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ABSTRACT
We study fair allocation of indivisible goods to agents with
unequal entitlements. Our emphasis is on the case where the
goods are indivisible and agents have unequal entitlements.
This problem is a generalization of the work by Procaccia and
Wang [14] wherein the agents are assumed to be symmetric.
We show that, in some cases with n agents, no allocation
can guarantee better than 1/n approximation of a fair al-
location when the entitlements are not necessarily equal.
Furthermore, we devise a simple algorithm that ensures a
1/n approximation guarantee.

Next, we assume that the valuation of every agent for each
good is bounded by the total value he wishes to receive in a
fair allocation. We show it enables us to find a 1/2 approx-
imation fair allocation via a greedy algorithm. Finally, we
run some experiments on real-world data and show that, in
practice, a fair allocation is likely to exist. We also support
our experiments by showing positive results for two stochas-
tic variants of the problem, namely stochastic agents and
stochastic items. (The full version of the paper is available
in https://arxiv.org/abs/1703.01649.)
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1. INTRODUCTION
In this work, we conduct a study of fairly allocating

indivisible goods among n agents with unequal claims on
the goods. Fair allocation is a very fundamental problem
that has received attention in both Computer Science and
Economics. This problem dates back to 1948 when Stein-
haus [17] introduced the cake cutting problem as follows:
given n agents with different valuation functions for a cake,
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is it possible to divide the cake between them in such a way
that every agent receives a piece whose value to her is at least
1/n of the whole cake? Steinhaus answered this question in
the affirmative by proposing a simple and elegant algorithm
which is called moving knife. Although this problem admits
a straightforward solution, several ramifications of the cake
cutting problem have been studied since then, many of which
have not been settled after decades [4, 15, 7, 13, 10, 8, 18,
6, 1]. For instance, a natural generalization of the problem
in which we discriminate the agents based on their entitle-
ments is still open. In this problem, every agent claims an
entitlement ei to the cake such that

∑
ei = 1, and the goal

is to cut the cake into disproportional pieces and allocate
them to the agents such that every agent ai’s valuation for
his piece is at least ei fraction of his valuation for the entire
cake. For two agents, Brams et al. [3] showed that at least
two cuts are necessary to divide the cake between the agents.
Furthermore, Robertson et al. [16] proposed a modified ver-
sion of cut and choose method to divide the cake between
two agents with portions e1, e2, where e1 and e2 are real
numbers. McAvaney, Robertson, and Web [12] considered
the case when the entitlements are rational numbers. They
used Ramsey partitions to show that when the entitlements
are rational, one can make a proper division via O(n3) cuts.

Another line of research is focused on the fair allocation of
indivisible goods. In this problem instead of a heterogeneous
cake, we have a set M of indivisible goods and we wish
to distribute them among n agents. Indeed, due to trivial
counter-examples in this setting, a proportional allocation is
impossible to deliver. To alleviate this problem, Budish [5]
proposed a concept of fairness for the allocation of indivisible
goods namely the maxmin share. Suppose we ask an agent
ai to divide the items between the agents in a way that he
thinks is fair to everybody. Of course, agent ai does not take
into account other agents’ valuations and only incorporates
her valuation function in the allocation. Based on this, we
define MMSi equal to the minimum profit that any agent
receives in this allocation, according to ai’s valuation function.
Obviously, in order to maximize MMSi, agent ai chooses an
allocation that maximizes the minimum profit of the agents.

It is easy to see that MMSi is the best possible guarantee
that one can hope to obtain in this setting. If all agents
have the same valuation function, then at least one of the
agents receives a collection of items that are worth no more
than MMSi to her. A natural question that emerges here is
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whether a fair allocation with respect to MMSi’s is always
possible? Although the experiments are in favor of this
conjecture, Procaccia and Wang [14] (EC’14) refuted this by
an elegant and delicate counter-example. They show such
a fair allocation is impossible in some cases, even when the
number of agents is limited to 3. On the positive side, they
show that there always exists an allocation in which every
agent’s profit is at least 2/3MMSi.

Although it is natural to assume the agents have equal
entitlements, in most real-world applications, agents have
unequal entitlements on the goods. For instance, in vari-
ous religions, cultures, and regulations, the distribution of
the inherited wealth is unequal. Furthermore, the division
of mineral resources or international waters between the
neighboring countries is often made unequally based on the
geographic, economic, and political status of the countries.

In this paper, we study fair allocation of indivisible items
with different entitlements. Our fairness criterion mimics the
general idea of Budish for defining maxmin shares. Similar
to Budish’s proposal, in order to define a maxmin share
for an agent ai, we ask the following question: how much
benefit does agent ai expect to receive from a fair allocation,
if we were to divide the goods only based on her valuation
function? If agent ai expects to receive a profit of p from
the allocation, then she should also recognize a minimum
profit of p · ej/ei for any other agent aj , so that her own
profit per entitlement is a lower bound for all agents. Thus,
a fair answer to this question is the maximum value of p
for which there exists an allocation such that agent ai’s
profit-per-entitlement can be guaranteed to all other agents
(according to her own valuation function). We define the
maxmin shares of the agents based on this intuition.

1.1 Our Results and Techniques
This study is a generalization of the problem suggested by

Budish in [5]. In that work, Budish proposed a new concept
of fairness for indivisible items, namely the maxmin share.

Given a set N of n agents and a setM of m items, for every
agent ai and set S of items, we denote by Vi(S) the total
value of the items in S to ai. We assume that the valuation
functions are additive, that is Vi(S) =

∑
bj∈S Vi({bj}).

Also, let e1, e2, . . . , en be n real numbers between 0 and
1 with the property that

∑
i ei = 1. For every agent ai, ei

denotes her claim on the goods. Fix an agent ai and let
A = B1, B2, . . . , Bn be a partitioning of M into n bundles.
Define the fairness of an allocation A as

F i
A = min

j

Vi(Aj)

Vi(M)ej
(1)

Let A∗ = 〈A∗1, A∗2, . . . , A∗n〉 be an allocation by ai that
maximizes F i

A∗ . The weighted maxmin share of agent ai is
defined in the same way as:

WMMSi = F i
A∗Vi(M)ei = ei min

j

Vi(A
∗
j )

ej

For a more intuitive description of the criteria,we refer the
reader to the full version of the paper. For brevity, we use
WMMSi to refer to WMMSi(M), when other parameters
are clear from the context. Note that the maxmin share
notion defined in [5] is a special case of our definition, when
ei = 1/n for all ai. For a real number 0 < α ≤ 1, we call an

allocation of M to the players α-WMMS, if the total value
of the items allocated to every agent ai is at least αWMMSi

to her.
Our first result is regarding the existence of approximately

fair allocations. We show in some cases, no allocation is
better than 1/n-WMMS.

Theorem 1.1. No algorithm can guarantee any allocation
better than 1/n-WMMS. Moreover, a 1/n-WMMS allocation
can be obtained via a greedy algorithm.

We show Theorem 1.1 via a counter-example. In this
example, we have n− 1 agents with very small entitlements
(ε) and a monopolist agent whose entitlement is 1− (n− 1)ε.
We show in this example that there is set of items which
a monopolist agent cannot obtain a value more than 1/n+
nε from her allocated items unless one of the other agents
receives a set of items whose value to her is zero. Therefore,
no allocation can be better than 1/n-WMMS.

We complement this impossibly result by an algorithm
that ensures a 1/n guarantee. Our proposal is very simple
and easy to implement: we allocate the items to the agents in
turns. In every agent ai’s turn, we ask her to collect her most
favorite item from the remaining items. In this algorithm,
we start from the agent with the highest entitlement, and
continue on to other agents in descending order of their
entitlements. We repeat this procedure until no items are
left.

A closer look at our counter-example reveals a very un-
natural and unrealistic structure. Every agent with an ε
entitlement, has a valuation of 1− (n− 1)ε for an item. In
other words, an agent whose entitlement is small has a high
valuation for an item. One natural restriction to avoid these
situations is to assume Vi({bj}) ≤WMMSi for every agent
ai and item bj . Note that this assumption is w.l.o.g for the
symmetric case.

Theorem 1.2. There exists an algorithm that finds a 1/2-
WMMS allocation for the problem when Vi({bj}) ≤WMMSi

for every agent ai and item bj.

When the entitlements of the agents are all equal to 1/n,
providing a 1/2 guarantee is quite straightforward. For the
case of unequal entitlements however, the algorithm fails
to provide any guarantees. For this case, we propose an
algorithm guaranteeing a 1/2-WMMS allocation.

Finally, we run some experiments on real-world data and
show WMMS allocations are likely to exist in practice. We
support these experiments by studying the stochastic vari-
ants of the problem. Our focus is on two models namely
stochastic agents and stochastic items. In the stochastic
agents setting, we assume every agent has a distribution of
valuations, and her value for an item is drawn independently
from her distribution. This model has been studied in a
series of previous works [5, 11, 2, 9]. In the stochastic items
model, we assume every item has a distribution of valuations,
and every agent’s valuation for that item is drawn from the
corresponding distribution. We show in both models, as the
number of items increases, a WMMS allocation is more likely
to exist. This observation aligns with our experiments.
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