
interActors: A Model for Separating Complex
Communication Concerns in Multiagent Computations

(Extended Abstract)

Hongxing Geng
∗

Agents Laboratory
Department of Computer Science

University of Saskatchewan
hongxing.geng@usask.ca

Nadeem Jamali
Agents Laboratory

Department of Computer Science
University of Saskatchewan

jamali@cs.usask.ca

ABSTRACT
Multiagent computations increasingly require complex and
diverse interactions. Existing approaches to separating these
communication concerns offer static protocols, which cannot
handle dynamically evolving numbers and sets of communi-
cating agents, and leave complex initialization steps mixed
in with functional concerns.

We present interActors, a model for separating complex
communication concerns of applications from their functional
concerns. These first-class communications are self-driven
and dynamically change in response to evolving communica-
tion needs; they can be easily created, reused and composed.
A prototype implementation is presented. A case study il-
lustrates improved programmability using interActors.

1. INTRODUCTION
Concurrent multiagent systems increasingly involve com-

plex and diverse interactions. Consider a finer-grained 21st

century version of democracy, where instead of electing politi-
cians for years, citizens can contribute to decision-making
directly by voting. Long-lived services of this type would
need to dynamically group devices or people based on their
geographic locations, solicit input, carry out aggregations,
and exhibit conditional behavior. We argue for the need to
identify such concerns as purely communication/ interaction
concerns, and to separate the mechanisms required to sup-
port them in separate layers or systems for better modularity
and reusability.

There is a growing body of work separating interaction
concerns from functional concerns (e.g., [3], [6]); however,
the setting up of an interaction and making changes to it is
cumbersome, orchestration of the interaction is still left to
the interacting processes, and participants in an interaction
are assumed to be known in advance.

Our approach is: to move the driving force for interactions

∗This work is based on Hongxing Geng’s Ph.D. research
at the Agents Laboratory at University of Saskatchewan.
He is also employed at Library and Scholarly Resources,
Athabasca University.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

between agents to the communication side of the divide, en-
abling interactions to drive themselves; to enable the setting
up of rendezvous between agents at run-time, and treat it
as a communication concern; to enable creation of libraries
of novel types of communications with required aggregation
and decision-making requirements, which can be launched
and used by applications at run-time.

2. INTERACTORS
Our model, interActors, is defined in terms of – and ex-

tends – the Actors model of concurrency [2]. Actors are
primitive agents which encapsulate objects with threads of
execution, and interact using asynchronous messages. in-
terActors extend Actors with support for complex commu-
nications. A communication is made up of a set of outlets
and handlers. The outlets are for the agents to connect to
the communication, and handlers carry out the communica-
tion’s logic. There are two types of outlets: input outlets
for agents to send messages to communications, and output
outlets for communication to send messages to agents.

A system based on interActors can be seen as having two
layers: the Actor Layer and the Communication Layer (see
Figure 1). Communications reside in the Communication
Layer and the actors – serving as computational agents –
reside in the Actor Layer. The black circle in the figure
shows an output outlet, and the white circle an input outlet.

Figure 1: Two-layer Runtime System

Actors in the Actor Layer interact with a communication
by sending messages to its input outlets and receiving mes-
sages from its output outlets. A communication’s handlers
are the driving force under the hood, and they can create
more handlers or outlets, or change behaviors of outlets.

A primitive communication is called a channel, which sim-
ply connects an input outlet to an output outlet, to enable
sending of asynchronous messages from an agent connect-

1550



ing to the input outlet to another connecting to the output
outlet. More complex communications can be created by
composing channels using three rules: input merge, output
merge, and output-input merge. An input merge compo-
sition combines a number of communications at their input
outlets; the purpose is to enable a single sender to send mes-
sages to a number of recipients. An output merge merges
a number of communications at their output outlets; the
purpose is to enable a single output outlet to receive the
messages from a number of sources. An output-input merge
connects some output outlets of the composing communica-
tions to some input outlets.

This way of constructing complex communications is pri-
marily for definitional purpose; complex communications
can always be programmed directly.

Implementation. We have implemented a proof-of-concept
prototype of interActors, which can be used to program new
types of communications, and to compose them. Our imple-
mentation is in Scala [5] using the Akka actor library [7].

We have also developed CSL (Communication Specifica-
tion Language), a specification language based on Scala, to
ease programming of communications. CSL both dispenses
with some of Scala’s boilerplate, as well as restricts arbitrary
computations from being included in a communication, with
the intent of only allowing communications which can be
constructed using the composition rules presented earlier.

3. CASE STUDY: US ELECTION
To illustrate the use of interActors, we show here how the

interactions involved in an (admittedly simplified) US pres-
idential election could be programmed as a communication.

At each polling station, a subset of eligible voters vote.
Each vote is converted into a list, with 0s for all but one of
the candidates, who receives 1. The polling station operates
from a start time to a finish time, eventually sending the list
of sums of all the votes to the county level.

At the county level, vote totals are received from each
polling station in the county. These totals are aggregated as
they arrive, and once all stations have reported, the aggre-
gate is reported to the state level.

At the state level, similarly, county totals are received
and aggregated; once all county totals have been received,
the state’s electoral college votes are awarded to the winner,
and the results are sent out to the national level.

Finally, at the national level, electoral college votes re-
ceived from the states are aggregated until the total number
of electoral college votes for one of the candidates reaches
270, at which time the result is announced.

Programming It. It turns out that the types of individual
communications we need for implementing this election are
special cases of what we call a multi-origin many-to-many
communications [4, 1]. This is when a number of parties
want to send a collective message to some recipient(s), with-
out any one taking the lead. Figure 2 shows how this can
be programmed in CSL. First a number of attributes are
specified: participants is the group of participants who
want to send the collective message; recipients are the
intended recipients of the message; cond and aggr are the
condition and aggregation functions respectively, which de-
termine when it is time to aggregate the messages collected
thus far, and how the aggregation happens. Next, the outlets

and handlers are specified. An output outlet out has behav-
ior forward parametrized with recipients to forward the
incoming messages to. Handler aggrhandler has behavior
aggregator to which it passes the cond and aggr functions,
as well as the name of the output outlet out. Input outlet in
too has the forwarder behavior, but parametrized with the
handler aggrhandler’s name to forward incoming messages
from participants to aggrhandler.

1 communication MOM2M {
2 attributes: {
3 participants: List[ActorRef ];
4 recipients: List[ActorRef ];
5 cond: List[Any] => Boolean;
6 aggr: List[Any] => Any;
7 }
8 output outlet: out(forwarder(recipients ));
9 handler: aggrhandler(aggregator(out , cond , aggr ));

10 input outlet: in(forwarder(aggrhandler ));
11 init: {
12 sendm(participants , in);
13 }
14 }

Figure 2: Multi-Origin Many-to-Many Communication

Constructing a complete election communication now sim-
ply requires composing several instances of MOM2M communi-
cations, each parameterized with appropriate cond and aggr

functions to be received via setting of attributes.
An agent can then use such an election communication by

instantiating it, setting its attributes, and finally launching
it as shown in Figure 3.

1 val e = new election ();
2

3 e.setAttr(Map(...,
4 "participants1"->parts1 ,
5 "cond_county1"->cond_c1 ," cond_station1"->cond_s1 ,
6 "aggr_county1"->aggr_c1 ," aggr_station1"->aggr_s1 ,
7 ...));
8

9 e.launch ();

Figure 3: Instantiating and Launching Communication

4. CONCLUSION
In a variety of emerging multiagent applications, interac-

tions are becoming more complex and varied, often requiring
aggregation and decision-making at run-time. Leaving such
complex interactions to be managed by the agents compli-
cates the agents’ code, and hampers reusability. Existing
approaches to separating these interaction concerns create
static protocols which cannot evolve over the course of an
interaction. In this paper, we presented a model, interaAc-
tors, and related mechanisms, for first-class communications
which are self-driven, and which can respond to the chang-
ing state of an interaction. We briefly described our imple-
mentation, and a specification language which programmers
can use to specify executable communications. Finally, we
presented a case study to illustrate the ease of with which
communication can be programmed using interActors.

Acknowledgments
Support from NSERC is gratefully acknowledged.

1551



REFERENCES
[1] A. Abdel Moamen and N. Jamali. Coordinating

crowd-sourced services. In Proceedings of the IEEE
International Conference on Mobile Services, pages
92–99, Alaska, USA, June 2014.

[2] G. Agha. Actors: A Model of Concurrent Computation
in Distributed Systems. MIT Press, Cambridge, MA,
USA, 1986.

[3] F. Arbab. Reo: A Channel-based Coordination Model
for Component Composition. Mathematical Structures
in Computer Science, 14(3):329–366, June 2004.

[4] H. Geng and N. Jamali. Supporting many-to-many
communication. In Proceedings of the 2013 ACM
SIGPLAN Workshop on Programming Based on
Actors, Agents, and Decentralized Control
(AGERE!@SPLASH), pages 81–86, New York, NY,
USA, 2013. ACM.

[5] M. Odersky, P. Altherr, V. Cremet, B. Emir,
S. Maneth, S. Micheloud, N. Mihaylov, M. Schinz,
E. Stenman, and M. Zenger. An Overview of the Scala
Programming Language. Technical report, 2004.

[6] M. P. Singh. Information-driven Interaction-oriented
Programming: BSPL, the Blindingly Simple Protocol
Language. AAMAS ’11, pages 491–498, Richland, SC,
2011.

[7] Typesafe. Akka Framework. http://www.akka.io.

1552




