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ABSTRACT
The aim of the ontology alignment problem is to find mean-
ingful correspondences between two ontologies represented
as collections of entities. This problem can be modelled as a
novel mechanism design problem on an edge-weighted bipar-
tite graph, where each side of the graph holds each agent’s
private entities, and the objective is to maximise the agents’
social welfare. Having studied implementation in dominant
strategies with and without payments, we report on find-
ings that for truthful mechanisms, these problems need to
be solved optimally. We also study greedy allocation rules
with a first-price payment rule, and implementation in pure,
mixed & Bayesian Nash equilibria, and have found tight
bounds on the price of anarchy and stability.
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1. INTRODUCTION
In open, distributed computing environments, agents can

only communicate if they resolve the differences in the on-
tological models that they used to represent a common do-
main. This is typically done by computing an alignment :
a set of correspondences (or mappings) stating logical re-
lationships between the entities in the different ontologies
[?]. Whilst conventional approaches rely on third parties to
compute such an alignment when the ontologies are in the
public domain, it is not suitable when the exact composition
of each ontology may be private to the owner (an agent, in-
stitution, commercial organisation, etc). Furthermore, the
ontological model may therefore be partially observable to
other agents, as some knowledge encoded within the ontolo-
gies may be confidential or commercially sensitive.

As the composition of different subsets of correspondences
can result in different alignments, the challenge in negoti-
ating a mutually acceptable alignment is that of selecting
and proposing a set of correspondences that result in a pre-
ferred alignment for both agents. Whilst various approaches
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have proposed protocols for exchanging private correspon-
dences with the goal of aligning their respective ontologies,
the naive strategies used rely on truthful revelations, and fail
to consider how other agents may respond. We model this
problem as an edge-weighted bipartite graph where the ver-
tices correspond to entities in the agents’ individual ontolo-
gies and the edges correspond to candidate correspondences.
The objective is to find a matching within the graph (i.e. an
alignment) that satisfies the aims of both agents, based on
a subset of correspondences proposed by each agent. As the
ontologies can vary greatly in size, with several in the Bio-
Medical domain possessing tens of thousands of entities, the
approach should be computationally tractable.

We explore this problem from a mechanism design per-
spective, and analyse1 implementations in Dominant Strate-
gies (centralised mechanisms) and in Nash Equilibria (de-
centralised mechanisms). For the implementations in Dom-
inant Strategies, two alternate settings are considered: with
payment, and without payment ; where the problem is char-
acterised as a social welfare maximising matching setting,
with an additive valuation function.

2. THE ALIGNMENT PROBLEM
We consider a setting in which there are two agents i ∈
{L,R} (the left agent and right agent), where each agent
possesses a private ontology Oi, containing named concepts.
The alignment is modelled as an edge-weighted bipartite
graph G = (U ∪ V,E), where the vertices of U and V corre-
spond to these named concepts (i.e. entities) in the agents’
individual ontologies respectively, and the edges e ∈ E cor-
respond to the candidate correspondences. A matching M
is a subset of E such that e ∩ e′ = ∅ for all e, e′ ∈ M with
e 6= e′. Each agent i ∈ {L,R} has a non-negative valuation
function for different matchings M , denoted vi(M), where
vi : M(G) → R+, which is additive; i.e. v(S) + v(T ) =
v(S∪T ) such that S∩T = ∅ for all S, T ∈M , and M(G) is
the set of all matchings in a graph G. The agents also have
the valuation function vi : E → R+ to represent the value
vi(e) the agent i can get from the edge e. The combined
value for an edge e is given as v(e) = vL(e) + vR(e). Ob-
serve that vi(M) =

∑
e∈M vi(e) for every agent i ∈ {L,R}.

The goal is to establish an alignment which is equivalent to a
matching M that maximises the sum of the combined edges;
i.e.

∑
e∈M v(e) is maximised. The valuation function vi rep-

1The proofs for the theorems in this extended abstract will
appear in the full version of this paper.
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resents the agent’s true valuation, or type that it attributes
to each matching. We use v to represent the combined type
profile for both agents, such that v = {vL, vR}, where vi
is the type profile for agent i, and similarly, b denotes the
combined bid profile for both agents, such that b = {bL, bR},
where bi is the bid profile for agent i.

3. AN IMPLEMENTATION IN DOMINANT
STRATEGY

To determine the outcome given the bids of the two agents,
we consider mechanisms with and without payments. We de-
fine a direct revelation mechanism M(A,P), which is com-
posed of an allocation rule A to determine the outcome of
the mechanism, and a payment scheme P which assigns a
vector of payments to each declared valuation profile. For
the mechanism with payment, the mechanism proceeds by
eliciting a bid profile bi from each agent i, and then applies
the allocation and payment rules to the combined bid pro-
files to obtain an outcome and payment for each agent. As
an agent may not want to reveal its type, we assume that b
does not need to be equal to v.

For the mechanism without payment, we consider a re-
stricted model of the declaration, whereby each agent’s val-
uation on an edge e, vi(e) is public (or at least verifiable),
and thus ∀e ∈ E, bi(e) = vi(e). What is private is a set of
desirable edges Ei ⊂ E that the agent wants in the outcome.
Each agent i therefore declares a boolean value for each edge,
denoted δi(e) ∈ {0, 1}, such that δi(e) = 1 iff e ∈ Ei.

3.1 Mechanism design with payment
In this setting, both agents have to pay money to establish

a matching. If we are willing to solve the problem optimally
(which is possible in polynomial time by simply finding an
optimal weighted bipartite matching), then we can use the
classic VCG mechanism with Clarke payment. This begs
the question: is it possible to have a faster, non-optimal,
approximate and truthful mechanism for our problem? We
have found that the answer is essentially no.

Theorem 1. For the alignment problem with payment,
any mechanism not adopting an optimal solution when agents
declare their true valuations is either non-truthful, or has an
approximation ratio of at least 2.

Theorem 2. For the alignment problem with payment,
any deterministic mechanism which does not adopt optimal
solution when agents declare true valuation, is either non-
truthful, or is maximal-in-range.

Observe that putting together Theorems ?? and ?? we
conclude that for our problem and mechanism design with
payment, the only truthful mechanisms are ones that are
maximal in range and have approximation ratio at least 2.
To complement these lower bound results we have found a
very simple truthful mechanism which indeed has an approx-
imation ratio of 2, does not produce an optimal solution and
has therefore to be maximal in range.

3.2 Mechanism design without payment
In the mechanism design without payment, if agents can

misreport their valuations, no non-trivial truthful mecha-
nism exists, see [?]. A natural setting commonly used in
previous research assumes that an agent can only declare or
hide which edge it wants to match. We will thus adopt this

restricted model of the declaration. We assume that agents
cannot lie about their valuations, but they may lie about
which edge can be used to establish a matching. An instance
of the alignment problem on a private bipartite graph is: the
valuations of agents on edge e, vi(e) are public information
or verifiable, and agent i’s private information is a set of
edges Ei ⊂ E given by δi(e) ∈ {0, 1}. An edge e is possi-
ble to be accepted in the matching, only if for both agents,
δL(e) = δR(e) = 1. The agent i will receive value vi(e) from
e if it is matched, and otherwise it receives 0 from edge e.
The goal is to maximize the social welfare via a mechanism
without money, such that both agents are incentivised to
declare their Ei truthfully.

We designed a polynomial time algorithm which deter-
mines that, given an instance, if a deterministic truthful
mechanism exists with a bounded approximation ratio; if
so, then the optimal solution is found. However, if such a
mechanism does not exist for the bid, then we show there is
no truthful mechanism with a bounded approximation ratio.

Theorem 3. There are no randomized mechanisms that
are universally truthful and have approximation ratios better
than 2 for the setting.

Theorem 4. There are no randomised mechanisms that
are truthful in expectation and have approximation ratios
better than 1.333 for the setting.

4. NASH EQUILIBRIA IMPLEMENTATION
Given our results on truthful centralised mechanisms, ei-

ther the problem should be solved optimally (though costly)
or strong lower bounds should be found for the approxima-
tion ratios of truthful mechanisms. Thus, we have explored
an implementation in Nash equilibria to efficiently approxi-
mate mechanisms for matching, using the greedy allocation
mechanism. We have found that coupled with the first-price
payment scheme, this mechanism implements Nash equilib-
ria which are very close (within a factor of 4) to the opti-
mal matching. Specifically, we have characterised the Price
of Anarchy of the greedy mechanism completely and have
found that it is precisely 4. This bound on the price of an-
archy holds even for Bayesian and Mixed Nash equilibria.
Furthermore, we have also found that when a pure Nash
Equilibrium exists, the Price of Stability is at least 2. This
provides a complete picture of the complexity of mechanism
design for our problem.

5. CONCLUSIONS
The Ontology Alignment negotiation problem was mod-

elled as a mechanism design problem. Our results on truth-
ful (centralised) mechanisms suggest that they require opti-
mal solutions, which are time-costly for large instances. On
the other hand, when we change our focus to decentralised
mechanisms and we simply let the agents play, then such
mechanisms implement Nash equilibria whose social welfare
is close to the optimal social welfare.
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