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ABSTRACT
In this paper, we study k-memory strategies in two-person
repeated games. An agent adopting such a strategy makes
his decision only based on the action profiles of the previous
k rounds. We show that in finitely repeated games, the
best response of a k-memory strategy may not even be a
constant-memory strategy. However, in infinitely repeated
games, one of the best responses against any given k-memory
strategy must be k-memory. Our results are enabled by a
graph-structural characterization of the best responses of k-
memory strategies. We put forward polynomial algorithms
to compute best responses.
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1. INTRODUCTION
Bounded rationality has been a topic of extensive interest

in artificial intelligence and multi-agent system research [8,
9, 2, 19, 20, 3, 18]. The notion of bounded rationality refer-
s to the limitations (time, space, information, etc) agents
encounter that prevent them from making a fully rational
decision in reality. This phenomenon has been widely stud-
ied in the realm of repeated games (cf. eg. [13, 17]).

In repeated games, to describe a strategy, a player needs to
specify his action choice for any possible history. This leads
to the difficulty that the description of a general strategy is
exponential in the game size and is thus highly unrealistic.
To mitigate this difficulty, stylized approach models them
as finite automata strategies [15, 13], where “equivalent” his-
tories are grouped into states in the automata. Under this
compact formulation, the set of equilibria has been charac-
terized in [15]. This topic has been further investigated in [5,
1, 21].

The second approach to model bounded rationality of a-
gents is by Turing machine strategies. In reality, agents
could write programs to compute strategies and this inspired
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researchers to consider the possibility of modeling bound-
ed rational agents as general Turing machines. Megiddo
and Wigderson [11] first model strategies as a general Tur-
ing machines. [7] and [12] show that in infinitely repeated
games, there exists a Turing machine strategy such that no
Turing machine can implement its best response. Chen et
al. [4] studied restricted Turing machine strategies, i.e., a-
gents could only use Turing machine strategies with limited
amount of time and space.

Another natural approach to model bounded rationality
is to put a limit on the size of agents’ memory. Lindgren
studied the effect of different memory size in repeated Pris-
oner’s Dilemma in [10]. Hauert and Schuster [6] used numer-
ical approach to study influences of increased memory sizes
in the iterated two-player Prisoner’s Dilemma. In a novel
work by Press and Dyson [14], the authors showed that in
two-player repeated Prisoner’s Dilemma in which the agents
could only remember the outcome of the last round (in fact,
this is exactly 1-memory strategy in our model), one player
can enforce a unilateral claim to an unfair share of reward-
s. The results by Press and Dyson are based on studying
zero-determinant strategies.

In this paper, we explore this direction further, by study-
ing a novel realistic model of bounded rationality (what we
called “k-memory strategies”) where the memory size of a-
gents is bounded. Our model and results can be regarded
as a natural extension of those by Press and Dyson [14],
by studying the effect of a weaker memory constraint and
its related computational issues. We first present a novel
characterization of k-memory strategies via a graph model,
called the “transition graph”. Enabled by the characteriza-
tion, we can deploy graph-theoretical methods to thoroughly
study k-memory strategies.

2. PRELIMINARIES
When we talk about the payoff in an infinitely repeated

game, we always refer to the infimum of the limit of means:
lim infT→∞

1
T

∑T
i=1 pi, where pi is the payoff at round i (like

in [16]).

2.1 Definition of K-Memory Strategies
Definition 1. In a finitely or infinitely repeated game, a

k-memory strategy of player A is a strategy in which A de-
termines his action in the current round only based on the
action profiles of previous k rounds.
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Strategy C D
C (80, 80) (0, 100)
D (100, 0) (30, 30)

Table 1: The payoff matrix for Prisoner’s Dilemma.

To illustrate, consider the famous Prisoner’s Dilemma. In
this game each player has two choices of action: C (for Co-
operate) and D (for Defect). Table 1 shows a possible pay-
off matrix. Any 1-memory pure strategy (we will consider
mixed strategies later) can be described as a strategy vector
s in {C,D}4 in the following way: (i) map each one-round
history of action profiles to an integer in {0, 1, 2, 3}; (ii) for
each history of action profiles h mapped to i ∈ {0, 1, 2, 3},
set si equal to the action performed by the strategy if the
history of action profiles is h. For example, if we map (C,C)
to 0, (C,D) to 1, (D,C) to 2 and (D,D) to 3, the vector
(D,C,D,C) will correspond to the strategy in which the
player

• plays D when the action profile of the previous round
is (C,C) or (D,C), and

• plays C when the action profile of the previous round
is (D,D) or (C,D).

2.2 Transition Graph Representation
When both players adopt k-memory strategies, we can

draw a transition graph representing these two strategies.

Definition 2. A transition graph is a directed graph in
which each vertex represents a possible k-round history, and
each edge (u, v) exists if and only if the players will be in v
in the next round given the current history to be u.

In a repeated game where each player has n actions to
choose, there are n2k vertices and n2k edges in the transition
graph.

To compute the result of this repeated game, we begin
from the starting vertex, and go along the edges at each
step. Once we have found a cycle, we know we are going to
loop in the cycle forever. The average payoff in the cycle is
the limit-of-means utility in an infinitely repeated game.

When only one player has fixed his strategy, we can draw
an incomplete transition graph for it.

Definition 3. When one player has fixed his strategy to
be s, an incomplete transition graph Gs is a directed graph
in which each vertex represents a possible k-round history,
and each edge (u, v) exists if and only if the other player can
choose to be in v in the next round given the current history
to be u,

The idea is, for each action profile, since the other player
has not decided his strategy, there are several possible out-
comes next round so we add one edge for each possibility. If
each player has n actions to choose, there will be n2k vertices
and n2k+1 edges in the incomplete transition graph.

3. K-MEMORY STRATEGIES IN FINITE-
LY REPEATED GAMES

With our previous knowledge, we are ready to show sev-
eral properties of k-memory strategies in repeated games.

We first consider how to compute the best response to a k-
memory strategy in a finitely repeated game. Unfortunately,
the best response is not necessarily of a k′-memory form.

Theorem 1. There exists a 1-memory strategy S such
that in a finitely repeated game of T rounds, no best response
to S is k-memory, for any constant integer k.

However, we can still efficiently compute the best response
to a given k-memory strategy, even enough such a strategy
may not be of constant memory. Note that here we assume
the k-memory strategy (to which we compute the best re-
sponse) is given as a look-up table, i.e., the input is a table of
size n2k, where n is the number of possible actions for each
player. Each entry corresponds to the action performed by
the strategy in a specific history of action profiles.

Theorem 2. In a finitely repeated game of T rounds,
where in each round each player has n possible actions, the
best response to a k-memory strategy can be computed in
O(min(n6k log T, Tn2k+1)) time.

4. K-MEMORY STRATEGIES IN INFINITE-
LY REPEATED GAMES

Theorem 3. In an infinitely repeated game, for each k-
memory (pure or mixed) strategy, there exists a k-memory
strategy finally looping in a simple cycle as a best (unrestrict-
ed) response.

The following theorem shows that (k− 1)-memory strate-
gies are not enough to implement a best response in general.
Therefore, an agent needs exactly a memory size of k to im-
plement a best response to a given k-memory strategy.

Theorem 4. For every k, there exists a k-memory strat-
egy in an infinitely repeated game, such that for any k′ < k,
there is no k′-memory strategy as its best response.

We show that computing a best response to a k-memory s-
trategy is efficiently doable. Again we assume the k-memory
strategy is given as a look-up table as in Section 3.

Theorem 5. In an infinitely repeated game, where in each
round each player has n possible actions, the best response
to a pure or mixed k-memory strategy can be computed in
time nO(k).

5. CONCLUSIONS
In this paper, we studied k-memory strategies. We devel-

oped graph models to represent these strategies. Our graph
tools enable was-complicated analysis of the structures of
best responses and best commitments. We showed that in
finitely repeated games, the best responses to k-memory s-
trategies may not be constant-memory, but can be efficiently
computed. In infinitely repeated games, best responses to
k-memory strategies have to be k-memory, and is not al-
ways (k − 1)-memory. Such strategies can be computed in
polynomial time.
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