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ABSTRACT
We study strategies for targeted layered containment of an
influenza pandemic in three US cities: Miami, Seattle, and
Chicago. Differences in demographic, geographic, and other
structures lead to differences in the social interaction net-
works in the three cities. This has consequences for how
the containment strategies should be applied to mitigate the
spread. We use large-scale simulations to study these con-
tainment strategies and show differences in outcomes across
the three cities.
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1. INTRODUCTION
Pandemic influenza outbreaks occur every few decades,

where a novel variant of the virus can sweep across the globe
in a short period of time. Besides, the usual seasonal vac-
cines do not offer protection against pandemic viruses due
to low or no immunity to the novel pandemic strain. To
plan for the H1N1 swine flu, the US Department of Health
and Human Services designed a targeted layered contain-
ment strategy. This strategy was simulated for the city of
Chicago by Halloran et al. [6]. However, the general assump-
tion that Chicago is representative of many populations is
not valid [7]. The demographic and geographic differences
between cities will cause differences in their social contact
networks, and hence differences in epidemic characteristics
and the performance of interventions. Further, the ordering
of the interventions has not been studied. In this work, we
do detailed simulations of influenza outbreaks for Chicago,
Miami, and Seattle. We compare the targeted layered con-
tainment strategy across these cities and show that there are
significant differences in outcomes between them.

2. METHODOLOGY AND EXPERIMENTS
We use synthetic social contact networks of Miami, Seattle

and Chicago [1, 4, 5, 3] to study the spread of pandemic
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influenza. The simulations are run using EpiFast, a fast
agent-based epidemic simulation tool [2]. An SEIR model is
used to represent the disease progression within each host.

2.1 Interventions
We take one of the scenarios from [6] which includes a

series of interventions and particular configurations of pa-
rameters. All interventions are triggered when 1% of the
population is infected. For each city, six interventions have
been considered: (i) antiviral treatment (AV): applied to all
diagnosed individuals with 1 day delay, for a duration of 5
days; antiviral efficacy is 60%; (ii) home isolation of cases
(SHO): 60% of the diagnosed stay home for 10 days; (iii)
close schools (CS): 30% of the schools are closed in the city
for the entire flu season; (iv) sick leave (SL): 50% of symp-
tomatic workers stay home when infected; applied with 1 day
delay; (v) stagger work (SW): Workers split into 2 shifts to
reduce work place contacts into half; compliance is at 50%;
(vi) Generic social distancing (GSD): All non-essential ac-
tivities are stopped; compliance is at 50%.

3. RESULTS AND ANALYSIS
We run simulations for each of the interventions discussed

above for each city and measure the drop in cumulative in-
fection rate from base case (when there was no intervention)
to assess its performance. Cumulative infection rate is also
called the attack rate.

The effectiveness of individual interventions are then used
to build a priority order for adding interventions sequen-
tially. The most effective intervention is applied first, then
the second most effective intervention is added on and so on.
Two other priority orders are also considered, one based on
the number of individuals intervened and the other based on
the ease of implementation of interventions.

3.1 Effect of each intervention by city
Effect of each intervention is individually measured in the

three cities. In Miami, stay home and antiviral strategies
result in the biggest drop in the attack rate. The next most
effective intervention is generic social distancing, followed
by sick-leave and stagger-work strategies. The least effective
strategy is close-schools.

The reason close-schools, sick-leave, and stagger work strate-
gies are not as effective is because they only intervene on
the population which attends school or goes to work. In
contrast, generic social distancing is applied across the pop-
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Figure 1: Attack rates when applying multiple interventions
in three ways. ‘0’ corresponds to the base case, and ‘1’ to
‘6’ correspond to the six interventions.

ulation. Antiviral and stay-home perform well because they
are targeted only at diagnosed individuals.

In case of Seattle and Chicago, stay-home and antiviral
strategies performed the best too. Stay-home strategy per-
forms better in Seattle and Chicago compared to Miami be-
cause Miami has a larger ‘senior’ or retired population which
tends to be more at home on a typical day, thereby dampen-
ing the effect of intervention. Next most effective strategies
are sick-leave and stagger-work followed by generic social
distancing.

To check if the differences in attack rates are significant
across interventions, we used t-test for all combinations and
all cities and the p-values are significant at 1% level.

3.2 Prioritize by level of effectiveness
Results in section 3.1 show that each intervention by itself

is not enough to control the pandemic. Thus pandemic plan-
ning requires applying multiple interventions (“layering”).
We first build a priority order based on the performance of
each intervention for each city. The most effective interven-
tion is applied first, followed by the next most effective one
and so on. Thus the intervention order for Miami is SHO
(1), AV (2), GSD (3), SL (4), SW (5) and CS (6), whereas
for Seattle and Chicago it is SHO (1), AV (2), SL (3), SW
(4), GSD (5), CS (6). The results are shown in Figure 1a. As
more interventions are layered on, the attack rate continues
to drop. When all interventions are applied the attack rate
drops to almost 3% in all the cities. However even when the
best five interventions are applied in each city, attack rate
stays at 8% or higher which is unacceptable.

3.3 Prioritize by number intervened
To improve the intervention performance, we consider the

number of people who are intervened under each strategy
and build a priority order based on that. The intervention
which impacts the smallest percentage of the population is
applied first, followed by the next smallest and so on. Hence
the priority order for Miami is SL (1), CS (2), SHO (3), SW
(4), AV (5), and GSD (6). Seattle and Chicago follow the
same order, SL (1), CS (2), SHO (3), AV (4), SW (5), and
GSD (6). The results of this priority order are shown in
Figure 1b.

Note that the first three priorities are the same for all
cities although the contribution of stay-home intervention is
much smaller in Miami compared to the other cities. This
is because Miami has more ‘seniors’. Also Miami has fewer
work activities for the same reason, so stagger-work results
in fewer number of intervened, bringing it up in the priority
order.

Impact of stagger-work in dropping the attack rate is fairly

small in all cities. This is likely due to the fact that stagger-
work only impacts the subpopulation of workers and only
half their contacts.

3.4 Prioritize by the ease of implementation
Next we consider a new priority order, the ease of imple-

mentation of the intervention, and give the highest priority
to the strategy that is the easiest and most practical to ap-
ply. Under this consideration, the priority order for all three
cities is selected to be: AV, GSD, CS, SL, SHO and SW.

The reasons for choosing this priority order are as follows.
Giving antiviral treatment to the sick individuals is the most
practical and natural course of action. Social distancing, on
the other hand, requires wide spread public support and
voluntary compliance. Thus one of the easiest public health
directive for social distancing is to cut down all non-essential
activities (GSD). The next easiest and effective social dis-
tancing measure is CS because schools are high-density lo-
cations which facilitate transmission of disease.

A liberal sick leave policy is slightly harder to apply since
the private sector needs to comply with this intervention and
allow time off to their employees. SHO strategy isolates peo-
ple at home and requires them to end all external activities,
which can be hard to implement. Stagger work schedule is
the hardest since it requires work places to run two shifts to
reduce the workers’ contacts into half.

Figure 1c shows the attack rates for each additional in-
tervention under this priority order. In Miami, when both
AV and GSD are applied, the total attack rate drops by ad-
ditional 9.03% compared to the case when only antiviral is
applied. Similarly, adding CS intervention drops the attack
rate further in Miami. The t-test shows that all differences
are significant at 1% level except the addition of SW.

For Seattle and Chicago, this priority order performs bet-
ter than any other priority order. Under this ordering, ap-
plying just 4 of the 6 strategies drops the attack rate to 5-6%
in all cities, which is much better than the attack rate under
any other priority order. For Miami, the ease of implemen-
tation based ordering works the best too but it takes 4 layers
of interventions to bring down the attack rate to 6%.

4. SUMMARY AND CONCLUSIONS
In this work we have introduced the problem of sequenc-

ing interventions through targeted layered containment of
pandemic influenza. We find that the optimal sequence of
interventions depend upon the composition and the charac-
teristics of the city. Surprisingly, it turns out that ease of
implementation is a good heuristic for ordering the interven-
tions. Finding the optimal ordering is still an open question.
New methods for analysis may be needed to rigorously iden-
tify the redundancies between interventions and reduce the
computational complexity of finding the optimal sequence
of interventions.
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