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ABSTRACT
We consider the problem of performing real-time navigation
in domains where a“god’s eye view” is provided. One setting
where this challenge arises is in platform videogames, occur-
ring whenever the player wishes to reach an item or powerup
on the current screen. Previous agents for these games rely
on generating many low-level simulations or training runs
for each fixed task. Human players, on the other hand, can
solve navigation tasks at a high level by visualising sequences
of abstract “skills”. Based on this intuition, we introduce a
novel planning approach and apply it to Infinite Mario. De-
spite facing randomly generated, maze-like tasks, our agent
is capable of deriving complex plans in real-time, without
exploiting precise knowledge of the game’s code.
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1. INTRODUCTION
Figure 1 shows a typical navigation task faced in plat-

form videogames, taken from Infinite Mario [13]. In order
to reach the fire flower at the top-right of screen, the player
must run and jump around a “maze-like” series of platforms.
Strong human players have little trouble visualising such
trajectories. At typical frame rates of 24fps or higher, this
implies that they posses a lookahead depth of several hun-
dred time steps. However, existing artificial agents generally
struggle on this type of task. Agents that learn by randomly
exploring the environment may take a very long time to re-
ceive positive feedback, while simulation-based agents may
require significant streamlining to achieve even a few seconds
of planning depth [2].

Human players appear to contend with granular time scales
by planning in abstract, high-level steps. For example, in
Figure 1, a suitable plan might be described in human terms
as follows: first the player must jump to ascend the first,
second and third platforms on the left, then jump from the
top-left platform to the top-right platform, then run to the
flower. Observe that this plan consists of “skills” (e.g. jump-

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

Figure 1: Reaching a powerup is a typical planning
problem faced in platform videogames.

ing and running) whose durations and exact endpoints are
uncertain, rather than low-level actions such as pressing a
particular button at a particular frame. It also relies on ex-
ploiting the“god’s eye view”provided to visualise the overall
trajectory.

While skill acquisition has been a focus of machine learn-
ing research for some time [1, 4, 6, 7, 8, 9, 10, 12, 15], existing
methods lack the flexibility of the thought process just de-
scribed. The common approach of identifying “bottlenecks”,
that is, states that must be visited in order to navigate from
one distinct region of the state space to another, leads to
the acquisition of task-specific skills, e.g. a skill for jumping
to the specific platform above Mario in Figure 1. Human
players, on the other hand, seem to exploit reusable skill
knowledge, e.g. knowledge of how to jump to any platform.
Furthermore, human players can often find viable high-level
plans upfront for previously unseen problems, whereas skill-
based learning methods generally require the overall plan to
be learned through trial and error, even when the underly-
ing skills are transferred. The aim of this work is to devise
an artificial approach that overcomes these issues, i.e. one
that can find high-level plans spanning hundreds of frames
in real-time.

2. APPROACH
Our proposed approach can be viewed as a hybrid be-

tween skill-based learning and traditional discrete planning.
It consists of three main steps:

1. Rather than attempting to identify problem-specific
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Figure 2: A schematic illustration of our approach,
using an example from Infinite Mario.

bottlenecks upfront, or trying to train distinct skills
such as running and jumping, we teach the agent a
general skill for performing local navigation. We ob-
serve that in many classical videogames the world con-
forms to a grid, and teach the agent a single agent space
option [3] for navigating to nearby grid squares.

2. After this skill has been acquired, we teach the agent
to estimate the likelihood that a given local move-
ment can be executed successfully. Theoretically, the
agent ought to learn high probabilities for straightfor-
ward movements such as running a few squares to the
left unobstructed, and low probabilities for impossible
movements such as running through walls.

3. We model the game world as a graph, with edge weights
between nearby grid squares equal to the log-likelihood
of the agent being able to perform the corresponding
movement. Given a target destination on the current
screen, we calculate the path with the greatest likeli-
hood of success through Dijkstra’s algorithm.

A schematic illustration of a plan being segmented into
local movements is shown in Figure 2. Note that under this
method, the bottlenecks fall out at the end of the process;
a reversal of the traditional order.

Since the approach described is probabilistic, plans may
sometimes fail. During execution, replanning is triggered
whenever the next waypoint falls out of the movement skill’s
range, or if the likelihood of reaching the next waypoint falls
below a fixed percentage of the originally estimated likeli-
hood. This fixed percentage is referred to as the replanning
threshold, k.

3. RESULTS
We tested our approach in randomly generated, maze-like

levels of Infinite Mario. At the start of each episode, a
random grid square on the current screen was assigned as
the goal. The task was reset and the level structure re-
randomised whenever the goal was reached or the episode
length exceeded 15 seconds.

The local movement skill was trained to perform move-
ments within a Manhattan distance of 5 grid squares. Both
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Figure 3: Success rates versus time taken for differ-
ent settings of the replanning threshold, k.

the skill and its likelihood-of-success estimator were trained
from a high-level state representation similar to that in [14],
using Q-Learning [11, Section 6.5] with experience replay [5].
Action-values and likelihoods were approximated via a feed
forward architecture with 2 hidden layers each containing
300 neurons. For Dijkstra’s algorithm, the search space was
configured to be the set of grid squares visible on current
screen. Through trial and error, we found that the best
setting of the replanning threshold was around k = 0.2.

As Figure 3 shows, the strongest configuration of our agent
(k = 0.2) was broadly successful, reaching 97.1% (± 0.2%) of
goals within the time limit. However, changing the replan-
ning threshold to k = 1 (which equates to continual replan-
ning) was severely detrimental. It appears that there were
often many viable plans with similar success probabilities.
Small changes in the protagonist’s position and velocity were
often enough to alter the plan rankings, causing the agent to
switch plans frequently without making any progress. Set-
ting the threshold to k = 0 so that the agent never re-
planned (unless the next waypoint became out range) was
less detrimental, because the agent rarely made critical mis-
takes. This configuration was still able to reach 85.4% (±
0.4%) of goals within the time limit. However, it was un-
able to recover when it became stuck on difficult steps. The
k = 0.2 agent was generally able to recover, albeit with slow
completion times. Therefore, its advantage over the k = 0
agent only became prominent towards the right of the graph.

4. CONCLUSION
In this paper we introduced an approach for navigating

environments where a “god’s eye view” is provided but the
low-level dynamics are unknown. We tested this approach
in Infinite Mario and showed that it was capable of solving
complex navigation tasks in real-time. We also showed that
a variable replanning threshold may yield considerable im-
provement versus the extremes of continual replanning and
never replanning. In the future, we plan to extend our ap-
proach to domains that involve non-navigational elements,
e.g. enemy avoidance, and domains where the layout of ob-
stacles does not conform to a grid. We also plan to bench-
mark our approach against pure low-level simulation.
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