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ABSTRACT
We consider elections where the voters come one at a time,
in a streaming fashion, and devise space-efficient algorithms
which identify an approximate winning committee with re-
spect to common multiwinner proportional representation
voting rules; specifically, we consider the Approval-based
and the Borda-based variants of both the Chamberlin–
Courant rule and the Monroe rule. We complement our
algorithms with lower bounds. Somewhat surprisingly, our
results imply that, using space which does not depend on
the number of voters it is possible to efficiently identify an
approximate representative committee of fixed size over vote
streams with huge number of voters.

CCS Concepts
•Computing methodologies → Multi-agent systems;
•Theory of computation→ Streaming, sublinear and
near linear time algorithms;
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resentation

1. INTRODUCTION
The voting rule suggested by Chamberlin–Courant [5] and

the voting rule suggested by Monroe [18], are multiwinner
voting rules concentrated on proportional representation.
Such proportional representation multiwinner rules aim at
selecting a committee of fixed size which represents the soci-
ety best. Informally, most voters shall be somewhat satisfied
by the committees selected by such proportional represen-
tation rules, which, roughly speaking, try to best represent
the spectrum of different views of the society. This stands
in contrast, for example, to k-best multiwinner voting rules
such as k-Borda. Proportional representation multiwinner
voting rules have several good axiomatic properties [11].

Winner determination for these rules, however, is NP-
hard [19], though it is possible to compute the winner when
some parameters are small [2]; that is, winner determination
for these rules is fixed-parameter tractable with respect to

Appears in: Proceedings of the 16th International Confer-
ence on Autonomous Agents and Multiagent Systems (AA-
MAS 2017), S. Das, E. Durfee, K. Larson, M. Winikoff
(eds.), May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org). All rights reserved.

either the number of voters or the number of candidates.
Further, efficient approximation algorithms are known [22]
for these rules as well as heuristic algorithms based on clus-
tering [12].

Proportional representation multiwinner voting rules have
several other applications, besides their original, political
application. Specifically, these rules are used for resource
allocation [18, 22], facility location [2], and recommender
systems [16, 21]. In such situations, it is indeed desirable to
select a set of k “representative” elements out of a larger set.

While the number of voters in some elections is modest,
there are situations where the number of voters is huge, mak-
ing it impossible to store the whole election in order to op-
erate upon it (specifically, to identify a winning committee).
Consider, e.g., the preferences of users of an online shopping
website: there are lots of potential buyers (corresponding
to the voters), each with her own preferences over the items
being sold on the website (corresponding to the candidates).
The owners of the shopping website might wish to identify a
set of, say, k items to advertise on their landing page, with
the intent of maximizing the number of users which would
be interested in at least one of those displayed items.

More generally, as certain tasks which are concerned with
the creation of various kinds of product portfolios can be
modeled as equivalents of solving winner determination for
proportional representation, it is of interest to devise effi-
cient algorithms for such situations which naturally corre-
spond to elections with huge number of voters. Thus, in
this paper we are interested in designing algorithms which
identify good representative committees, but without being
able to store the whole electorate in order to process it; con-
cretely, we are aiming at algorithms whose space complexity
does not depend on the number of voters, since this number
might be huge.

To study space-efficient algorithms for such situations, we
consider streaming algorithms which solve the winner deter-
mination problem for proportional representation multiwin-
ner voting rules. Specifically, while we consider the set of
alternatives as being fixed, we assume that the voters are ar-
riving (that is, voting) one at a time, in what we refer to as a
vote stream. Concretely, we assume that each voter is arriv-
ing only once (such that it is possible to process each voter
only once), and we are interested in space-efficient streaming
algorithms for finding a winning committee of fixed size k in
such vote streams.

As it is customary in studying streaming algorithms, we
allow our algorithms to be randomized and to find approx-
imate solutions. That is, in order to have algorithms which
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use only small amounts of space, we will be satisfied with
algorithms which find an approximate winning committee;
specifically, we will be satisfied with finding a committee
whose score under the given voting rule is close to being the
optimum score possible for a committee with respect to the
given election. Further, we will be satisfied with randomized
algorithms, which might not always find such approximate
winning committees, but nevertheless are guaranteed to find
such approximate winning committees with arbitrarily high
probability. A more formal description of our setting is given
in Section 2.

Our results, which are summarized in Table 1, imply that
it is possible to process huge amount of preferences data
(that is, huge amount of voters), using only small space, and
still, with high probability, find an almost-optimal winning
committee. Since, as briefly mentioned above, the voting
rules we consider in this paper have applications not only in
political settings, but also in commercial and business set-
tings, our results naturally have implications to those sce-
narios as well. We further discuss the applicability of our
results in Section 4.

1.1 Related Work
The two most-related papers to our paper are two pa-

pers by Bhattacharyya and Dey [3, 10]. The first paper [3]
provides an analysis of the space complexity of streaming
algorithms for some single-winner voting rules. The second
paper [10] provides an analysis concerning the number of
samples which are sufficient in order to approximately com-
pute the winner under various single-winner voting rules,
and is of relevance to our paper since our algorithms are
based on sampling. Another related paper is that of Filtser
and Talmon [13] which provides efficient protocols for win-
ner determination in distributed streams. We stress that,
while the above-mentioned papers deal with single-winner
voting rules, our paper deals with multiwinner voting rules
which select a committee of fixed size.

Another line of work worth mentioning is concerned with
developing streaming algorithms for the Max Cover prob-
lem. In the Max Cover problem, we are given a collection
of sets over some universe and a budget k, and the task is
to find k sets which cover the largest number of elements.
Approval-CC (see Section 2) is equivalent to Max Cover
(to see this, interchange voters by elements and candidates
by sets; see also, e.g., [20]).

Thus, the very recent paper by McGregor and Vu [17] is of
relevance to us; specifically, they give an upper bound [17,
Theorem 10] which has some similarities with our Theo-
rem 1, and they give a lower bound [17, Theorem 20]. How-
ever, their model of a stream is different than ours, since the
items in their streams are the sets (corresponding to the can-
didates), while for us the items are the voters (corresponding
to the elements).

In the context of social choice, there are some further in-
teresting papers to mention. Conitzer and Sandholm [9]
study communication complexity of various voting rules;
they do not consider approximations and therefore the com-
munication complexity of their protocols is generally quite
high. Along similar lines, Chevaleyre et al. [6] design com-
munication protocols for situations where the set of candi-
dates might change over time. Chevaleyre et al. [7] study
compilation complexity of various voting rules; roughly speak-
ing, they divide the electorate into two parts, and are con-

cerned with the amount of information which one part shall
transmit to the other in order to correctly identify a win-
ner. Xia and Conitzer [23] extend upon this previously-
mentioned paper by considering some further variants as
well as some other voting rules not previously studied. Fi-
nally, we mention the paper by Conitzer and Sandholm [8]
which is concerned with vote elicitation.

2. PRELIMINARIES
We provide preliminaries regarding elections and propor-

tional representation voting rules, streaming algorithms and
vote streams, and mention some useful results from proba-
bility theory. We denote the set {1, . . . , n} by [n].

2.1 Proportional Representation
An election E = (C, V ) consists of a set of candidates

C = {c1, . . . , cm} and a collection of voters V = (v1, . . . , vn),
where each voter is associated with her vote. (For ease of
presentation, we refer to the voters as females while the can-
didates are males.) In this paper we consider two kinds
of elections: in Approval-based elections, the vote of voter
vi ∈ V is a subset of C, corresponding to the candidates
which this voter approves; in Borda-based elections, the vote
of voter vi ∈ V is a total order �vi over C. For Borda-based
elections, we write posv(c) to denote the position of candi-
date c in v’s preference order (e.g., if v ranks c on the top
position, then posv(c) = 1).

Given an election E = (C, V ) and an integer k, k ≤ |C|,
a committee S ⊆ C consists of k candidates from C. A
multiwinner voting rule R is a function that returns a set
R(E, k) of winning committees of size k each, and we say
that the committees inR(E, k) tie as winners of the election.
To formally define the specific voting rules which we consider
in this paper, namely Chamberlin–Courant and Monroe, we
first discuss assignment functions and satisfaction functions.

Assignment functions. Given an election E = (C, V )
and a committee S ⊆ C of size k, a CC-assignment function
is a function Φ: V → S. We say that Φ(v) is the represen-
tative of voter v ∈ V and that v is represented by Φ(v). An
M-assignment function is a CC-assignment function where
bn
k
c ≤ |Φ−1(c)| ≤ dn

k
e holds for each c ∈ S. That is, in an

M-assignment, each committee member represents roughly
(i.e., up to rounding) the same number of voters.

Satisfaction functions. Intuitively, a satisfaction func-
tion γ : V ×C → N is a function measuring the satisfaction
of a voter v when she is represented by a certain candidate c.
For Approval-based elections, we use the satisfaction func-
tion γ ≡ α where α(v, c) = 1 iff c is approved by v, and
0 otherwise (that is, 1 if c is contained in v′s vote; infor-
mally, a voter is satisfied only by her approved candidates).
For Borda-based elections, we use the satisfaction function
γ ≡ β where β(v, c) = m− posv(c).

Chamberlin–Courant and Monroe. Given an election
E = (C, V ), a size-k committee S, and a CC-assignment
function Φ, we define the total satisfaction of the voters in
V from the committee S and the CC-assignment Φ to be:∑

v∈V

γ(Φ(v)),

where, for Approval-based elections, γ equals the α satisfac-
tion function described above, while for Borda-based elec-
tions, γ equals the β satisfaction function described above.
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Voting rule Space complexity

Approval-CC O(ε−2km logm)

Borda-CC O(ε−2k3m3 logm)

Approval-M O(ε−2k3m logm)

Borda-M O(ε−2k3m5 logm)

Table 1: Summary of our upper bounds. We list
our upper bounds for randomized streaming algo-
rithms which identify ε-approximate winning com-
mittees under several proportional representation
voting rules. k denotes the size of the committee
while m denotes the number of candidates which
participate in the election.

For the Chamberlin–Courant rule, the total satisfaction
of the voters in V from a committee S is defined as the
maximum total satisfaction of the voters V from the com-
mittee S over all possible CC-assignment functions. The
Chamberlin–Courant rule outputs all size-k committees W
with the highest total satisfaction.

The Monroe rule is defined similarly, but where we con-
sider only M-assignment functions; that is, the total satis-
faction of the voters in V from a committee S is defined
as the maximum total satisfaction of the voters V from
the committee S over all possible M-assignment functions.
We denote by Approval-CC (Borda-CC ) the Chamberlin–
Courant rule for Approval-based (Borda-based) elections,
and by Approval-M (Borda-M ) the Monroe rule for Approval-
based (Borda-based) elections.

2.2 Vote Streams
We assume that the set of candidates C is known, and

that the voters v1, . . . , vn arrive (that is, vote) one at a time.
More formally we might say that at time t ∈ [n], voter vt
arrives; importantly, each voter arrives only once.

We are interested in randomized algorithms which oper-
ate on such vote streams, and find approximate solutions.
The following definition is crucial for our notion of approxi-
mation.

Definition 1 (ε-winning committee) A committee of size
k is ε-winning if it is either a winning committee, or it can
become a winning committee by changing at most εn votes.

Specifically, we require that the committees computed by
our streaming algorithm shall be, with high probability, ε-
winning. Such a streaming algorithm, which identify, with
high probability, an ε-winning committee, is said to be an
ε-approximate streaming algorithm.

Definition 2 (ε-approximate streaming algorithm) A
streaming algorithm is an ε-approximate streaming algorithm
if it returns, with high probablty, an ε-winning committee.

Throughout the paper, when we say “with high probabil-
ity” we mean with probability 1 − O(1/n). Such a success
probability should be sufficient; as usual in streaming algo-
rithms, can be further tweaked by repetitions.

Assuming that the number n of voters is huge, our goal
is to devise streaming algorithms whose space complexity
do not depend on the number n of voters. Our algorithms

are based on sampling voters; by a subset of an election we
mean a subset of the voters.

Let us explain how exactly we sample voters. Let n be the
length of the stream (i.e., the total number of voters), and
suppose that we want to sample z votes from the stream.
Then, we pick each vote with probability z/(nδ) for some
constant 0 ≤ δ ≤ 1. By Markov’s inequality, with probabil-
ity at least 1−δ is holds that the sample size is at least z (and
not much larger). Hence, every vote belongs to our sample
with probability z/(nδ) independently of other items.

2.3 Useful Results from Probability Theory
Since our algorithms are randomized, specifically based

on sampling a small number of voters, we make extensive
use of the following variant of Hoeffding’s inequality, which
upper bounds the probability that the sum of a given set of
random variables deviates from its expectation.

Theorem 1 (Hoeffding’s inequality [14]) Let X1, ..., Xt
be independent random variables such that 0 ≤ Xi ≤ m
for each i ∈ [t]. Let X be a random variable such that
X =

∑
i∈[t] Xi. Then, the following two statements hold.

(1) Pr[X − E[X] < ε] ≤ exp

(
−2ε2t

m2

)

(2) Pr[E[X]−X < ε] ≤ exp

(
−2ε2t

m2

)
For the special case when m = 1, Hoeffding’s inequality

simplifies as follows.

(1) Pr[E[X]−X < ε] ≤ exp
(
−2ε2t

)
(2) Pr[X − E[X] < ε] ≤ exp

(
−2ε2t

)
3. RESULTS

Our main results are summarized in Table 1. In Sec-
tion 3.1 we describe our upper bounds while in Section 3.2
we describe our lower bounds.

3.1 Upper Bounds
We first consider the Approval-CC voting rule, which is

arguably the simplest voting rule we consider in this paper.
The following algorithm is based on sampling a small num-
ber of voters. The proof shows that, with high probability,
a winning committee for the election corresponding to the
sample has fairly high score in the whole election; specifi-
cally, it constitutes an ε-approximate winning committee of
the whole election.

Theorem 1 There is an ε-approximate streaming algorithm
for Approval-CC which uses O(ε−2km logm) space.

Proof. The algorithm operates as follows. We select
a sample of t = 6ε−2k logm voters, uniformly at random.
Then, we find a winning committee of the sampled voters
(with respect to Approval-CC) and return it as a winning
committee for the whole election. We show that a winning
committee of the sampled voters is, with high probability,
an ε-winning committee for the whole election. Notice that
in order to store the votes of t voters, our algorithm uses mt
space, as claimed.
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Next we prove that, with high probability, our algorithm
returns an ε-winning committee. Let E = (C, V ) denote
the whole election and let ER = (C, VR) denote the sampled
election, where VR denotes the set of t sampled voters. Let S
be a winning committee in the whole election. Let scoreE(S)
(scoreER(S)) denote the score of S in the whole election (in
the sampled election, respectively).

Let us first consider the case where scoreE(S) < εn, that
is, where there are less than εn voters being satisfied by S.
In this case any committee is ε-winning, thus our algorithm
is always correct. Therefore, from now on we assume that
there are at least εn voters satisfied by S.

The next claim concentrates on the winning committee S,
which, since it is winning in E, has high score in E; the claim
shows that, with high probability, S also has high score in
ER. The factor n

t
is a normalization factor.

Claim 1 n
t
· scoreER(S) ≥ scoreE(S)− ε

2
n holds with prob-

ability at least 1−m−k.

Proof of claim 1. For i ∈ [t], let Xi be an indicator
random variable such that Xi = 1 if the ith sampled voter
is satisfied by S, and Xi = 0 otherwise. Let X =

∑
i∈[t] Xi.

Since scoreE(S) equals the number of voters in the whole
election which are satisfied by S, it holds that

P[Xi = 1] = scoreE(S)/n

for each i ∈ [t]. Then, from linearity of expectation, we
conclude that

E[X] =
t

n
· scoreE(S).

This means that, in expectation, the score of S in ER is as
claimed; we use Hoeffding’s inequality (see Theorem 1) to
show concentration, as follows.

P
[n
t
X <

n

t
E[X]− ε

2
n
]

= P
[
X < E[X]− ε

2
t
]

≤ e−2( ε
2

)26ε−2k logm

≤ m−k.

(proof of claim 1)

Claim 1 shows that, with high probability, a committee
with high score in the whole election also gets a relatively
high score in the sampled election. Next we show that, with
high probability, a committee with low score in the whole
election also gets a low score in the sampled election.

Claim 2 Let S′ be a committee for which it holds that
scoreE(S′) ≤ (1 − ε) · scoreE(S). Then, with probability
at least 1 − m−2k, it holds that n

t
· scoreER(S′) ≤ (1 − ε)·

scoreE(S) + ε
2
n.

Proof of claim 2. Let S′ be such that scoreE(S′) ≤
(1−ε) ·scoreE(S). For i ∈ [t], let Xi be an indicator random
variable such that Xi = 1 if the ith sampled voter is satisfied
by S′, and Xi = 0 otherwise. Let X =

∑
i∈[t] Xi. Since

scoreE(S′) equals the number of voters in the whole election
which are satisfied by S′, it holds that

P[Xi = 1] =
scoreE(S′)

n

for each i ∈ [t]. Then, from linearity of expectation, we
conclude that

E[X] =
t

n
· scoreE(S′) ≤ t

n
· (1− ε) · scoreE(S).

This means that, in expectation, the score of S in ER is as
claimed. Since the Xi’s are independent and all of them are
bounded, we use Hoeffding’s inequality (see Theorem 1) to
show concentration, as follows.

P
[n
t
·X >

n

t
· E[X] +

ε

2
n
]

= P
[
X − E[X] >

ε

2
t
]

< e−2(ε/2)26ε−2k logm

≤ m−2k.

(proof of claim 2)

Since there are at most
(
m
k

)
≤ mk committees, and there-

fore at most mk committees S′ for which scoreE(S′) ≤
(1−ε)·scoreE(S) holds (and these are exactly the committees
which are not ε-winning), we can apply union bound on the
result proved in Claim 2, to get that with high probability,
the score of S in ER is strictly higher than the score of any
committee S′ which is not ε-winning. Thus, our algorithm
returns, with high probability, an ε-winning committee.

It turns out that it is possible to extend the sampling-
based streaming algorithm described in the proof of Theo-
rem 1 to work also for Borda-CC, albeit with some increase
of the space complexity. Informally, the increase of the space
complexity is because the proof needs to take care for the
fact that the score difference induced by a single voter is
greater in Borda-CC than it is in Approval-CC: while in
Approval-CC, the satisfaction of a voter from a committee
is either 0 or 1, in Borda-CC it is anything between 0 to
m− 1.

Theorem 2 There is an ε-approximate streaming algorithm
for Borda-CC which uses O(ε−2k3m3 logm) space.

Proof. Let t = 10ε−2km2. Similarly in spirit to the al-
gorithm presented in the proof of Theorem 1, our algorithm
samples k2t voters, select a winning committee in the sam-
pled election, and declares it as an ε-winning committee for
the whole election. Since storing the vote of each sampled
voter takes m logm space, we get the claimed space com-
plexity. Next we prove the correctness of the algorithm.

Fix an election E, a committee S, a committee member
c, and consider a voter v. We define the score given to c
by v with respect to S, denoted by scorev,SE (c) to be the
Borda-score of c in the preference order of v, if, among the
candidates of S, c is the representative of v; that is, if, among
the candidates of S, v ranks c the highest. We define it to be
0 otherwise. Further, we define the score of c with respect to
S, denoted by scoreSE(c) to be the sum over all voters, that

is, scoreSE(c) =
∑
i∈[n] scorevi,SE (c). Further, as before, we

define scoreE(S) to be the score of S, and, indeed, it holds
that scoreE(S) =

∑
c∈S scoreSE(c).

We begin by showing that, fixing a committee S and a
committee member c, it is possible to estimate the score of
c with respect to S by sampling t voters. Let E denote
the whole election, and let ER denote the sampled election,
containing t voters (where t is as defined in the beginning
of the current theorem’s proof) chosen uniformly at random
from E. The following claim shows that with high probabil-
ity the sampled election roughly preserves the score of any
committee.

Claim 3 Let S be a committee and c a committee member.
Then, |n

t
· scoreSER(c)− scoreSE(c)| ≤ εn/2 holds with proba-
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bility at least 1− 1/m3k, where ER is obtained by sampling
each voter in E independently with probability t/n.

Proof of claim 3. For the committee S and the com-
mittee member c, we define a random variable Xi, i ∈ [t],

such that Xi = scorevi,SER
(c), where vi is the ith sampled

voter. It holds that

E[Xi] =
1

n
scoreSE(c).

Letting X =
∑
i∈[t] Xi, we have the following (from lin-

earity of expectation):

E[X] =
t

n
scoreSE(c).

Importantly, note that the variables Xi have the following
properties:

• They are independent; this follows since we consider
each committee member separately.

• They are bounded; specifically, 0 ≤ Xi ≤ m holds for
each i ∈ [t].

Utilizing the above two properties, we can apply a variation
of Hoeffding’s inequality (see Theorem 1) and conclude that:

P
[
|n
t
·X − scoreSE(c)| ≥ nε/2

]
= P[|X − E[X]| ≥ tε/2]

≤ 2e
− 2(ε/2)2t

(m+1)2

≤ 1

m3k
,

where the first inequality follows from Hoeffding’s inequality
(see Theorem 1) and last inequality follows from our defini-
tion of the sample size t. (of claim 3)

Claim 3 shows that by sampling t voters, we get a good
estimation for the score of a candidate with respect to some
committee. Let E denote the whole election, and let ER
denote the sampled election, containing k2t voters (where t
is as defined in the beginning of the current theorem’s proof)
chosen uniformly at random from E. Next we show that, by
sampling k2t voters, we get a good estimation for the score
of a committee.

Claim 4 Let S be a committee. Then, |n
t
· scoreER(S) −

scoreE(S)| ≤ nε/2 holds with probability at least 1 − 1/mk,
where ER is obtained by sampling each voter in E indepen-
dently with probability k2t/n.

Proof of claim 4. Let S be a committee containing the
committee members c1, . . . , ck. For each j ∈ [k], we apply
Claim 3 on the committee S and the committee member cj
with ε′ = ε/k. Let us denote the random variable containing
the estimated score of committee member cj with respect to
committee S by Yj ; that is, Yj is the estimated value of
scoreSE(cj), therefore, Yj = scoreSER(cj) using Claim 3. Let

Y =
∑
j∈[k] Yj . Since scoreE(S) =

∑
j∈[k] scoreSE(cj), and

from linearity of expectation, it follows that

E[Y ] =
t

n
· scoreE(S).

Further, we have that:

P
[
|n
t
· Y − scoreE(S)| ≥ nε/2

]
≤ P

[
Σj∈[k]|Yj − E[Yj ]| ≥ nkε′/2

]
≤
∑
j∈[k]

(
P
[
|Yj − E[Yj ]| ≥ nε′/2

])
≤ k

m2k

≤ 1

mk
,

where the first inequality follows from the definitions of Y
and ε′, the second inequality follows from applying a union
bound over the committee members c1, . . . , ck, and the third
inequality follows from Claim 3. (of claim 4)

Finally, building upon Claim 4, we apply union bound on
all
(
m
k

)
committees of size k. Following this union bound, we

conclude that, with high probability, the algorithm returns
an ε-winning committee.

We mention that the result described in Theorem 2 trans-
fers to all scoring rules, albeit with some increase of the
space complexity. That is, careful analysis of the proof of
Theorem 2 reveals that, since we can upper bound the val-
ues of the random variables Xj by m, it follows that we can
apply Hoeffding’s inequality (see Theorem 1), which causes
an increase of the space complexity by a multiplicative fac-
tor of m2, compared to the space complexity that we get for
Approval-CC.

Considering any normalized scoring vector (α1, α2, . . . , αm)
with α1 ≥ . . . ≥ αm such that α1 is the value given by a
voter to her first-choice candidate, and following the same
reasoning as described above, we see that applying Hoeffd-
ing’s inequality (see Theorem 1) causes an increase of the
space complexity by a multiplicative factor of α2

1, compared
to the space complexity we get for Approval-CC. Specifi-
cally, the resulting space complexity is O(ε−2k3α2

1m logm).
We know that scoring rules remain unchanged if we multiply
every αi by any constant λ > 0 and/or add any constant µ.
Hence, we can assume without loss of generality that for any
score vector α, there exists a j such that αj −αj+1 = 1 and
αk = 0 for all k > j. We call such an α a normalized score
vector.

Next we move on to consider Monroe (M), beginning with
the arguably simpler case of Approval-M. Our algorithm is
again based on sampling a small number of voters and com-
puting a winning committee for them. The analysis is more
involved, since we cannot consider all assignments, but only
M-assignments. A naive analysis would apply union bound
on all M-assignments, but since there are O(kn) such as-
signments, we would get linear space in the number of vot-
ers, which would be too much. Fortunately, we can do bet-
ter, building upon some structural observations, as we show
next.

Theorem 3 There is an ε-approximate streaming algorithm
for Approval-M which uses O(ε−2k3m logm) space.

Proof. The overall idea is to consider any committee S
with its optimal assignment A∗. We will show that, with
high probability, with respect to S, the score of the assign-
ment A∗ on a sampled election is close to being the actual
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score of the committee S on the sampled election. The the-
orem would then follows by union bound over all

(
m
k

)
com-

mittees.
More specifically, for each committee S together with its

optimal assignment A∗, we define a preserving subset to be
a subset EP of the election E such that, for each committee
member c ∈ S, the fraction of voters assigned to c which
are satisfied by c, as well as the fraction of voters assigned
to c which are not satisfied by c, is preserved. Formally, we
define a preserving subset as follows.

Definition 3 (preserving subset) Let S be a committee,
let A∗ be its optimal assignment, and let EP be a subset of
the election E. Let ,A∗

EP
(ci) denote the set of voters in EP

which are assigned to ci by A∗ and are satisfied by ci (that

is, it holds that ci ∈ v), and let /A∗
EP

(ci) denote the set of
voters in EP which are assigned to ci by A∗ and are not
satisfied by ci (that is, it holds that ci /∈ v). Then, a subset
EP of the election E is a preserving subset if for each ci ∈ S
it holds that

(1) |,A∗
EP (ci)| =

|EP |
|E| · |,

A∗
E (ci)|

and that

(2) |/A∗
EP (ci)| =

|EP |
|E| · |/

A∗
E (ci)|,

That is, a preserving subset is a subset of the voters of
some given election which, with respect to the optimal as-
signment of a given committee, preserves the (normalized)
number of voters assigned to each candidate and are satis-
fied (unsatisfied) by it. Next we show that, for each com-
mittee S, with high probability a random subset containing
t = O(ε−2k3 logm) is close to being a preserving subset.

Claim 5 Let ER be a random subset of voters from E ob-
tained by sampling each voter independently at random with
probability t/n. Then, for each committee S, with probabil-
ity at least 1−m−2k, it holds that there exists a preserving
subset EP which can be obtained from ER by changing the
vote of at most εt voters.

Proof of claim 5. It suffices to show that, for each ci ∈
S, it holds that ,A∗

E (ci) = n
t
,A∗
ER

(ci)± εn
2k

and also it holds

that /A∗
E (ci) = n

t
/A∗
ER

(ci) ± εn
2k

, since then, the fraction of

each of the k sets ,A∗
E (ci) and each of the k sets /A∗

E (ci)
can preserve its respective fraction by changing the votes of
at most εn

2k
voters.

Since each voter is sampled with probability t/n, we have
that

E[,A∗
ER(ci)] =

t

n
,A∗
E (ci).

Since each voter is sampled independently, we can apply
Hoeffding’s inequality (see Theorem 1), to have the follow-
ing.

P
[
|,A∗

ER(ci)− E[,A∗
ER(ci)]| ≥

εt

2k

]
≤ 2e

− 2tε2

4k2 = O(m−2k)

and

P
[
|/A∗

ER(ci)− E[/A∗
ER(ci)]| ≥

εt

2k

]
≤ 2e

− 2tε2

4k2 = O(m−2k).

Thus, we are done. (of claim 5)

Next we show that, for each committee S, its optimal
assignment A∗ in E is also an optimal assignment in any
preserving subset EP of E. Notice that the following claim
is not probabilistic but combinatorial.

Claim 6 Let S be a committee, A∗ be its optimal assign-
ment, and EP be a preserving subset of E. Then, the re-
striction of A∗ to EP is an optimal assignment for S in EP .

Proof of claim 6. Intuitively, if there was a better as-
signment AP than A∗ for S in EP , then we could change A∗

accordingly and get a better assignment for S in E, contra-
dicting the optimality of A∗ for S in E.

More formally, let S be a committee, A∗ be its optimal
assignment, and EP be a preserving subset of E. Towards a
contradiction, assume that there is an assignment AP 6= A∗

such that scoreAPEP (S) > scoreA
∗

EP
(S). Consider ĒP = E \EP

and notice that, since EP is a preserving subset of E, it also
holds that ĒP is a preserving subset of E, and we have that

scoreA
∗

E (S) =
|EP |
|E| · scoreA

∗
E (S) +

|ĒP |
|E| · scoreA

∗
E (S)

= scoreA
∗

EP (S) + scoreA
∗

ĒP
(S)

< scoreAPEP (S) + scoreA
∗

ĒP
(S).

Since AP does not violate the Monroe property, we have
constructed a better assignment for S in E, contradicting
the optimality of A∗ for S in E. (of claim 6)

Building upon the last two claims proven above, the fol-
lowing claim shows that, for each committee S, with high
probability, the score of its optimal assignment A∗ on E is
a good estimator for its score on the sampled election ER.

Claim 7 For each committee S and its optimal assignment
A∗, with probability at least 1−m−2k it holds that:

scoreER(S) + εt ≥ scoreA
∗

ER(S) ≥ scoreER(S)− εt.

Proof of claim 7. Combining the last two claims, we
have that, with high probability, there exists a preserving
subset EP , obtained from the sampled election by changing
at most εt voters. Consider the preserving subset EP which
is obtained from the sampled election ER by changing at
most εt voters.

By the first claim, we have that the assignment A∗ is
optimal for S on EP . Consider any other assignment. Since
A∗ is optimal for S on EP and EP is ε-close to ER, the two
inequalities hold, since ε bounds the score difference between
A∗ on ER and any other assignment. (of claim 7)

Following the last claim, we have that, for each commit-
tee S, a random sample is indeed a good estimator for the
score of S. Then, the claim follows by union bound over all
possible

(
m
k

)
committees.

Theorem 4 There is an ε-approximate streaming algorithm
for Borda-M which uses O(ε−2k3m5 logm) space.

Proof sketch. The idea of the proof is very similar to
Approval-M, when we take into account the following two
differences.

The first difference is that, instead of only two blocks for
each committee member, namely the , block and the /
block, in Borda-M we shall consider m blocks for each com-
mittee member, where a voter v is assigned to the lth block
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(for l ∈ [m]) of committee member c if v is represented by c
and the satisfaction of v from c is j.

The second difference is that we shall bound the difference
between the actual score of a committee and its score in the
sampled election differently; specifically, we have that

scoreER(S) + εmt ≥ scoreA
∗

ER(S) ≥ scoreER(S)− εmt,

since each voter whose vote is changed can increase or de-
crease the score of each committee by O(m) and not only
by O(1) as for Approval-M.

The proof then follows similar lines as the proof given
for Approval-M (see Theorem 3), but the space complexity
increases. Specifically, the first difference described above
causes the space complexity to multiply by a factor ofO(m2),
since we shall consider those m blocks (instead of only 2) and
take into account that the error can multiply by m. Simi-
larly, the second difference described above causes the space
complexity to multiply by another factor of O(m2), since
we shall increase the size of the sample to account for the
increased score difference.

3.2 Lower Bounds
In this section we prove two types of lower bounds which

complement our algorithms. We begin by showing that any
streaming algorithm shall use space which is linear in the
number m of candidates.

Theorem 5 There is an ε > 0 such that any ε-approximate
streaming algorithm for Approval-CC or Approval-M needs
Ω(m) space.

Proof. We reduce from the Set Disjointness problem
in communication complexity. In the Set Disjointness
problem, there is a set of elements U = x1, . . . , xu, and two
players, Alice and Bob. Alice is given a subset A ⊆ U and
Bob is given a subset B ⊆ U . Then, Alice sends a message
to Bob, and Bob has to decide whether A∩B = ∅, in which
case Bob shall accept; otherwise, that is, if there is some
index i ∈ [u] such that xi ∈ A∩B, then Bob shall reject. It
is known that Alice shall send Ω(u) bits in order for Bob to
be correct with high probability [15].

We first describe the reduction for Approval-CC; that is,
given an instance of Set Disjointness, we construct a vote
stream for Approval-CC, as follows. we create an election
with u+1 candidates, where for each xi (i ∈ [u]) we create a
corresponding candidate ci, and we have another candidate
d. Then, Alice inserts two voters, v1 and v′1, to the vote
stream, where both v1 and v′1 are approving the candidates
corresponding to the elements in A (that is, v1 = v′1 =
{ci : xi ∈ A}. Then, Bob inserts two voters, v2 and v′2,
to the vote stream, where, similarly, v2 = v′2 = {ci : xi ∈
B}. Finally, Bob inserts three voters, v3, v4, v5, all of which
approve only the candidate d. This finishes the description
of the reduction.

For example, letting U = {x1, x2, x3} (thus, u = 3), A =
{x2}, and B = {x1, x2}, we will have that v1 and v′1 both
approve c2, v2 and v′2 both approve c1 and c2, and v3, v4,
and v5 all approve d.

We assume, towards a contradiction, that there is a stream-
ing algorithm for Approval-CC which uses o(m) space. We
use that algorithm with k = 1 and ε = 1/7. Notice that if
A ∩ B = ∅, then each candidate ci covers at most 2 voters,
while if there is some index i ∈ [u] such that xi ∈ A∩B, then
the candidate ci covers 4 voters. Irrespectively, the candi-
date d covers 3 voters. Thus, the streaming algorithm would

declare d as the winner if and only if A and B are disjoint,
contradicting the lower bound for Set Disjointness.

As for Approval-M, notice that in the reduction described
above the size k of the committee is 1. In this case, Approval-
CC and Approval-M are equivalent, thus the reduction trans-
fers to Approval-M as it is.

It turns out that with some modifications, the reduction
described in the proof of Theorem 6 can be made to work
also for Borda-CC and Borda-M.

Theorem 6 There is an ε > 0 such that any ε-approximate
streaming algorithm for Borda-CC or Borda-M needs Ω(m)
space.

Proof. We again reduce from Set Disjointness where
Alice (Bob) is given a subset A ⊆ U (B ⊆ U), for U =
{x1, . . . , xu}, and Alice and Bob shall decide together whether
A ∩ B = ∅ (see the proof of Theorem 6 for a more detailed
description of Set Disjointness).

We describe first the reduction for Borda-CC; that is,
given an instance of Set Disjointness, we construct a vote
stream for Borda-CC, as follows. We create an election
with 4u+ 1 candidates, where for each xi (i ∈ [u]) we create
a corresponding candidate ci; we have another candidate d;
and another 3u dummy candidates d1, . . . , d3u.

Corresponding to her set A, Alice inserts one voter v1 to
the vote stream, ranking first those |A| candidates ci which
correspond to the elements xi in A, then u−|A| dummy can-
didates d1, . . . , du−|A|, then d, then the remaining 2u + |A|
dummy candidates du−|A|+1, . . . , d3u, and ranking last those
u − |A| candidates ci which correspond to the elements xi
not in A. Bob behaves quite similarly, by inserting one
voter v2 to the vote stream, ranking first those |B| can-
didates ci which correspond to the elements xi in B, then
u − |A| dummy candidates d3u, . . . , d3u−|B|+1 (notice the
change of order of the dummy candidates with respect to
v1), then d, then the remaining 2u+ |B| dummy candidates
d2u−|B|, . . . , d1 (notice again the change of order), and rank-
ing last those u− |B| candidates ci which correspond to the
elements xi not in B. This finishes the description of the re-
duction. For example, letting U = {x1, x2, x3} (thus, u = 3),
A = {x2}, and B = {x1, x2}, we will have that v1 : c2 �
d1 � d2 � d � d3 � d4 � d5 � d6 � d7 � d8 � d9 � c1 � c3
and v2 : c1 � c2 � d9 � d � d8 � d7 � d6 � d5 � d4 � d3 �
d2 � c1 � c3.

We argue that d is a Borda winner in the reduced election
if and only if A∩B = ∅. Let us denote the Borda score of a
candidate c in the election containing the voters v1 and v2

by s(c). For the dummy candidates we have that s(di) ≤ 5u
(for any i ∈ [3u]); this can be seen by observing that the
dummy candidates achieve maximum score in the extreme
case where A = B = ∅, in which di is getting 4u − i points
from v1 and another u+ i points from v2.

Now, consider a candidate ci corresponding to an element
xi which appears only in one of the sets, either A or B; with-
out loss of generality, let ci be a candidate corresponding to
an element xi such that xi ∈ A and xi /∈ B. Then, we have
that ci gets at most 4u points from v1 and at most u − 1
points from v2. Thus, we conclude that s(ci) ≤ 5u−1. Sim-
ilarly, consider a candidate ci corresponding to an element
xi which appears both in A and B. Then, we have that ci
gets at least 3u+ 1 points from each of v1 and v2. Thus, we
conclude that s(ci) ≥ 6u+ 2.
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Finally, notice that, irrespective of the contents of A and
B, it holds that s(d) = 6u . Therefore, following the com-
putation described in the last paragraph, we conclude that
d is a Borda winner if and only if A and B are disjoint. So,
assuming, towards a contradiction, that there is a streaming
algorithm for Borda-CC which uses o(m) space, we use that
algorithm with k = 1 and ε = 1/3. Since the streaming al-
gorithm would declare d as the winner if and only if A and
B are disjoint, it would contradict the lower bound for Set
Disjointness.

As for Borda-M, notice that in the reduction described
above the size k of the committee is 1. In this case, Borda-
CC and Borda-M are equivalent, thus the reduction transfers
to Borda-M as it is.

We continue by observing the following lower bound, with
respect to the required approximation ε (notice that the fol-
lowing theorem is also a corollary of [4, Theorem 10]).

Theorem 7 For any ε > 0, any ε-approximate streaming
algorithm for Approval-CC needs Ω(ε−1) space.

Proof. We reduce from the `1-Heavy Hitters problem,
which, given a stream containing n items, each item is of
one type out of m item types, an approximation parameter
ε, and a further parameter φ, asks for returning all items
which occur at least φn times, while not returning any item
which occurs less than (φ − ε)n times. A lower bound of
O(ε−1) is known for `1-Heavy Hitters [4].

Given an instance of `1-Heavy Hitters, we create an
instance for Approval-CC, as follows. For each item type, we
create a candidate. For each item in the stream, we create
a voter approving only the candidate corresponding to its
item type. We set k = 1, keep the same ε, and set φ = 1/2.
This finishes the description of the reduction. Correctness
and space complexity follows immediately.

The reader might notice that the lower bounds presented
in this section are not tight. We leave the task of closing the
gap between our upper bounds and lower bounds to future
research.

4. DISCUSSION AND OUTLOOK
We have described streaming algorithms which find ap-

proximate winners for several well-known proportional rep-
resentation multiwinner voting rules. Below we mention
some extensions to our model, discuss the usefulness of our
results, and mention several avenues for future research.

More general models. In this paper we concentrated on
a simple streaming model where (1) each item in the stream
is a voter, (2) there are no assumptions on the order by
which the voters arrive to the stream, and (3) the goal is to
compute an approximate winner at the end of the stream.

There are other relevant models, which we mention below.

• In the sliding windows model, the goal is to compute
an approximate winner with respect to the last t el-
ements in the stream, for some given t. Since our
streaming algorithms are based on sampling, and sam-
pling from a sliding window can be done efficiently [1],
our streaming algorithms extend to this model as well.
This model is useful for identifying emerging trends.

• It is possible to use our streaming algorithms not only
to compute an approximate winner at the end of the

stream, but, since they are based on sampling, they
can be used to compute an approximate winner at any
time during the stream.

• Our streaming algorithms extend also to situations
where we do not know the number n of the voters
a-priori, as is apparent by a recent result [4], and since
our streaming algorithms are based on sampling.

• Consider situations where a voter might gradually ap-
prove more candidates. A corresponding stream model
might be that each item in the stream is a tuple (vi, cj),
where an item (vi, cj) means that voter vi have just de-
cided to approve candidate cj . Such a stream model
might model online shopping websites, where an item
(vi, cj) would arrive to the stream whenever the per-
son vi decided to search for the product cj . Impor-
tantly, since we can decide at the beginning of the
stream which voters to sample, it follows that our up-
per bounds also extend to this, more general model.

Less general models. It might be interesting to study
models where we assume some structure in the stream. Specif-
ically, one might consider uniform streams, where the vot-
ers are not arriving in an arbitrary (possibly adversarial)
order, but in a random order, by choosing a random per-
mutation uniformly at random. The hope is that for such
uniform streams it might be possible to design streaming
algorithms with better space complexity. Indeed, we believe
that, at least for uniform streams, there are streaming algo-
rithms with better space complexity for round-based voting
rules, such as the greedy versions of Chamberlin–Courant
and Monroe [22] (in short, one might sample several sub-
elections, and use each subelection for a different round).

Such results would be relevant also for situations without
huge number of voters, but with time constraints; consider
the following example (which we thank an anonymous re-
viewer for suggesting it). A distinguished speaker is to give
the same talk at k different dates, and, in order to maximize
the total number of attendees, an online scheduling poll is
created in order to decide upon the dates. The problem
is that we have to decide upon the dates very soon, so we
cannot wait for everybody to answer; our sampling-based
streaming algorithms (and possibly even better algorithms
assuming stream uniformity) could tell us how many voters
we need in the scheduling poll.

Another restricted model might be to consider restricted
domains, thus not considering all possible elections, but only
those elections which adhere to some restricted domains,
such as single peaked domains and single crossing domains.
It is not clear whether imposing structural constraints on
the elections would lower the needed space complexity.

Other multiwinner voting rules. Indeed, streaming al-
gorithms for other multiwinner voting rules deserve to be
studied as well. We specifically mention Single Transferable
Vote (STV) which also aims at proportional representation.
Naturally, there are other multiwinner voting rules which do
not aim at proportional representation; we mention k-best
rules, committee scoring rules, and various extensions to
Condorcet consistent voting rules, as some important fami-
lies of multiwinner voting rules.
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