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Department of Computer Science and Centre for Discrete Mathematics and its Applications (DIMAP)
University of Warwick1

Institute of Computer Science, Foundation for Research and Technology–Hellas (ICS–FORTH), Greece2

{A.Czumaj, M.Fasoulakis, M.Jurdzinski}@warwick.ac.uk

ABSTRACT
In this paper we study the complexity of finding approximate Nash
equilibria in multi-player normal-form games. First, for any con-
stant number n, we present a polynomial-time algorithm for com-
puting a relative

(
1− 1

1+(n−1)n

)
-Nash equilibrium in arbitrary n-

player games and a relative
(

1− 1
1+(n−1)n−1

)
-Nash equilibrium in

symmetric n-player games. Next, we show that there is an addi-
tive ε-well-supported Nash equilibrium, for any ε > 0, with sup-
port equal to O(ln(nm/ε)/ε2), where m is the number of pure
strategies. Finally, we prove that finding additive approximate Nash
equilibria is easy in random multi-player games.

1. INTRODUCTION
The problem of computing of a Nash equilibrium is one of the

most fundamental problems in modern game theory. Given the evi-
dence of its intractability, in recent years an extensive research has
focused on the approximation of Nash equilibria. In this paper we
study the fundamental problem of the complexity of approximating
Nash equilibria in multi-player normal-form games.

We will consider (finite) games with n players, 1, . . . ,n, each
player having a finite set of m strategies, n,m ≥ 2. A Nash equi-
librium is any strategy profile such that none of the players has an
incentive to change her strategy. While we normally would like to
consider Nash equilibria and study their properties, there is a strong
evidence that finding them is computationally hard (see [7, 11]).
Therefore we will focus on a relaxed version thereof, on the ap-
proximation of Nash equilibria. There are two different notions of
approximation of Nash equilibria, one with additive and one with
relative error/incentive, and then a further variant of the ε-well-
supported Nash equilibrium. An additive ε-Nash equilibrium is a
strategy profile such that any player has an incentive of at most ε to
change her strategy. A relative ε-Nash equilibrium is a strategy pro-
file in which the payoff of each player is at least (1− ε) times the
payoff of the best-response strategy. An additive ε-well-supported
Nash equilibrium requires that any player has an incentive of at
most ε to deviate from any of the pure strategies that she uses in
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her mixed strategy. Every additive ε-well-supported Nash equilib-
rium is also an additive ε-Nash equilibrium, but the converse does
not always hold. Further, a relative ε-well-supported Nash equilib-
rium is a strategy profile in which any pure strategy that is played
by the players has payoff at least (1− ε) times the best-response
payoff.

Given the importance and numerous applications of Nash equi-
libria (see, e.g., [22] and the references therein), there has been
substantial amount of research devoted to the study of the com-
plexity of computing various types of approximate Nash equilibria
(see Section 1.2). However, while many applications assume multi-
player games, the majority of the algorithmic studies have been
focusing solely on two-player games (a possible exception here are
games with compact representation, for example, graphical games;
but our focus is on the study of general multi-player games). The
goal of this paper is to advance our understanding of the complexity
of approximating Nash equilibria games for multi-player games.

1.1 Our contributions
We present a thorough study of the complexity of finding ap-

proximate Nash equilibria in multi-player games.
We give the first approximation bound for relative approximate

Nash equilibria in arbitrary n-player games, assuming n is constant.

THEOREM 1. For any n-player normal-form game, where n is
a constant, with entries in [0,1], we can construct in polynomial-
time a relative (1− 1

1+(n−1)n )-Nash equilibrium.

(Notice that, for example, for n = 3 players this gives a relative
8
9 -Nash equilibrium, for n = 4 players it gives a relative 81

82 -Nash
equilibrium, and so on.)

Then, we extend Theorem 1 to obtain a stronger bound for rela-
tive approximate Nash equilibria in symmetric multi-player games.

THEOREM 2. For any symmetric n-player normal-form game,
where n is a constant, with entries in [0,1], we can construct in
polynomial-time a relative (1− 1

1+(n−1)n−1 )-Nash equilibrium.

(For example, for n= 3 players this gives a relative 4
5 -Nash equi-

librium in symmetric games, for n = 4 players it gives a relative
27
28 -Nash equilibrium in symmetric games, and so on.)

Next, inspired by the works of Lipton et al. [21], Hémon et al. [17],
Kontogiannis and Spirakis [19], and of Babichenko et al. [3], we
prove existence of an additive ε-well-supported Nash equilibrium
of small (poly-logarithmic) support size.

THEOREM 3. Consider an m-strategies n-player game. Then,
one can construct an empirical strategy profile that is an additive
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ε-well-supported Nash equilibrium with support of size O(lnn+
lnm+ ln(1/ε))/ε2.

Finally, inspired by the work of Panagopoulou and Spirakis [23]
we prove that it is easy to find additive approximate Nash equilib-
ria in random multi-player normal-form games. Let a fully uniform
distribution be a mixed strategy in which player plays every pure
strategy with probability 1

m .

THEOREM 4. Consider an m-strategies n-player random normal-
form game and let ε > 0. Let x be a fully uniform distribution. Then
with high probability, the strategy profile x = (x, . . . ,x) is an addi-
tive ε-well-supported Nash equilibrium.

We note that in Theorem 4, parameter ε does not need to be
constant and it may be as small as ε =

√
3ln(mn)/mn−1.

As it can be seen in Section 1.2, no previous non-trivial bounds
have been known earlier for any of these problems (for multi-player
games).

1.2 Related works
While in classical game theory and in many applications the

study of multi-player games (games with n > 2 players) plays a
fundamental role, as it should be evident from the overview be-
low, most of the earlier works on the complexity of approximation
of Nash equilibria have been focusing on bimatrix games, that is,
games with n= 2 players.

An additive ε-Nash equilibrium is a strategy profile such that
any player has an incentive of at most ε to change her strategy.
A number of polynomial-time algorithms to find additive ε-Nash
equilibria for bimatrix games have been developed over the years:
for ε = 3

4 by Kontogiannis et al. [18], for ε = 1
2 by Daskalakis et

al. [13], for ε = 3−
√

5
2 ≈ 0.382 by Daskalakis et al. [12], for ε =

1
2 −

1
3
√

6
≈ 0.364 by Byrka et al. [5], and finally with ε ≈ 0.3393

by Tsaknakis and Spirakis [26]. In the special case of symmetric
bimatrix games, a polynomial-time algorithm for additive ( 1

3 +δ )-
Nash equilibria, for any δ > 0, was given by Kontogiannis and Spi-
rakis [20]. Bárány et al. [4] (see also [23]) have proved that additive
ε-Nash equilibria are easy to find in random bimatrix games for all
ε > 0.

While the bimatrix games have been extensively investigated,
much less is known for the games with more than two players. For
general games with n players, there is a polynomial-time algorithm
that outputs additive

(
1− 1

n

)
-Nash equilibria, which also can be

generalized to a recursive method that gives an additive
( 1

2−α

)
-

Nash equilibrium for n players if we can find an additive α-Nash
equilibrium for n− 1 players, see [5, 6, 17]. Furthermore, for the
special class of polymatrix games, one can improve this bound to
get a polynomial-time algorithm for computing additive ( 1

2 + δ )-
Nash equilibria for any δ > 0 [14].

Lipton et al. [21] have proved existence of additive ε-Nash equi-
libria with support of size O((n2 logm)/ε2), which was then im-
proved to O((n logm)/ε2) by Hémon et al. [17], and finally to
O(log(nm/ε)/ε2) by Babichenko et al. [3].

On the other hand, it is known that if one limits the players to
strategies with support of total size o(logm), then it is not possible
to find an additive ε-Nash equilibrium in bimatrix games, for any
ε < 1

2 [16]. In a similar flavor, very recently Rubinstein [25] proved
that for some constant ε > 0, assuming the Exponential Time Hy-
pothesis for PPAD computing an additive ε-Nash equilibrium in
bimatrix game requires time mlog1−o(1)m, matching (up to the o(1)
term) the complexity of the algorithm of Lipton et al. [21].

The notion of an additive ε-well-supported Nash equilibrium
(that forms an important class of approximate Nash equilibrium)
requires that any player has an incentive of at most ε to deviate
from any of the pure strategies that she uses in her mixed strategy.
Since every additive ε-well-supported Nash equilibrium is also an
additive ε-Nash equilibrium, but the converse does not always hold,
the problem of finding an additive ε-well-supported Nash equi-
librium is harder than that of finding an additive ε-Nash equilib-
rium. We now know how to find an additive 0.6528-well-supported
Nash equilibrium in bimatrix games [8, 15, 19] in polynomial time.
There are also polynomial-time algorithms for finding additive 1

2 -
well-supported Nash equilibria in win-lose bimatrix games [19],
and additive ( 1

2 + δ )-well-supported Nash equilibria in symmet-
ric bimatrix games, for any δ > 0 [9]. Panagopoulou and Spirakis
[23] proved that additive ε-well-supported Nash equilibria are easy
to find in random bimatrix games for all ε > 0. Furthermore, the
quasi-polynomial algorithm for additive ε-Nash equilibria can be
also applied to finding additive ε-well-supported Nash equilibria
in bimatrix games, and so one can find additive ε-well-supported
Nash equilibria in quasi-polynomial time mO(lnm/ε2) for arbitrarily
small ε > 0 [19]. On the negative side, a poly-logarithmic number
of strategies is needed to find ε-well-supported Nash equilibria in
polynomial-time, for any ε < 1 [1, 2, 25].

While the notion of the additive approximation of the Nash equi-
libria has been studied extensively in the past, significantly less at-
tention has been given to the notion of the relative ε-Nash equi-
libria. A relative ε-Nash equilibrium is a strategy profile in which
the payoff of each player is at least (1− ε) times the payoff of the
best-response strategy. Most of the relevant results we are aware of
appeared in the paper of Feder et al. [16] for bimatrix games. On a
positive side, Feder et al. [16, Theorem 3] give a polynomial time
algorithm that finds a relative ε-Nash equilibrium for ε slightly
smaller than 1

2 . (There exists a function f (m) = (2+ o(1))m such
that for any α , 0 < α < 1

8m f (m)
, one can find in polynomial time a

relative ( 1
2 −α)-Nash equilibrium; the relative ( 1

2 −α)-Nash equi-
librium found is a pure row strategy and a mixed column strat-
egy.) On a negative side, Feder et al. [16, Theorem 1] show that
for any α , 0 < α ≤ 1

2 , if one limits the column player to strate-
gies with support of size less than log2 m

log2(1/α)
, then it is not possi-

ble to find a relative ( 1
2 −α)-Nash equilibrium, even for constant-

sum zero-one games. Furthermore, Feder et al. [16, Theorem 2]
present bimatrix constant-sum zero-one games for which for any
ε , 0 < ε < 1

2 , no pair of mixed strategies with supports of size
smaller than O(ε−2 logm) is a relative ε-Nash equilibrium. Fur-
ther, in a related work, Daskalakis [10] considers the notion of
the relative ε-well-supported Nash equilibria, strategy profiles in
which any strategy that is played by the players has payoff at least
(1− ε) times the best-response payoff. He shows that the problem
of finding a relative ε-well-supported Nash equilibrium in two-
player games, with payoff values in [−1,1], is PPAD-complete,
even for constant values of the approximation. Finally, Rubinstein
[24] extends this result and he proves that finding a relative ε-well-
supported Nash equilibrium in a bimatrix game with positive pay-
offs is PPAD-complete (see also [25]).
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M. Jurdziński, and R. Savani. Distributed methods for
computing approximate equilibria. In Proceedings of the
12th International Conference Web and Internet Economics
(WINE’16), pages 15–28, 2016.

[9] A. Czumaj, M. Fasoulakis, and M. Jurdziński. Approximate
well-supported Nash equilibria in symmetric bimatrix games.
In Proceedings of the 7th International Symposium on
Algorithmic Game Theory (SAGT’14), pages 244–254, 2014.

[10] C. Daskalakis. On the complexity of approximating a Nash
equilibrium. ACM Transactions on Algorithms, 9(3), June
2013.

[11] C. Daskalakis, P. W. Goldberg, and C. H. Papadimitriou. The
complexity of computing a Nash equilibrium. SIAM Journal
on Computing, 39(1):195–259, 2009.

[12] C. Daskalakis, A. Mehta, and C. Papadimitriou. Progress in
approximate Nash equilibria. In Proceedings of the 8th ACM
Conference on Electronic Commerce (EC’07), pages
355–358, 2007.

[13] C. Daskalakis, A. Mehta, and C. Papadimitriou. A note on
approximate Nash equilibria. Theoretical Computer Science,
410(17):1581–1588, 2009.

[14] A. Deligkas, J. Fearnley, R. Savani, and P. G. Spirakis.
Computing approximate Nash equilibria in polymatrix
games. In Proceedings of the 10th International Conference
Web and Internet Economics(WINE’14), pages 58–71, 2014.

[15] J. Fearnley, P. W. Goldberg, R. Savani, and T. B. Sørensen.
Approximate well-supported Nash equilibria below
two-thirds. Algorithmica, 76(2):297–319, 2016.

[16] T. Feder, H. Nazerzadeh, and A. Saberi. Approximating
Nash equilibria using small-support strategies. In
Proceedings of the 8th ACM Conference on Electronic
Commerce (EC’07), pages 352–354, 2007.

[17] S. Hémon, M. de Rougemont, and M. Santha. Approximate
Nash equilibria for multi-player games. In Proceedings of
the 1st International Symposium on Algorithmic Game
Theory (SAGT’08), pages 267–278, 2008.

[18] S. C. Kontogiannis, P. N. Panagopoulou, and P. G. Spirakis.
Polynomial algorithms for approximating Nash equilibria of
bimatrix games. In Proceedings of the 2nd Workshop on
Internet and Network Economics (WINE’06), pages
286–296, 2006.

[19] S. C. Kontogiannis and P. G. Spirakis. Well supported
approximate equilibria in bimatrix games. Algorithmica,
57(4):653–667, 2010.

[20] S. C. Kontogiannis and P. G. Spirakis. Approximability of
symmetric bimatrix games and related experiments. In
Proceedings of the 10th International Symposium on
Experimental Algorithms (SEA’11), pages 1–20, 2011.

[21] R. Lipton, E. Markakis, and A. Mehta. Playing large games
using simple strategies. In Proceedings of the 4th ACM
Conference on Electronic Commerce (EC’03), pages 36–41,
2003.

[22] N. Nisan, T. Roughgarden, E. Tardos, and V. V. Vazirani.
Algorithmic Game Theory. Cambridge University Press,
2007.

[23] P. N. Panagopoulou and P. G. Spirakis. Random bimatrix
games are asymptotically easy to solve (A simple proof).
Theory of Computing Systems, 54(3):479–490, 2014.

[24] A. Rubinstein. Inapproximability of Nash equilibrium. In
Proceedings of the 47th Annual ACM Symposium on Theory
of Computing (STOC’15), pages 409–418, 2015.

[25] A. Rubinstein. Setting the complexity of computing
approximate two-player Nash equilibria. In Proceedings of
the 57th Annual IEEE Symposium on Foundations of
Computer Science (FOCS’16), pages 258–265, 2016.

[26] H. Tsaknakis and P. G. Spirakis. An optimization approach
for approximate Nash equilibria. Internet Mathematics,
5(4):365–382, 2008.

1513




