Modelling and Reasoning about Remediation Actions
in BDI Agents

(Extended Abstract)

Jodo Faccin

Universidade Federal do Rio Grande do Sul (UFRGS)

Porto Alegre, Brazil
jgfaccin@inf.ufrgs.br

ABSTRACT

Remediation actions are performed in scenarios in which
consequences of a problem should be promptly mitigated
when its cause takes too long to be addressed or is un-
known. Existing approaches that address these scenarios
are application-specific. Nevertheless, the reasoning about
remediation actions as well as cause identification and res-
olution, in order to address problems permanently, can be
abstracted in such a way that they can be incorporated to
agents. In this paper, we present a domain-independent
approach that extends the belief-desire-intention (BDI) ar-
chitecture, providing means of modelling and reasoning over
causal relationships and remediation actions.

Keywords

BDI architecture, software agents, remediation action, cause-
effect, goal generation, plan selection, software reuse

1. INTRODUCTION

Performing remediation actions is a strategy typically ap-
plied when we face problems in which consequences, or ef-
fects, must be mitigated before their cause is addressed. In
this scenario, a problem can only be considered solved when
both cause and effect are also solved. There are many issues
related to the process of carrying out such problem-solving
strategy. On the one hand, mitigating a consequence with-
out considering its cause would result in resources and effort
spent ineffectively. On the other hand, immediately dealing
with a cause disregarding its consequences would worsen the
effects if the cause solution is not provided instantly. There
are also situations in which the cause is unknown and should
be investigated so that the real problem can be identified and
resolved; otherwise, effects will likely reappear.

In Computer Science, many instances of this scenario can
be observed in various contexts, such as self-healing sys-
tems [1] and network resilience [5]. However, despite be-
ing able to properly deal with consequences and its causes,
existing proposals addressing such domains provide solu-
tions that are individually analysed and implemented, and
in which the actions of mitigating effects and searching for

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8-12, 2017, Sao Paulo, Brazil.

Copyright © 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

1526

Ingrid Nunes
UFRGS, Porto Alegre, Brazil
TU Dortmund, Dortmund, Germany
ingridnunes@inf.ufrgs.br

causes are all explicitly modelled and hard coded. The agent
technology is an alternative to the flexible implementation
of these proposals. Nevertheless, existing agent-based ap-
proaches that deal with the proposed scenario also imple-
ment the reasoning over causes and effects manually.

In this paper, we propose a domain-independent approach
that extends the belief-desire-intention (BDI) architecture [4]
by allowing agents to select suitable, possible remediation,
plans to solve a problem and deal with its possible causes,
also considering agent preferences and constraints. This ex-
tended architecture comprises a set of components to cap-
ture the required domain knowledge to support agents in
making such decisions. Such knowledge is used in a cus-
tomised reasoning mechanism, which can select remediation
plans when needed, and to generate goals to search and deal
with problem causes.

2. BDI AGENT MODELLING

Agents based on the BDI architecture [4] are structured
in terms of the mental attitudes of beliefs, desires and in-
tentions. Their goals are explicitly specified, and plans able
to achieve these goals are provided at design time. Many
concepts of our target scenario can be associated with exist-
ing components of the BDI architecture, e.g. remediation ac-
tions and problems, which can be related to plans and goals,
respectively. Other domain-independent concepts, however,
have no corresponding components and were incorporated
into our extended architecture to make agents able to miti-
gate problems through the use of remediation plans, as well
as to identify and solve their causes when needed. We detail
such components as follows.

A goal represents a state of the world the agent wants to
bring about. When attempting to achieve a goal, the ac-
tions performed by the agent can consume resources, which
are any consumable supplies of assets whose consumption
can be measured by the agent, e.g. processing time and allo-
cated memory. There are situations in which these resources
are limited to a given amount. In such scenarios, there is no
advantage for the agent to execute actions that will require
more resources than available. Constraints on the resource
consumption while achieving a goal are specified using oper-
ation constraints. Moreover, when there are different ways
to achieve the same objective, there may be restrictions on
how resources must be spent, i.e. when it is more valuable to
maximise or minimise the resource consumption. The speci-
fication of such restrictions is given by an objective function.
We named constrained goal the goal that encompasses the



notions of objective functions and operation constraints. A
plan required resource specifies the amount of a given re-
source that a plan is expected to consume when trying to
reach a goal. A set of plan required resources together with
sets of preconditions, achievable goals and actions define a
plan. Finally, our extended BDI (EBDI) agent comprises a
belief base, a plan library, a set of goals, and a preference
function, which specifies the importance given by our agent
to each resource.

Although providing the information required to consider
the constrained resource consumption during the process of
goal achievement, the described components do not encom-
pass the knowledge that allows the reasoning over effects
and their causes. In our approach, a goal is a problem to
be solved, which may be either an effect or a cause, or even
both at the same time. While an effect is composed of a sin-
gle fact, a cause can comprise a set of them. A cause-effect
relationship thus specifies the association between the effect
of a problem and the possible facts that comprise its cause.
We distinguish mandatory, optional and alternative facts.

3. CUSTOMISED BDI REASONING CYCLE

The behaviour of a typical BDI agent is defined by four ab-
stract functions, which are integrated into a reasoning cycle.
The first of them, named belief revision function, is respon-
sible for updating agent beliefs based on internal or external
events perceived. The option generation function, in turn,
maintains updated the set of agent goals, adding or dropping
goals when needed, while the filter function selects, from the
set of agent goals, those that will become intentions. Finally,
the plan selection function chooses, from a set of predefined
suitable plans and according to a given criteria, a plan to
achieve a goal that is a current intention.

To make agents able to deal with our target scenario, func-
tions of this reasoning cycle must be customised. Our cus-
tomised plan selection function is implemented to perform
two key steps. First, for a given goal, a set of candidate
plans is selected from the agent’s plan library. These can-
didate plans are those capable of achieving the goal while
their corresponding plan required resources satisfy the goal’s
operation constraints, if any. The second step consists of se-
lecting, from the set of candidate plans, the plan that best
satisfies agent preferences over resources. Such satisfaction
is calculated according to the information provided by plan
required resources and the goal’s objective function. Con-
sidering the case in which the goal being addressed is part
of a cause-effect relationship, the plan selected for execution
may fully address the effect and its cause, or may be a re-
mediation action that only deals with the effect. In this last
situation, the current cause of the goal must still be identi-
fied and solved. This task is carried out by our customised
option generation function.

The option generation function (see Figure 1) has three
key roles in our work. Given a goal that is an effect in
a cause-effect relationship, this function is responsible for
identifying the possible cause factors, evaluating such factors
to find the current cause of the problem, and keeping track of
them to assess whether they are solved. The identification of
possible cause factors is made directly from the information
provided by existing cause-effect relationships. Evaluating
these factors, however, requires the execution of additional
steps. The current status of a factor may be already known
by the agent, i.e. be present in its belief base, or completely

1527

[no cause-effect status]

!

1. Build cause-
effect status

PE—

.7

3. Evaluate effect
goal

[otherwise]

2. Update status
of cause factors

[effect goal unfinished]

[effect goal finished]

6. Generate cause
factor achievement
goals

[cause factor goals finished]

4. Evaluate cause [cause factor goals unfinished)]

[known cause]

7. Update cause-
effect problem end

cause not found
L I state

[unknown cause] 5. Generate cause

factor test goals

Figure 1: Option Generation Activity Diagram.

unknown. The latter situation requires the creation of a
test goal (from the AgentSpeak language [3]) in order to
discover the current factor status. When all possible cause
factors have their status known, cause-effect relationships
are consulted again to define which of these factors comprise
the current cause of the problem. Our option generation
function thus creates an achievement goal for each of them.

The tracking of effects and cause factors is performed
through the use of an internal reasoning cycle structure,
which we called cause-effect status. A cause-effect status
is able to register changes performed in the status of each
factor comprising the cause of a given problem, as well as
to identify if a cause factor (1) remains unaddressed, (2)
is currently being tackled, or (3) is already solved. When
an effect is remediated, and every factor that comprises its
corresponding cause-effect status is resolved, the problem is
considered solved.

4. CONCLUSION

Remediating consequences before identifying and solving
causes of a problem is a problem-solving strategy typically
applicable in several domains. Existing approaches that
adopt such strategy are application-specific and requires man-
ual implementation. In this paper, we introduced an ap-
proach that exploits the BDI architecture to provide a domain-
independent solution both able to mitigate problems and
address their causes. We evaluated our approach by taking
an existing network resilience scenario [2], which is imple-
mented in an application-specific way, and developed it with
our approach. Results show that we are able to reproduce
the original behaviour in a domain-independent way using
our solution, without impacting the performance of the sys-
tem, as well as reducing the development effort.

Acknowledgments

This work receives financial support of CNPq 442582/2014-
5. The authors would like to thank CNPq 141840/2016-1
and 303232/2015-3, CAPES 7619-15-4, and Alexander von
Humboldt, ref. BRA 1184533 HFSTCAPES-P.



REFERENCES

[1]

D. Breitgand, M. Goldstein, E. Henis, O. Shehory, and
Y. Weinsberg. PANACEA towards a self-healing
development framework. In Integrated Network
Management (IM), pages 169-178. IEEE, 2007.

I. Nunes, F. Schardong, and A. Schaeffer-Filho.
BDI2DoS: an application using collaborating BDI
agents to combat DDoS attacks. Journal of Network
and Computer Applications, 2017.

A. S. Rao. AgentSpeak(L): BDI agents speak out in a
logical computable language. In Proceedings of the 7th
European Workshop on Modelling Autonomous Agents
in a Multi-agent World : Agents Breaking Away:
Agents Breaking Away, MAAMAW ’96, pages 42-55,
Secaucus, NJ, USA, 1996. Springer-Verlag New York,

Inc.

1528

(4]

(5]

A. S. Rao and M. P. Georgeff. BDI agents: From
theory to practice. In First International Conference on
Multi-Agent Systems (ICMAS), pages 312-319, 1995.

J. P. G. Sterbenz, D. Hutchison, E. K. Cetinkaya,

A. Jabbar, J. P. Rohrer, M. Schéller, and P. Smith.
Resilience and survivability in communication
networks: Strategies, principles, and survey of
disciplines. Computer Networks, 54(8):1245-1265, 2010.





