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ABSTRACT

One of the key challenges for multi-agent learning is scalabil-
ity. We introduce a technique for speeding up multi-agent learn-
ing by exploiting concurrent and incremental experience sharing.
This solution adaptively identifies opportunities to transfer experi-
ences between agents and allows for the rapid acquisition of ap-
propriate policies in large-scale, stochastic, multi-agent systems.
We introduce an online, supervisor-directed transfer technique for
constructing high-level characterizations of an agent’s dynamic
learning environment—called contexts—which are used to identify
groups of agents operating under approximately similar dynamics
within a short temporal window. Supervisory agents compute con-
textual information for groups of subordinate agents, thereby iden-
tifying candidates for experience sharing. We show that our ap-
proach results in significant performance gains, that it is robust to
noise-corrupted or suboptimal context features, and that communi-
cation costs scale linearly with the supervisor-to-subordinate ratio.
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1. INTRODUCTION

In large-scale multi-agent systems consisting of hundreds to
thousands of reinforcement-learning agents, convergence to a near-
optimal joint policy, when possible, may require a large number
of samples. These systems, however, may contain groups of agents
working on nearly identical local tasks or under approximately sim-
ilar environmental dynamics. Identifying such groups may prove
useful in cooperative domains, due to the opportunity of exploiting
shared information. Information sharing has been extensively stud-
ied in single-agent settings with the goal of transferring knowledge
from a source task to novel tasks [11} |6, 2. Applying this idea
to the multi-agent setting (MAS), it is apparent that experiences
may be transferred not only across similar tasks, but also between
concurrently-learning agents in a shared environment. This paper
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focuses on the problem of online transfer of experiences between
such agents—with an emphasis on the adaptive discovery of groups
of agents where experience sharing is possible and beneficial.

In multi-agent settings, agents interact and learn concurrently. It
is difficult to identify when experiences may be usefully exchanged
and reused by other agents, since they might be operating under
different local environments and may be interacting with different
types of neighbors. To address this issue we propose modeling con-
texts as dynamic local characterizations of the environment under
which agents learn. They are defined over short timescales during
which policies and models are approximately static. We introduce a
context-similarity measure grounded in the comparison of abstract
representations of environment dynamics, and advocate the use of
supervisory agents as a way of identifying contextually-compatible
agent groups where experiences may be shared.

In the single-agent setting, many metrics for comparing learning
environments (and determining transfer opportunities) exist. Most
are based on comparing policies, Q-values, or reward functions [/1}
4, 110]. These are often negatively impacted by the existence of
multiple optimal policies and by estimates constructed with differ-
ent numbers of experiences [9} [7]. Transfer methods also exist to
address multi-agent settings, but most assume that agents do not
interact or that mappings from source to target tasks are available
[1511 110} 8]|. To our knowledge, our algorithnﬂ is the first to allow
experience sharing in concurrent and interacting MAS with ~1000
agents with low communication and computational overhead. We
show that /) its complexity scales with the number of agents in
each supervisory group, not the number of agents in the system;
2) its communication costs scale linearly with the supervisor-to-
subordinate ratio; and 3) it is robust to suboptimal context features.

2. CONTEXT-BASED LEARNING

Context features are compact abstractions of the local learning
environment under which an agent operates. We wish to capture
a measure of context compatibility: if agents are working under a
same local transition and reward model, they face a same learning
problem and experiences may be transferred. We rely on context
features to form broad-scope summaries, or abstractions, of transi-
tion and reward models as experienced by individual agents. Our
method determines sharing opportunities by grouping agents based

"For a more comprehensive discussion of our method and experi-
ments see https://arxiv.org/abs/1703.01931|[3f.
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on their local learning environments (contexts). Each agent col-
lects observations from its environment in the form of state, action,
reward, and next state tuples. Every K time steps, agents report
such observations to their supervisors. Supervisors aggregate in-
formation from all subordinates to compute context summary vec-
tors, one per agent. These vectors are dynamic local characteriza-
tions of the environment under which agents operate, and are used
to identify sharing opportunities. Supervisors measure the similar-
ity between the context summary of each subordinate with respect
to a covariance-appropriate and scale-independent metric; similar
agents are organized into sharing groups, and supervisors relay ex-
periences between members of a sharing group. The system period-
ically regroups agents according to updated contextual information.
A supervisor overseeing n agents computes contextual informa-
tion for each subordinate by using a function f mapping experi-
ences to an n-tuple of context summary vectors. Each such vector
is a sample from the (latent) underlying context distribution charac-
terizing the agent’s local environment. Our method identifies shar-
ing opportunities via a stochastic sampling process that probabilis-
tically partitions agents into sharing groups, given their contextual
similarity. In particular, agents h,j € A are marked as context-
compatible with probability P ; based on the similarity of their
context summary vectors, ¢(V4, V;), where ¢ is a suitable kernel:

exp (¢(Va, V5))
Za,beA,a#b exp (¢(Va7 %))

Agents operating under similar local dynamics are near in context
space and have a higher probability of undergoing sharing. Once
sharing groups have been determined, supervisors relay experi-
ences within each group; agents incorporate them into their poli-
cies using any off-policy learning algorithm. The complexity of
our method is O(dn®), where d is the dimension of a context sum-
mary vector and n is the number of agents in a supervisory group.
Our method scales independently of the number of supervisors.

3. EXPERIMENTS

We evaluated our algorithm on large network-distributed task al-
location problems, where agents can choose to work on tasks or to
forward them to a neighbor. Tasks are generated according to pat-
terns that are unknown to the agents, which makes the problem non-
stationary. Agents learn policies using an extension of Q-Learning
to the multi-agent case with stochastic policies [[12]]. Context fea-
tures are defined as an agent’s task load relative to its neighbors,
and the rate at which each neighbor receives tasks from the envi-
ronment and from other agents. Networks are lattices of up to 729
agents and were constructed by varying the task creation frequency
and the region where tasks may originate. Four supervisory struc-
tures were considered: two baseline configurations (one with no
supervision/no information sharing, and one with a single supervi-
sor, where all agents may share information), as well as interme-
diate configurations with 4 and 9 supervisors. We measure perfor-
mance as the area under the curve of service time as a function of
time: when the system converges quickly, this area is small. Figure
[T] shows that the single-supervisor configuration far outperforms
the baseline approach with no transfer, with information-sharing
agents accumulating nearly half the area under the curve compared
to agents that do not share experiences. Adding more supervisors
diminishes this benefit, since there are fewer sharing opportunities.
Even with a high supervisor-subordinate ratio of 1:10, however,
sharing still results in a 25% reduction in the area under the curve.

Given these results, one could expect that information sharing
becomes more beneficial as the system grows: larger systems have
a more diverse pool of agents that may benefit from sharing. To
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Figure 1: Performance of different supervisory configurations
in a 100-agent network (smaller values=faster learning).
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Figure 2: Robustness under sub-optimal context features.

test this hypothesis, we evaluated our system on networks with
different numbers of agents (100, 324, 729) and different task-
generation patterns and frequencies. We observed that performance
in a 100-agent network was roughly 30% higher than the baseline.
As network size increased to 729 agents, performance median im-
proved by 40% compared to the baseline. We also observed that
the communication volume incurred by our method was invariant
with respect to K: on average 43 bytes per step per subordinate.
This suggests that these costs scale linearly with the supervisor-
to-subordinate ratio, and that even when accounting for communi-
cation overhead, more distributed configurations tend to perform
better. All information-sharing configurations we evaluated sur-
passed the baselines while incurring low communication overhead.
Finally, we analyzed our method’s robustness to corrupted or sub-
optimal context features. Poorly-constructed features that do not
properly abstract the underlying learning environment make it dif-
ficult to identify sharing opportunities. We added different levels of
normally-distributed noise to context features. Figure 2] shows that
when noise dominates (approaches 1), performance becomes in-
creasingly volatile. As features become less meaningful, our mech-
anism is equally likely to achieve a 50% reduction in the learning
curve area as it is to increase it by 100%. In other words, when
the information-sharing process is guided by ill-specified features,
there is no consistent positive or negative impact on performance;
the most prominent impact is on performance variability.

4. DISCUSSION

We introduced a method that adaptively identifies sharing oppor-
tunities between context-compatible agents, where contexts pro-
vide abstract characterizations of local learning environments. It
scales with the number of agents in each supervisory group, not in
the entire system. Experiments suggest significant performance im-
provements over baseline settings with no experience sharing, and
quantitative analyses demonstrate that sharing becomes increas-
ingly advantageous as the system grows. We also show that our
method is robust to suboptimal context features and that communi-
cation costs scale linearly with the supervisor-to-subordinate ratio.
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