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ABSTRACT
Max-sum is a version of Belief Propagation, used for solving
DCOPs. On tree-structured problems, Max-sum converges to the
optimal solution in linear time. Unfortunately, on cyclic problems,
Max-sum does not converge and explores low quality solutions.
Damping is a method, often used for increasing the chances that
Belief Propagation will converge. That been said, it was not men-
tioned in the studies that proposed Max-sum for solving DCOPs.

In this paper we advance the research on incomplete inference
DCOP algorithms by investigating the effect of damping on Max-
sum. We prove that Max-sum with damping is guaranteed to con-
verge to the optimal solution in weakly polynomial time. Our
empirical results demonstrate a drastic improvement in the perfor-
mance of Max-sum, when using damping. However, in contrast to
the common assumption, that it performs best when converging, we
demonstrate that non converging versions perform efficient explo-
ration, and produce high quality results, when implemented within
an anytime framework.

1. INTRODUCTION
DCOP algorithms generally follow one of two broad approaches:

distributed search [7, 2, 6, 19] or inference [9, 8, 1, 14]. The Max-
sum algorithm [1] is an incomplete, GDL (Generalized Distribu-
tive Law) based inference algorithm that has drawn considerable
attention in recent years, including being proposed for multi-agent
applications such as sensor systems [16, 14] and task allocation for
rescue teams in disaster areas [11]. Max-sum is actually a version
of the well known Belief propagation algorithm [18], used for solv-
ing DCOPs. Agents in Max-sum propagate cost/utility information
to all neighbors. As is typical of inference algorithms, Max-sum
is purely exploitive both in the computation of its beliefs and in its
selection of values based on those beliefs.

Belief propagation in general (and Max-sum specifically) is
known to converge to the optimal solution on acyclic problems.
Unfortunately, there is no such guarantee for problems with cy-
cles [18, 1]. Furthermore, when the agents’ beliefs fail to converge,
the resulting assignments may be of low quality. In fact, many
DCOPs that were investigated in previous studies are dense and
indeed include multiple cycles (e.g., [7, 2]).

Damping is a method that was combined with Belief propagation
in order to decrease the effect of cyclic information propagation.
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By balancing the weight of the new calculation performed in each
iteration and the weight of calculations performed in previous iter-
ations, researchers have reported success in increasing the chances
for convergence of Belief propagation when applied in different
scenarios [5, 13, 15, 10]. Nevertheless, Damping was not men-
tioned in the papers that adopted Max-sum for solving DCOPs and
proposed extended versions of the algorithm [1, 12, 21].

In this paper we contribute to the development of incomplete
inference algorithms for solving DCOPs by investigating the effect
of using damping within the Max-sum algorithm.

2. THE MAX-SUM ALGORITHM
1Max-sum operates on a factor-graph, which is a bipartite graph

in which the nodes represent variables and constraints [4]. Each
variable-node representing a variable of the original DCOP is con-
nected to all function-nodes that represent constraints, which it is
involved in. All nodes are considered “agents" in Max-sum, i.e.,
they send and receive messages, and perform computation.

A message sent to or from variable-node x (for simplicity, we use
the same notation for a variable and the variable-node representing
it) is a vector of size |Dx| including a cost for each value in Dx. In
the first iteration all messages include vectors of zeros. A message
sent from a variable-node x to a function-node f in iteration i is
formalized as follows: Qi

x→f =
∑

f ′∈Fx,f ′ �=f R
i−1
f ′→x −α, where

Fx is the set of function-node neighbors of variable-node x and
Ri−1

f ′→x is the message sent to variable-node x by function-node f ′

in iteration i − 1. α is a constant that is reduced from all costs
included in the message (i.e., for each d ∈ Dx) in order to prevent
the costs carried by messages throughout the algorithm run from
growing arbitrarily.

A message sent from a function-node f to a variable-
node x in iteration i includes for each value d ∈ Dx:
minPA−xcost(〈x, d〉, PA−x), where PA−x is a possible com-
bination of value assignments to variables involved in f not in-
cluding x. The term cost(〈x, d〉, PA−x) represents the cost of
a partial assignment a = {〈x, d〉, PA−x}, which is: f(a) +∑

x′∈Xf ,x′ �=x,〈x′,d′〉∈a Q
i−1
x′→f .d

′, where f(a) is the original cost

in the constraint represented by f for the partial assignment a, Xf

is the set of variable-node neighbors of f , and Qi−1
x′→f .d

′ is the

cost that was received in the message sent from variable-node x′ in
iteration i − 1, for the value d′ that is assigned to x′ in a. x se-

lects its value assignment d̂ ∈ Dx following iteration k as follows:

d̂ = argmind∈Dx

∑
f∈Fx

Rk
f→x.d.

1For lack of space we do not present a formal definition of DCOP
and refer the reader to our recent paper [20].
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3. INTRODUCING DAMPING INTO MAX-
SUM

In order to add damping to Max-sum we introduce a parameter
λ ∈ (0, 1]. Before sending a message in iteration k an agent per-

forms calculations as in standard Max-sum. Denote by ̂mk
i→j the

result of the calculation made by agent Ai of the content of a mes-
sage intended to be sent from Ai to agent Aj in iteration k. Denote
by mk−1

i→j the message sent by Ai to Aj at iteration k − 1. The
message sent from Ai to Aj in iteration k is calculated as follows:

mk
i→j = λmk−1

i→j + (1 − λ)̂mk
i→j . Thus, λ expresses the weight

given to previously performed calculations with respect to the most
recent calculation performed. Moreover, when λ = 0 the resulting
algorithm is standard Max-sum.

In all our implementations damping was performed only by
variable-nodes. This allowed us to analyze the level of damping
with respect to n (the number of variables/agents in the problem).

4. CONVERGENCE RUNTIME BOUNDS
Standard Max-sum guarantees convergence in linear time to the

optimal solution, when the constraint graph (and as a result, the cor-
responding factor-graph as well) is tree-structured, i.e., contains no
cycles. We prove that on such problems, there exists a scenario in
which damping slows the convergence to weakly polynomial time.
Furthermore, we prove that in the worst case, Damped Max-sum
will converge on a tree-structured factor-graphs in weakly poly-
nomial time. The proofs were omitted for lack of space. Simi-
lar proofs can be applied to other structures on which Max-sum is
guaranteed to converge, e.g., graphs with a single cycle [17] and
directed acyclic graphs (on which it converges, but not necessary
to the optimal solution) [21].

5. EXPERIMENTAL EVALUATION
We performed a set of experiments comparing different versions

of the algorithm, using different λ values with standard Max-sum,
two versions that guarantee convergence: Bounded_Max-sum [12]
and Max-sum_ADVP [21] and the well known DSA algorithm (we
use type C with p = 0.7 [19]).

We evaluated the algorithms on random uniform DCOPs and
on structured and realistic problems, i.e., graph coloring, meeting
scheduling and scale-free, all formulated as minimization prob-
lems. At each experiment we randomly generated 50 different
problem instances and ran the algorithms for 5,000 iterations on
each of them. The results presented are an average of those 50 runs.
For each iteration we present the cost of the assignment that would
have been selected by each algorithm at that iteration. All algo-
rithms were implemented within the anytime framework proposed
in [20], which allowed us to report for each of them the best result
it traverses within 5, 000 iterations. Also, in all versions of Max-
Sum, we used value preferences selected randomly for the purpose
of tie breaking, as was suggested in [1].

Figure 1 presents the solution costs found by all algorithms
when solving uniform random problems containing 100 agents
with density (p1 = 0.1). Results of higher density problems
(p1 = 0.7) showed similar trends. The results per iteration show
that Damped Max-sum is inferior to DSA and the guaranteed con-
vergence version Max-sum_ADVP. That been said, the anytime re-
sults of Damped Max-sum using high λ values (0.7 and 0.9) signif-
icantly outperform DSA and Max-sum_ADVP. This suggests that
damping triggers efficient exploration by Max-sum, i.e., that in
contrast to the assumptions made in the Belief propagation liter-
ature, the best results of Max-sum are not achieved when it con-
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Figure 1: Costs of solutions for random uniform problems con-
taining 100 agents with relatively low density (p1 = 0.1).
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Figure 2: Costs of solutions for Graph coloring problems.

verges but rather (like in the case of local search) when there is a
balance between exploration and exploitation. On uniform random
problems containing 50 agents and on scale free nets, the trends
are similar to the results described above. Damped Max-sum im-
proves as more iterations are performed and explores solutions of
higher quality. Towards the end of the run, the results per itera-
tion of the version with λ = 0.9 produces in some iterations better
solutions than DSA and similar to Max-sum_ADVP. The anytime
results outperform the converging algorithm significantly.

On meeting scheduling and graph coloring problems, the results
of the Damped Max-sum versions did not exhibit such an improve-
ment, and explored solutions of similar quality throughout the run.
Figure 2 presents results on graph coloring problems. Interestingly,
the λ = 0.9 version on graph coloring seems to perform limited
exploration and traverse solutions with similar quality, while the
0.5 and 0.7 versions perform a higher level of exploration.

Our results indicate that, in contrast to the common assumption
regarding the role of damping in improving Belief propagation, by
increasing its convergence rate, the success of damping is in gen-
erating useful exploration of high quality solutions that can be cap-
tured by an anytime framework and outperform versions of Max-
sum that guarantee convergence, as Max-sum_ADVP.

6. CONCLUSION
Our results indicate that the most successful versions of the algo-

rithm are for relatively high values of λ. Moreover, while damping
improved the results of the algorithm drastically, in most cases it
did not converge within 5000 iterations. However, when combined
with an anytime framework that reports the best solution explored
by the algorithm, Max-sum with damping significantly outperforms
the best versions of Max-sum, and a standard local search algorithm
as well. This is in contrast to the common assumption in the graph-
ical models literature that BP performs best when it converges [3,
10]. Apparently, damping can be used to generate a balance be-
tween exploration and exploitation that results in traversal of high
quality solutions.
Acknowledgment: We thank the ABC Robotics Initiative at Ben-
Gurion University of the Negev, for funding this project.
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