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ABSTRACT
We consider voting rules that are based on the majority graph. Such
rules typically output large sets of winners. Our goal is to investi-
gate a general method which leads to refinements of such rules. In
particular, we use the idea of parallel universes, where each uni-
verse is connected with a permutation over alternatives. The per-
mutation allows us to construct resolute voting rules (i.e. rules that
always choose unique winners). Such resolute rules can be con-
structed in a variety of ways: we consider using binary voting trees
to select a single alternative. In turn this permits the construction
of neutral rules that output the set the possible winners of every
parallel universe. The question of which rules can be constructed
in this way has already been partially studied under the heading of
agenda implementability. We further propose a randomised version
in which the probability of being the winner is the ratio of universes
in which the alternative wins. We also investigate (typically novel)
rules that elect the alternatives that have maximal winning probabil-
ity. These rules typically output small sets of winners, thus provide
refinements of known tournament solutions.
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1. INTRODUCTION
Social choice theory is mainly concerned with deterministic func-

tions that aid in the selection of alternatives. These functions have
as input some representation of social preferences; some exam-
ples of possible outputs are single alternatives, sets of alternatives,
orderings over alternatives, and lotteries of alternatives. We use
the term “rules” to refer in general to such deterministic functions.
Here we investigate a general method for refining and probabilising
rules that can be expressed in terms of parallel universes. Though
the method is general, we specifically apply it to functions that take
tournaments as inputs.

In mathematical terms a tournament is a complete directed graph.
Rules based on tournaments include, but are not limited to, Copeland,
the Top Cycle, the Banks set, and the Markov solution concept. We
make the following slightly imprecise observation: rules based on
tournaments are not very discriminating, both because they often
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output non-singleton sets, and because in this case the output sets
tend to be relatively large. Rules based on tournaments are thus
good candidates for rules to be made more discriminating.

After all, the whole purpose of a rule is to provide choice. For
practical purposes, singleton outputs are often necessary, and in
many cases singleton outputs are required for theoretical analyses
of rules. At the same time, it is desirable that these choices are
good. The typical approach to an irresolute rule is to apply an ex-
ogenous tie-breaker, though this violates the basic desirable prop-
erty of neutrality. Our approach explicitly retains neutrality while
providing some gains in the discriminating power of a rule. It is an
interesting issue as to whether other desirable properties, such as
monotonicity, can also be retained.

1.1 Previous work
There is a large literature on tournaments, ranging from the purely

mathematical [13] to the explicitly social choice theoretic [11] [4].
The particular tournament rules that we are interested in concern
tree structures, of which one strand of study originates from ques-
tions concerning voting by agenda. An early significant result is
the implementation of what became known as the Banks solution
concept [12, 1]. This in turn lead to more general questions of
implementability: attempts to find the rules implementable by in-
dividual resolute trees were given by Srivastava and Trick [14] and
continued by Trick [16]. The question of implementability for res-
olute procedures was settled by Horan [8], who went on to give full
sufficient and necessary conditions for irresolute tournament rules
[9].

The Banks set was the subject of an interesting exchange con-
cerning the gap in computational complexity between calculating
all and calculating some winners: Woeginger [17] showed that the
full set is NP-hard, to which Hudry [10] replied, noting there is a
greedy algorithm for calculating some Banks winner. These results
are implicitly based upon the “parallel” nature of the Banks set.
Such implicit treatment of the idea of parallel computations can
be traced back to Tideman’s Ranked Pair rule [15], but seems to
have been first explicitly called such by Conitzer et al. [6] who in-
vestigate the rule variously known as instant run-off voting, single
transferable vote or alternative vote. Freeman et al. [7] continued
this study in a similar direction, while Brill and Fischer [5] applied
a similar explicit treatment of parallel universes to Ranked Pairs.

Randomised rules in social choice have been studied in particular
with reference to their ability to mitigate the Gibbard-Satterthwaite
result [2]. More pertinent here is recent work by Brandt et al. [3]
which characterises a randomised tournament solution that returns
maximal lotteries.
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2. DEFINITIONS
All our definitions are given with reference to a set of alternatives

A = {1, 2, . . . ,m}. We refer to arbitrary elements of A as a, b,
c,. . .

A tournament is a trichotomous and asymmetric relation T ⊂
A × A. We write T〈a,b〉 for the tournament where the relation
between a and b is reversed.

A tournament function is a function from the set of all tourna-
ments to non-empty subsets of A. There are various properties
of tournament functions and rules more generally that are studied;
these may ensure fairness or be seen as generally desirable prop-
erties for a rule. A tournament function is resolute if it always
outputs a singleton. Resoluteness is incompatible with neutrality:
a tournament function is neutral if permuting the elements in an
input tournament results in a similarly permuted output. A desir-
able property is monotonicity, where if aTb and b is selected by
the rule applied to T , then b should also be selected by the rule ap-
plied to T〈a,b〉. Another potentially desirable property is Condorcet
consistency, that requires that if for some alternative a, aTb for all
alternatives b 6= a, then a should be the unique winner.

Many tournament functions can be defined using binary trees
with labelled leaves [8]. Specifically, the leaves are labelled with
alternatives in A. The tournament function determined by such a
binary tree proceeds as follows. Starting at the leaves, pairs of chil-
dren are compared according to the input tournament. Assuming
the children are distinct, the alternative that dominates the other is
placed at the parent node – if the children are identical i.e. the same
alternative, this alternative is placed at the parent node. This pro-
cedure is continued up the tree and the alternative at the root is the
output of the tournament function.

We can compactly represent trees as left associative words. For
an illustrative example, the Banks tree, whose recursive definition
is given below, is drawn below as a full tree next to its compact
form.

1 4 3 4 2 4 3 4
14(34)(24(34))

Here are some examples of recursive definitions for such trees,
which can be used to create tournament functions for sets of any
finite cardinality:

Simple tree st(1, 2, . . . , n) = 1 (st(2, . . . , n))

Two-leaf tree tt(1, 2, . . .) = 12.

Balanced tree

ft(1, . . . ,
⌈n
2

⌉
,
⌈n
2

⌉
+ 1, . . . , n) =

ft(1, . . . ,
⌈n
2

⌉
)
(
ft(
⌈n
2

⌉
+ 1, . . . , n)

)
Banks tree bt(1, 2, . . . , n) = bt(1, 3, . . . , n) (bt(2, 3, . . . , n))

Iterative Condorcet tree it(1, 2, . . . , n) = 12 . . . n it(2, . . . n)

All basic tree based rules are resolute, thus none of the above pro-
duce neutral rules (for |A| > 2). We extend a basic rule based on
a tree in three ways to create three new rules that we call parallel
universe rules, argmax rules and frequency rules. Parallel universe
rules output the set of winners for all possible permutations of the
alternatives applied to the leaves of the tree. For the argmax ver-
sion, we count how many times a permutation of the alternatives
leads to each alternative being the winner. The alternatives that win
for most permutations are the argmax winners. Finally, frequency
rules output a lottery over the alternatives determined by how often
a permutation produces each alternative.

3. PROPERTIES AND COMPARISON
All of our three extensions are neutral, thus satisfy a basic fair-

ness notion that is broken when applying an exogenous tie-breaker.
It is an interesting question to what extent other desirable properties
are satisfied by these rules. There are various properties that depend
upon the structure of the trees involved: whether repetitions are al-
lowed in the leaves, or whether the set of leaves is a superset of the
alternatives. For instance, it is easy to see that a rule is Condorcet
consistent if the set of leaves is a superset of the alternatives, for
the resolute function and the parallel and argmax versions.

We would like to note that although our extensions are applied
to the specific case of tournament rules, they can generally be ap-
plied to any rules with a “parallel” nature. From this perspective,
the more interesting question concerns inheritance results: that is,
if the basic rule satisfies some property, then do its extended ver-
sions also satisfy this property. For instance, it is easy to see that
monotonicity is inherited by parallel universe versions of rules, and
that a (weak) probabilistic version is inherited by frequency rules.
The unresolved question is whether monotonicity is inherited by
argmax rules.

3.1 Success of argmax versions as refinements
Aside from the (open) question of monotonicity, we are inter-

ested in how effective argmax rules are at refining the set of win-
ners. We have tested this on some example tournaments. The out-
come of all of our rules only concern alternatives in the Top Cy-
cle: any Condorcet losers will not affect the outcome of the vote.
Thus we restrict attention to what are called non-reducible tourna-
ments, those in which the whole tournament is returned by the Top
Cycle. Moon [13] provides a list of all non-isomorphic small tour-
naments, from which we see that there are only 34 non-reducible
tournaments of size 6. We applied our rules to all of these, and
compared them with the Markov solution concept, generally con-
sidered among the most discriminating tournament solutions. Of
these 34 tournaments, the Banks set contains three alternatives 14
times, four alternatives 8 times, five alternatives 9 times and six al-
ternatives 3 times. In contrast the argmax rule applied to the Banks
tree outputs a single winner 32 times, two winners 1 time and three
winners 2 times. Argmax applied to the Simple tree and the Itera-
tive Condorcet tree get similar (though distinct) results. Copeland,
often considered a fairly discriminating solution concept, which is
here equivalent to argmax applied to the Two-leaf tree, outputs a
single winner 18 times, two winners 7 times, three winners 5 times
and four winners 4 times. Thus for these tournaments the argmax
rules are significantly more discriminating than the full parallel uni-
verse versions.

REFERENCES
[1] Jeffrey S Banks. Sophisticated voting outcomes and agenda

control. Social Choice and Welfare, 1(4):295–306, 1985.
[2] Salvador Barbera. Majority and positional voting in a

probabilistic framework. The Review of Economic Studies,
46(2):379–389, 1979.

[3] Florian Brandl, Felix Brant, and Hans G Seedig. Consistent
probabilistic social choice. Econometrica: Journal of the
Econometric Society, 84(5):1839–1880, 2016.

[4] Felix Brandt, Markus Brill, and Paul Harrenstein.
Tournament solutions. In Handbook of Computational Social
Choice, chapter 3. Cambridge University Press, 2016.

[5] Markus Brill and Felix Fischer. The price of neutrality for
the ranked pairs method. In Proceedings of AAAI-12, pages
1299–1305, 2012.

1585



[6] Vincent Conitzer, Matthew Rognlie, and Lirong Xia.
Preference functions that score rankings and maximum
likelihood estimation. In Proceedings of IJCAI-09, pages
109–115, 2009.

[7] Rupert Freeman, Markus Brill, and Vincent Conitzer.
General tiebreaking schemes for computational social
choice. In Proceedings of AAMAS-15, 2015.

[8] Sean Horan. Implementation by agenda voting. COMSOC
2012, pages 239–250, 2012.

[9] Sean Horan. Implementation of majority voting rules.
preprint, 2013.

[10] Olivier Hudry. A note on “Banks winners in tournaments are
difficult to recognize” by G. J. Woeginger. Social Choice and
Welfare, 23(1):113–114, 2004.

[11] Jean-François Laslier. Tournament Solutions and Majority
Voting. Springer, 1997.

[12] Nicholas R Miller. Graph-theoretical approaches to the
theory of voting. American Journal of Political Science,
pages 769–803, 1977.

[13] John W Moon. Topics on Tournaments in Graph Theory.
Holt, Rinehart and Winston, 1968.

[14] Sanjay Srivastava and Michael A Trick. Sophisticated voting
rules: The case of two tournaments. Social Choice and
Welfare, 13(3):275–289, 1996.

[15] T Nicolaus Tideman. Independence of clones as a criterion
for voting rules. Social Choice and Welfare, 4(3):185–206,
1987.

[16] Michael A Trick. Small binary voting trees. 2006.
[17] Gerhard. J. Woeginger. Banks winners in tournaments are

difficult to recognize. Social Choice and Welfare,
20(3):523–528, 2003.

1586




