] D. Borrajo and S. Fernandez. MAPR and CMAP. In
Competition of Distributed and Multi-Agent Planners
(CoDMAP-15), 2015.

[3] M. Brenner and B. Nebel. Continual planning and
acting in dynamic multiagent environments.
Autonomous Agents and Multi-Agent Systems,
19(3):297–331, Dec. 2009.

[4] R. C. Cardoso and R. H. Bordini. Allocating social
goals using the contract net protocol in online
multi-agent planning. In 5th Brazilian Conference on
Intelligent System (BRACIS-16), Recife, Pernambuco,
Brazil, 2016.

[5] M. Crosby. Adp an agent decomposition planner
codmap 2015. In Competition of Distributed and
Multi-Agent Planners (CoDMAP-15), 2015.

[6] M. Crosby, A. Jonsson, and M. Rovatsos. A
single-agent approach to multiagent planning. In 21st
European Conf. on Artificial Intelligence (ECAI’14),
Prague, Czech Republic, 2014.

[7] M. Crosby, M. Rovatsos, and R. P. A. Petrick.
Automated agent decomposition for classical planning.
In Proceedings of the Twenty-Third International
Conference on Automated Planning and Scheduling,
ICAPS, Rome, Italy, 2013.

[8] M. de Weerdt and B. Clement. Introduction to
Planning in Multiagent Systems. Multiagent Grid
Syst., 5(4):345–355, 2009.

[9] E. H. Durfee and S. Zilberstein. Multiagent planning,
control, and execution. In G. Weiss, editor, Multiagent
Systems 2nd Edition, chapter 11, pages 485–545. MIT
Press, 2013.

[10] N. Luis and D. Borrajo. PMR: Plan merging by reuse.
In Competition of Distributed and Multi-Agent
Planners (CoDMAP-15), 2015.

[11] C. Muise, N. Lipovetzky, and M. Ramirez.
MAP-LAPKT: Omnipotent multi-agent planning via
compilation to classical planning. In Competition of
Distributed and Multi-Agent Planners (CoDMAP-15),
2015.

[12] D. Nau, O. Ilghami, U. Kuter, J. W. Murdock, D. Wu,
and F. Yaman. Shop2: An htn planning system.
Journal of Artificial Intelligence Research, 20:379–404,
2003.

[13] D. S. Nau, M. Ghallab, and P. Traverso. Blended
planning and acting: Preliminary approach, research
challenges. In Proceedings of the Twenty-Ninth AAAI
Conference on Artificial Intelligence, AAAI’15, pages
4047–4051. AAAI Press, 2015.

[14] R. Nissim and R. I. Brafman. Distributed heuristic
forward search for multi-agent planning. J. Artif.
Intell. Res. (JAIR), 51:293–332, 2014.

[15] Y. Shoham and M. Tennenholtz. On social laws for
artificial agent societies: Off-line design. Artif. Intell.,
73(1-2):231–252, Feb. 1995.

[16] M. Singh and A. Chopra. Programming multiagent
systems without programming agents. In L. Braubach,
J.-P. Briot, and J. Thangarajah, editors, Programming
Multi-Agent Systems, volume 5919 of Lecture Notes in
Computer Science, pages 1–14. Springer Berlin
Heidelberg, 2010.

[17] R. G. Smith. The contract net protocol: High-level
communication and control in a distributed problem
solver. IEEE Trans. Comput., 29(12):1104–1113, Dec.
1980.

[18] M. Stolba, A. Komenda, and D. L. Kovacs, editors.
Competition of Distributed and Multi-Agent Planners
(CoDMAP-15), Jerusalem, Israel, 2015.

[19] A. Torreño, E. Onaindia, and O. Sapena. FMAP:
distributed cooperative multi-agent planning. Appl.
Intell., 41(2):606–626, 2014.

1489




