
Adapting with Honeypot Configurations
to Detect Evolving Exploits

(Extended Abstract)
Marcus Gutierrez

University of Texas at El Paso
500 W University Ave.

El Paso Texas
mgutierrez22@miners.utep.edu

Christopher Kiekintveld
University of Texas at El Paso

500 W University Ave.
El Paso Texas

cdkiekintveld@utep.edu

ABSTRACT
Honeypots are decoy cyberdefense systems placed in a net-
work to entice malicious entities into attacking in order to
waste attacker resources and learn information about at-
tack behavior or previously unknown exploits. We focus
on the strategic selection of various honeypot configurations
in order to adapt to an intelligent attacker amidst a dy-
namic environment. In order to infiltrate networks, attack-
ers leverage various exploits on the system. However, these
exploits and the value they provide dynamically change over
time as more information is gathered about them. We intro-
duce a model that addresses the combinatorial complexity
of the honeypot selection problem and allow for these dy-
namic exploits. To solve this new problem, we map this
model to a Multi-Armed Bandit (MAB) problem, which is
a class of machine learning problems that maintain balance
between exploration and exploitation. We show empirically
that both stochastic and adversarial MAB solutions improve
over static defense strategies.

Keywords
Honeypot, Honeynet, Exploit, Machine Learning, Adversar-
ial Learning, Modelling and Simulation

1. INTRODUCTION
One of the central problems in cybersecurity is detecting

and monitoring attacker behavior. A key aspect of attacker
behavior that we want to detect is what types of exploits
attackers are using to execute attacks. The types of exploits
attackers are using can change dramatically over time; some
forms of attacks may become more or less common, and new
types of attacks may be introduced. Detecting any type of
attempted attack provides useful information about attacker
behavior, but an especially important case is zero-day at-
tacks. Zero-day attacks are based on previously unknown
exploits, so they are more dangerous and difficult to detect
because there are no known countermeasures [3]. Our work
focuses on the problem of detecting and monitoring exploits
in this dynamic environment.

Appears in: Proc. of the 16th International Conference on

Autonomous Agents and Multiagent Systems (AAMAS 2017),

S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),

May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents
and Multiagent Systems (www.ifaamas.org). All rights reserved.

We focus on honeypot selection as our method for detect-
ing attacker behavior. Honeypots are fake computer sys-
tems or services that are designed to appear like legitimate
systems to an attacker [10]. Honeypots log all malicious
activity with low false positive rates as malicious entities
primarily interact with them. This allows for the gathering
of additional information about the attacker’s capabilities
and intentions.

We address one of the most important limitations of hon-
eypots for detecting exploits. A honeypot must present itself
as a particular type of host or service, such as a server run-
ning a particular version of an operating system, with cer-
tain open ports, installed software packages, etc. [10]. This
means that any particular honeypot presents a limited at-
tack surface that is only vulnerable to attacks using certain
types of exploits. Due to costs of deploying high-quality
honeypots, we are limited to how many honeypots we can
deploy, leading to a combinatorially complex problem.

The model we propose addresses this combinatorial hon-
eypot selection problem. We use KFSensor as a motivat-
ing example of how to map this problem. KFSensor is a
commercial intrusion detection system that deploys high-
interaction honeypots on a network [4]. This software re-
quires a high cost in time to develop strategic combinations
of honeypots to choose from, known as scenarios, but switch-
ing between scenarios is quick and effortless. While our
methodology could be used with other types of honeypot
software (such as HoneyD [9]), we focus on KFSensor as an
example because it is readily available and highly customiz-
able.

Ṕıbil et. al. consider a similar problem, but take a game-
theoretic approach [8] that model the decision space as a
static decision. Meanwhile, Kĺıma et. al. provide a similar
approach as ours to the domain of Border Patrol [6]. They
model an online, repeated interaction between a defender
and attacker where the defender must patrol zones. Similar
to our work, they leverage the Combinatorial Multi-Armed
Bandit framework and provide empirical analysis on an at-
tacker agent derived from fictitious play. Our work differs
from Kĺıma et. al.’s due to our non-linear reward structure
and dynamically changing exploits.

2. MODEL
Our model captures two important features of the exploit

detection problem. First, the defender has limited resources
and must selectively choose which types of honeypots to

1565



deploy. Second, the set of exploits that can be used (and
detected) changes dynamically over time, both by introduc-
ing new exploits and changing the value of existing exploits.
We consider a repeated interaction between a defender and
an attacker. The defender faces a choice in each round of
which set of available honeypot configurations to deploy in
that round. The attacker’s decision in each round is which
exploit to use to try to execute an attack. A high-level vi-
sualization of the interaction is show in Figure 1.

Figure 1: High-level visualization of model. De-
fender inserts honeypots into the network and the
adversary selects an attack that targets the servers
on the network (which may be honeypots).

We assume that the defender has a static network N of
real systems to protect each with a value. In each round,
the defender selects from a list of honeypot configurations
to deploy in the network. Each honeypot configuration con-
tains a unique combination of features that define its vul-
nerabilities. Meanwhile, the attacker selects an exploit to
attempt an attack on the network. Each exploit has a list
of minimum required features that help determine if a sys-
tem is said to be vulnerable to said exploit. This forms a
many-to-many bipartite graph between exploits to honeypot
configurations. The defender is aware of the features each
configuration contains, but not the links between honeypot
configurations and exploits.

If the defender, selects a honeypot configuration that is
vulnerable to the selected exploit, the defender detects the
exploit and receives a positive payoff proportional to the
total value of the affected real systems and the current value
of the exploit. If the defenders does not detect the selected
exploit, she receives a negative payoff proportional to the
total value of the affected real systems and the current value
of the exploit.

We also model the severity/effectiveness of different ex-
ploits. The National Institute of Standards and Technology
uses the Common Vulnerability Scoring System (CVSS) to
assess the severity, difficulty of implementation, and impact
of exploits [7]. We capture the severity of different exploits,
but also model how this severity evolves over the typical life-
cycle of an exploit [5]. Initially, an exploit may be known
only to the initial discoverer, and there are no known patches
or mitigations. These are the most dangerous exploits, and
are known as zero-day attacks. At some point the exploit
becomes broadly known. During this time it may be widely
used to conduct attacks by many different groups, while mit-
igations are still being developed. Eventually, patches and
other mitigations are developed to reduce or eliminate the

exploit. However, they may take time to be fully adopted
and distributed, so the effectiveness of the exploit is grad-
ually reduced over time. To model this, at the end of each
round, new exploits may be added to the attacker’s actions.

3. EXPERIMENTS
We conducted several experiments to evaluate different

online learning methods for the exploit detection problem in
comparison with several baseline methods described previ-
ously. All defenders interact with our Adversarial Attacker,
modeled after fictitious play.

In our initial experiments, we consider three baseline de-
fenders and two Multi-Arm Bandit defenders. Multi-Armed
Bandits (MAB) capture a central tradeoff in machine learn-
ing: balancing exploration vs exploitation. We observe the
Upper Confidence Bound (UCB) stochastic bandit [1] and
the Exponentially-weighted algorithm for Exploration and
Exploitation (EXP3) adversarial bandit [2], since our model
does not map directly to a stochastic problem, nor a clas-
sical adversarial problem. We compare these two bandit
algorithms to uniform random, fixed random, and a pure
strategy (only plays one configuration) defenders. We eval-
uate each defender by the difference in expected payoff com-
pared to playing the optimal honeypot configuration in each
round they get. This performance is known as regret, which
we seek to minimize. As seen in Figure 2, EXP3 and UCB
outperform the näıve defender strategies and begin learning
the attacker’s strategy.

Figure 2: Cumulative Regret Over Time

UCB and EXP do not account for combinatorial actions,
so we evaluate näıve combinatorial extensions to these al-
gorithms. When each algorithm plays a honeypot config-
uration and successfully detects an exploit, we update the
beliefs of all configurations that could have detected the de-
ployed exploit. This näıve extension to UCB and EXP3
show improvements to both algorithms, by outperforming
their noncombinatorial counterparts with combinatorial UCB
performing the best among all evaluated algorithms.

4. CONCLUSION
We have introduced a new model for using dynamic hon-

eypot selection to improve exploit detection. We have em-
pirically demonstrated that applying learning methods dra-
matically improves performance over non-learning methods.
We further demonstrate that we can exploit the combina-
torial structure of the problem to further improve exploit
detection.

1566



REFERENCES
[1] P. Auer, N. Cesa-Bianchi, and P. Fischer. Finite-time

analysis of the multiarmed bandit problem. Machine
learning, 47(2-3):235–256, 2002.

[2] P. Auer, N. Cesa-Bianchi, Y. Freund, and R. E.
Schapire. Gambling in a rigged casino: The adversarial
multi-armed bandit problem. In Foundations of
Computer Science, 1995. Proceedings., 36th Annual
Symposium on, pages 322–331. IEEE, 1995.

[3] L. Bilge and T. Dumitras. Before we knew it: an
empirical study of zero-day attacks in the real world.
In Proceedings of the 2012 ACM conference on
Computer and communications security, pages
833–844. ACM, 2012.

[4] K. Focus. Kfsensor overview, 2003.

[5] S. Frei, M. May, U. Fiedler, and B. Plattner.
Large-scale vulnerability analysis. In Proceedings of
the 2006 SIGCOMM workshop on Large-scale attack
defense, pages 131–138. ACM, 2006.

[6] R. Kĺıma, V. Lisỳ, and C. Kiekintveld. Combining
online learning and equilibrium computation in
security games. In International Conference on
Decision and Game Theory for Security, pages
130–149. Springer, 2015.

[7] P. Mell, K. A. Kent, and S. Romanosky. The common
vulnerability scoring system (CVSS) and its
applicability to federal agency systems. Citeseer, 2007.

[8] R. Ṕıbil, V. Lisỳ, C. Kiekintveld, B. Bošanskỳ, and
M. Pěchouček. Game theoretic model of strategic
honeypot selection in computer networks. In
International Conference on Decision and Game
Theory for Security, pages 201–220. Springer, 2012.

[9] N. Provos. Honeyd-a virtual honeypot daemon. In
10th DFN-CERT Workshop, Hamburg, Germany,

volume 2, page 4, 2003.
[10] L. Spitzner. Honeypots: tracking hackers, volume 1.           

Addison-Wesley Reading, 2003.          

1567




