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ABSTRACT
Norm monitoring often assumes that monitors have unlim-
ited resources to observe the environment and the actions
performed by agents. In this paper, we relax this assumption
and propose a practical resource-constrained norm monitor
capable of selecting the resources to be deployed based on
their cost and value to norm monitoring.

1. INTRODUCTION
Norms allow system designers to specify the desired be-

haviour of a multi-agent system [6]. In many domains, reg-
imenting these norms (i.e., making the violation of norms
impossible) is too rigid and undesirable. In these domains,
it is usually more adequate to employ norm enforcement
mechanisms that persuade agents to comply with norms by
imposing sanctions and rewards [15]. A key element of such
norm enforcement mechanisms is norm monitoring; i.e., the
process by which agent’s actions are observed and checked
against the norms. Norm monitoring requires the deploy-
ment of different types of resources that control the execu-
tion of some actions and also allow monitors to observe some
properties of the environment. These resources can be ex-
pensive, and there is usually a limited budget that can be
spent on monitoring norm compliance.

In this paper we propose a practical resource-constrained
norm monitor capable of selecting the resources to be mon-
itored based on their cost and value to norm monitoring.

2. PRELIMINARIES
L is a propositional language containing propositional sym-

bols, the logical connective ¬, and the true (false) proposi-
tion > (⊥). We will relate our formulae via logical entail-
ment ` (6`). The set of atomic formulas of L is built of a finite
set of propositional symbols that characterise the properties
of the world relevant to norm monitoring. Some of these
properties are static and not altered by action execution,
whereas other properties are dynamic and changed due to
agent actions. Specifically, we represent static properties as
a set1 of atomic formulas of L, denoted by g.

1In this paper sets are to be interpreted as the conjunction
of their elements.
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2.1 Action Definition
In line with the existing literature [3], actions are repre-

sented as a tuple 〈pre, post〉 containing preconditions and
postconditions, where these conditions are expressed as a
set of literals of L. Given an action a, we denote by pre(a)
and post(a) the action precondition and postcondition.

2.2 Resource Definition
A resource is a set of coupled controls and sensors that

have a unique cost. Controls allow agents to execute ac-
tions, whereas sensors allow some properties of the world
to be observed. The cost of a resource can represent the
economic cost of installing and maintaining it, the temporal
cost associated with processing the sensor and control data
obtained through the resource, etc. A resource is defined as
a tuple 〈control, sensor, cost〉, where:
• control is the set of actions whose execution is con-

trolled by the resource and that can be observed if the
resource is deployed;
• sensor is the set of properties of the world whose truth

value is observed when the resource is deployed;
• cost ∈ R≥0 is the cost of the resource.

Given a resource r, we define control(r), sensor(r) and
cost(r) as the actions and properties that can be observed
through the resource and the cost of the resource. Given a
resource r, we define the set of discernible literals, denoted
by dis(r) as:( ⋃

∀p∈sensor(r)

{p,¬p}

)⋃( ⋃
∀a∈control(r)

pre(a) ∪ post(a)

)
We also extend these definitions to sets of resources.

2.3 Norm Definition
We consider norms as formal statements that define pat-

terns of behaviour by means of deontic modalities (i.e., obli-
gations and prohibitions) [9, 13, 15, 18]. In consonance with
the related literature [1, 14, 2], we consider a “closed le-
gal system”, where everything is permitted by default, and
obligation and prohibition norms define exceptions to this
default rule. More formally, a norm is defined as a tuple
〈deon, cond, activ, expir〉, where:
• deon ∈ {O,F} is the deontic modality, determining if

the norm is an obligation (O) or prohibition (F);
• cond is the norm condition, i.e., the action whose exe-

cution is regulated by the norm;
• activ is a set of literals of L that represents the acti-

vation condition, i.e., the circumstances in which the
norm becomes relevant;
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• expir is a set of literals of L that represents the expi-
ration condition, i.e., the circumstances in which the
norm is no longer relevant.

Given a norm n, we define cond(n), activ(n) and expir(n)
as the norm condition, and the activation and expiration
conditions, respectively.

3. NORM MONITOR

Definition 1. A norm monitor is defined as a tuple
〈A,R,N, b〉 where: A is the set of actions that can be exe-
cuted by agents; R is a set of resources that can be deployed;
N is the set of norms that the monitor needs to check; and
b ∈ R≥0 represents the budget of the norm monitor.

The norm monitor has to select a set of resources satisfying
the budget condition such that the detection of norm vio-
lations and fulfilments is maximal. This is an optimization
problem such that:

max
S⊆R

v(S) subject to cost(S) ≤ b

where v is a function determining the value of a set of re-
sources to norm monitoring.

3.1 Resource Value
We propose to calculate the value of a set of resources as

an estimation of the number of norms whose compliance can
be checked through these resources; i.e., the resources cov-
erage of norm compliance. However, not all norms have the
same probability of becoming relevant (e.g., norms whose
activation condition is an empty set of literals are always
activated), thus we weight each norm with its probability:

v(S) =
∑
n∈N

pr(n)× cover(S, n)

where pr(n) is the probability of a norm and cover(S, n) is
the coverage of a norm provided by a set of resources.

We define the probability of a norm becoming relevant
considering the probability of its activation being true, the
probability in which the action in the norm condition can
be executed and the probability of its expiration being false.
For simplicity, we assume these three events are independent
and we define the probability of a norm as follows:∏

l∈activ(n)

pr(l)×
∏

l∈pre(cond(n))

pr(l)× max
l∈expir(n)

pr(¬l)

note that a set of literals is true when all their literals are
true (i.e., we defined the probability of a set of literals as the
product among the probability of each literal in the set) and
it is false when just one of these literals is false (i.e., we de-
fined this probability as the maximum among the probability
of the negation of each literal in the set). The probability
of a literal is determined by the chances it is or becomes
true (i.e., the number of actions having as postcondition the
literal):

pr(l) =


1 g ` l

0 g ` ¬l
|{a|a∈A∧l∈post(a)}|

|A| otherwise

To check compliance with a norm, the monitor needs to
be able to observe the execution of the norm condition and
the truth value of the activation and expiration condition.

Given a norm n ∈ N , we define its coverage by a set of
resources S as the ratio of elements (i.e., action and literals)
needed to check compliance that can be observed through
this set of resources:

|cond(n) ∩ control(S)|+ |activ(n) ∩ dis(S)|+ |expir(n) ∩ dis(S)|
|cond(n)|+ |activ(n)|+ |expir(n)|

The resource value function presents an interesting prop-
erty that allows us to compute efficient suboptimal solutions
with a given guarantee. In particular, this function is sub-
modular; i.e., it exhibits a diminishing property: selecting
a resource when few resources have been selected has more
value (provides more information to check norm compliance)
than selecting it after more resources have been selected.

3.2 CEF Algorithm
To select resources the monitor uses the CEF algorithm

[12], which is a greedy algorithm for submodular function
maximization. In particular, this algorithm performs: (i) a
greedy search that uses the value to rank resources ignoring
costs (i.e., the resource with the highest value is selected
and added to the solution, this process is followed until it
is not possible to add more resources without exceeding the
budget); and (ii) a greedy search that uses the ratio value
by cost to rank resources (i.e., the resource with the high-
est ratio value by cost is selected and added to the solution,
this process is followed until it is not possible to add more
resources without exceeding the budget). Then, the CEF al-
gorithm returns the solution with the highest value. It has
been demonstrated that this algorithm achieves an approxi-
mation guarantee of 1

2
(1− 1

e
), whereas the empirical results

show that this bound is much tighter.

4. DISCUSSION
The existing literature on norm enforcement has proposed

several methods for monitoring norm compliance and apply-
ing sanctions.

First proposals on norm enforcement considered closed
and relatively small multi-agent systems (MAS) and, thus,
they proposed centralised architectures to enforce norm com-
pliance [10, 5]. Later the interest switched from closed MAS
to open MAS and there was a need for more efficient and
scalable distributed architectures to norm enforcement [16,
15, 19, 11]. All of these proposals assumed that monitors
have complete information about the actions performed by
agents and the environment. In that case, checking norm
compliance is easy as monitors have complete information
on the triggering of norm violations (e.g., when forbidden
actions are performed) and fulfilments (e.g., when obliga-
tory actions are performed).

Exceptions to these complete monitoring approaches are
three very recent proposals [4, 2, 7, 8] that address partial in-
formation about the environment and the actions performed
by agents. In particular, they propose methods to overcome
partial information by adding more monitors [4], limiting
the norms to what can be observed [2], selecting agents un-
der surveillance [7], and reconstructing unobserved actions
[8]. Although these proposals allow the application of nor-
mative MAS into real world problems characterised by lim-
ited information, they neglect the cost of observing agent
actions and the environment. Our paper presents the first
resource-constrained norm monitor that is able to consider
observation costs.
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