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ABSTRACT
We apply existing, and develop new, zero-sum game techniques for
designing polynomial-time algorithms to compute additive approx-
imate Nash equilibria in bimatrix games. In particular, we give a
polynomial-time algorithm that given an arbitrary bimatrix game as
an input, outputs either an additive 1

3
-Nash equilibrium or an addi-

tive 1
2

-well-supported Nash equilibrium; and we give a polynomial-
time algorithm that given a bimatrix game in which both payoff
matrices are symmetric as an input, computes an additive 1

2
-well-

supported Nash equilibrium. The former result is unusual: the obvi-
ous weakness is that the algorithm does not guarantee which of the
two kinds of approximate equilibria it will output, but on the other
hand each of the two approximation guarantees it gives are bet-
ter than the best unconditional bounds known to be computable in
polynomial time: 0.3393 for Nash equilibria and 0.6528 for well-
supported Nash equilibria. In the latter case, we motivate the inter-
est in computing additive approximate Nash equilibria efficiently
for bimatrix games with symmetric payoff matrices by proving that
computing Nash equilibria in bimatrix games is PPAD-complete
even if both of the payoff matrices are symmetric.

1. INTRODUCTION
One of the most fundamental problems in algorithmic game the-

ory is the computation of a Nash equilibrium. After the computa-
tional complexity of this problem has been established to be com-
plete in the class PPAD, even for bimatrix games [5, 8], further re-
search has been focusing on the computation of approximate Nash
equilibria. One very natural kind of approximation of the Nash
equilibria is the additive approximation and this has two different
notions: the ε-Nash equilibria and the ε-well-supported Nash equi-
libria.

Let (R,C) be a bimatrix game: R ∈ [0, 1]n×n is the payoff
matrix of the row player and C ∈ [0, 1]n×n is the payoff ma-
trix of the column player. If the row player uses the pure strat-
egy i ∈ {1, . . . , n} and the column player uses the pure strategy
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j ∈ {1, . . . , n}, then the row player receives payoff Rij and the
column player receives payoff Cij .

A (mixed) strategy x ∈ [0, 1]n is a probability vector: for every
pure strategy i ∈ {1, . . . , n}, the probability with which the mixed
strategy x uses the pure strategy i is xi; naturally, we require that∑n

i=1 xi = 1. For a pure strategy i ∈ {1, . . . , n}, we write ei
for the strategy that uses the pure strategy i with probability 1 (and
all other pure strategies with probability 0). The support of a strat-
egy x, denoted by supp(x), is the set of pure strategies that are
used (that is, have non-zero probability) in x. A strategy profile is a
pair (x, y) of strategies: the strategy x is used by the row player and
the strategy y is used by the column player. The expected payoffs in
a strategy profile that the row player and the column player receive
are xTRy and xTCy, respectively.

A best response to a strategy x of the row player is a strategy
y∗ of the column player, such that for every strategy y, we have
xTCy∗ ≥ xTCy. Note that this is equivalent to stating that all
pure strategies used (with non-zero probability) in y∗ are best re-
sponses to x, that is for every pure strategy j∗ ∈ supp(y∗) and
for every strategy j ∈ {1, . . . , n}, we have xTCej∗ ≥ xTCej .
Analogously, a best response to a strategy y of the column player
is a strategy x∗ of the row player, such that for every strategy x, we
have (x∗)TRy ≥ xTRy, which is equivalent to stating that all pure
strategies used in x∗ are best responses to y. A Nash equilibrium
(NE) is a strategy profile (x∗, y∗), such that y∗ is a best response
to x∗, and x∗ is a best response to y∗.

For an ε ≥ 0, an ε-best response to a strategy x of the row
player is a strategy y∗ of the column player such that for every
strategy y, we have xTCy∗ ≥ xTCy − ε. Analogously an ε-best
response to a strategy y of the column player is a strategy x∗ of
the row player such that for every strategy x, we have (x∗)TRy ≥
xTRy − ε. An additive ε-Nash equilibrium (ε-NE) is a strategy
profile (x∗, y∗) such that y∗ is an ε-best response to x∗, and x∗ is
an ε-best response to y∗.

Note that—unlike for best responses—if y∗ is an ε-best response
to x then it is not necessarily the case that every pure strategy used
in y∗ is an ε-best response to x. By demanding the latter—and
stronger—condition to hold instead, we obtain a refinement of the
concept of an ε-NE: an additive ε-well-supported Nash equilibrium
(ε-WSNE) is a strategy profile (x∗, y∗) such that every pure strat-
egy used in y∗ is an ε-best response to x∗, and every pure strategy
used in x∗ is an ε-best response to y∗.

We are interested in the problem of computing additive approxi-
mate Nash equilibria in polynomial time. The research programme
here is to find polynomial-time algorithms to compute additive ε-
NE or additive ε-WSNE for as small values of ε > 0 as possible.
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The problem of computing additive ε-NE in polynomial time has
been extensively studied [15, 10, 9, 4], and the currently best ap-
proximation guarantee is due to Tsaknakis and Spirakis [19], whose
algorithm achieves it for ε = 0.3393. On the other hand, for ev-
ery ε > 0, there is a quasi-polynomial time algorithm for comput-
ing additive ε-NE [17, 14, 3]. Some lower bounds are also known:
poly-logarithmic support size is necessary for constructing addi-
tive ε-NE for every ε < 1

2
[12], and complexity-theoretic evidence

suggests that there is a constant ε > 0, such that additive ε-NE
cannot be computed significantly faster than in quasi-polynomial
time [18].

Every additive ε-WSNE is an additive ε-NE, but not vice versa.
As for additive ε-NE, for every ε > 0, there is a quasi-polynomial
time algorithm for computing additive ε-WSNE [16]. The problem
of computing additive ε-WSNE in polynomial time has seen less
progress [16, 11] than for additive ε-NE, and the currently best ap-
proximation guarantee is due to Czumaj et al. [6], whose algorithm
achieves it for ε = 0.6528. Better approximation guarantees are
known to be achievable in polynomial time for two classes of bi-
matrix games: ε = 1

2
for win-lose games [16]; and ε = 1

2
+ δ, for

every δ > 0, for symmetric games [7]. Finally, poly-logarithmic
support size is necessary for constructing additive ε-WSNE for all
ε < 1 [2, 1].

Because of space limitations we defer most proofs and detailed
discussion to the full version of this paper.

2. HARDNESS RESULTS
We motivate the study of polynomial-time algorithms for com-

puting additive approximate Nash equilibria in bimatrix games with
symmetric payoff matrices (to be discussed in Section 4.1) by es-
tablishing the following hardness results.

THEOREM 1. The problems of computing a Nash equilibrium
in bimatrix games in which either one or both payoff matrices are
symmetric are PPAD-complete.

3. ZERO-SUM GAME TECHNIQUES
In this section we recall an approximate equilibrium construc-

tion technique for a bimatrix game (R,C) due to Czumaj et al. [6],
based on solving the zero-sum games (R,−R) and (−C,C) con-
sidered earlier by Goldberg and Pastink [13]. Further, we develop
a new technique based on solving zero-sum games (−R,R) and
(C,−C) instead.

3.1 Zero-sum games (R,−R) and (−C,C)

Let (x∗, y∗) and (x̂, ŷ) be Nash equilibria in the zero-sum games
(R,−R) and (−C,C), respectively. Let vR = (x∗)TRy∗ (which
is the value of the zero-sum game (R,−R)), and let vC = x̂TCŷ
(which is minus the value of the zero-sum game (−C,C)). As-
sume, without loss of generality, that vR ≥ vC .

LEMMA 2. [13, 6] The strategy profile (x̂, y∗) is an additive
vR-WSNE.

Let j be a pure best response to the strategy x∗ of the row player,
and let r be a pure best response to the strategy j of the column
player.

LEMMA 3. [6] The strategy profile ( 1
2−vR

x∗ + 1−vR
2−vR

er, ej) is

an additive 1−vR
2−vR

-NE.

3.2 Zero-sum games (−R,R) and (C,−C)

Let (x∗, y∗) and (x̂, ŷ) be NE in the zero-sum games (−R,R)
and (C,−C), respectively. Let uR = (x∗)TRy∗ (which is minus
the value of the zero-sum game (−R,R)), and let uC = x̂TCŷ
(which is the value of the zero-sum game (C,−C)). Assume, with-
out loss of generality, that uR ≥ uC .

LEMMA 4. The strategy profile (x̂, y∗) is an additive (1−uC)-
WSNE.

4. NEW ALGORITHMS
Let (R,C) be a bimatrix game with all payoffs in [0, 1]. We con-

sider the four zero-sum games (R,−R), (−C,C), (−R,R), and
(C,−C), and we define the numbers vR, vC , uR, and uC in the
way they were defined in Section 3.

4.1 Trading off between approximate NE and
WSNE

In this section we give a polynomial-time algorithm that given an
arbitrary bimatrix game as an input, outputs either an additive 1

3
-

NE or an additive 1
2

-WSNE. This can be done by observing that if
vR ≤ 1

2
then Lemma 2 yields an additive 1

2
-WSNE, but if vR ≥ 1

2

then Lemma 3 yields an additive 1
3

-NE.

THEOREM 5. There is a polynomial-time algorithm that given
a bimatrix game as input, outputs either an additive 1

3
-NE or an

additive 1
2

-WSNE.

Note that while the algorithm cannot guarantee which of the two
kinds of approximate equilibria it will output, it either gives an out-
put with a better approximation guarantee than the best algorithm
for computing additive ε-NE [19], or better than the best algorithm
for computing additive ε-WSNE [6].

4.2 Better approximate WSNE for symmetric
payoff matrices

In this section we argue that additive 1
2

-WSNE can be computed
in polynomial time in bimatrix games in which both payoff matri-
ces are symmetric. Note that in the general case of arbitrary bima-
trix games, the curently best approximation guarantee for additive
ε-WSNE computable in polynomial time is ε = 0.6528 [11, 6].

The following theorem can be proved by considering four cases
based on whether uR and uC are each at least 1

2
or at most 1

2
, and

applying Lemmas 2 or 4, as appropriate.

THEOREM 6. If uR ≥ vR and uC ≥ vC , then an additive 1
2

-
WSNE can be found in polynomial time.

The following lemma follows from the Minimax Theorem for
zero-sum games.

LEMMA 7. If the payoff matrix R is symmetric then vR = uR,
and if the payoff matrix C is symmetric then vC = uC .

Finally, the main result of this section follows by combining
Lemma 7 and Theorem 6.

THEOREM 8. There is a polynomial-time algorithm that given
a bimatrix game in which both payoff matrices are symmetric as an
input, computes an additive 1

2
-WSNE.
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