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ABSTRACT
In recent years, work has been done to develop the theory
of General Reinforcement Learning (GRL). However, there
are no examples demonstrating the known results regarding
generalised discounting. We have added to the GRL simula-
tion platform (AIXIjs) the functionality to assign an agent
arbitrary discount functions, and an environment which can
be used to determine the effect of discounting on an agent’s
policy. Using this, we investigate how geometric, hyperbolic
and power discounting affect an informed agent in a simple
MDP. We experimentally reproduce a number of theoretical
results, and discuss some related subtleties. It was found
that the agent’s behaviour followed what is expected theo-
retically, assuming appropriate parameters were chosen for
the Monte-Carlo Tree Search (MCTS) planning algorithm.

1. INTRODUCTION
Reinforcement learning (RL) is a branch of artificial intel-

ligence focused on agents that learn how to achieve a task
through rewards. Classically, RL methods focus on one spe-
cialised area and often assume a fully observable Markovian
environment. Many problems of interest lack the necessary
assumptions to apply such methods. Scaling RL to non-
Markovian and partially observable real world domains pro-
vides the motivation for General Reinforcement Learning,
which focuses on designing agents effective in a wide range of
environments. (G)RL agents use a discount function when
choosing their future actions, controlling how they weight
future rewards. Several theoretical results have been proven
for arbitrary discount functions relating to GRL agents [8].
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We present some contributions to the platform AIXIjs
[1][2]1, which enables the simulation of GRL agents for grid-
world problems. Being web-based allows this platform to be
used as an educational tool, as it provides a simple visual
demonstration of theoretical results. It also allows the test-
ing of agents in different environments and scenarios, which
can be used to analyze and compare models. This makes it
a useful tool for demonstrating results within the GRL field.
Our main work here is to extend AIXIjs to arbitrary dis-
count functions. Using this, we show it is possible to induce
theoretically predicted agent behaviours in a simple concrete
setting.

2. BACKGROUND

2.1 Generalised Discounting
Samuelson [11] first introduced the model of discounted

utility, which is still used in both RL and other disciplines.
Hutter and Lattimore [8] address several issues with this
model, using the GRL framework to include the agent’s his-
tory and the possibility of change in discounting over time.
This facilitated a classification of time consistent discount-
ing. A policy is time consistent if it agrees with previous
plans. As an example, if I plan to complete a task in 2 hours
but then after 1 hour plan to do it after another 2 hours,
my policy will be time inconsistent. They also present a list
of common discount functions and which of these are time
consistent. These form the basis for our experiments, and
we introduce the most notable below. We have omitted ge-
ometric discounting in the interest of space, as the results
for this function provide little insight. Given a current time
k, future time t > k, and a discount vector γ, we have:

Hyperbolic Discounting : γkt = 1
(1+κ(t−k))β , κ ∈ R+, β ≥ 1,

(Time Inconsistent). Hyperbolic discounting is of interest
as it is thought to model some irrational (time inconsistent)
human behaviour [15].

1For a thorough introduction to the AIXIjs platform:
aslanides.io/docs/masters thesis.pdf
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Power Discounting : γkt = t−β , β > 1, (Time Consis-
tent). Power discounting causes the agent to become more
far sighted over time, with future rewards becoming rela-
tively more desirable as time progresses (a growing effective
horizon). This is flexible as there is no need to fix an effec-
tive horizon, it will instead grow over time.

2.2 AIXIjs
We implement our experiments using AIXIjs, a JavaScript

platform designed to demonstrate GRL results. There are
several GRL agents currently implemented to work in (toy)
gridworld and MDP environments. Using these, demos each
designed to showcase some theoretical result in GRL are
presented on the web page. The user can alter parameters
and run the demo, while the simulation specific data is used
to visualise the interaction. The API allows for anyone to
design their own demos based on current agents and envi-
ronments, and for new agents and environments to be added
into the system. There is the option to run simulations as
experiments, collecting desired data from the simulation and
storing it in a JSON file for analysis.

The source code can be accessed on: https://github.

com/aslanides/aixijs

While the demos can be found at: http://aslanides.io/
aixijs/ or http://www.hutter1.net/aixijs/

There has been some related work in adapting GRL results
to a practical setting. In particular, the Monte-Carlo AIXI
approximation [16] implemented a AIXI model using the
ρUCT algorithm and successfully applied this to various toy
settings.

Related to AIXIjs is the REINFORCEjs web demo by
Karpathy [6]. This example is restricted by the Q-Learning
and SARSA algorithms being defined only for Markovian
environments.

3. EXPERIMENTS AND RESULTS
The environment we use is a deterministic MDP, struc-

tured to provide a simple means to differentiate myopic and
far-sighted agent policies. The idea behind the environment
is to give the agent the option of receiving an instant re-
ward rI at any point, which it will take if it is sufficiently
myopic. The other option gives a very large reward rL only
after following a different action for N steps. If the agent
is far-sighted enough, it will ignore the low instant reward
and plan ahead to reach the very large reward in N time
steps. We instantiate to N = 6, rI = 4 and rL = 1000 in
our experiments. In order to determine time inconsistency,
we find the agents plan by traversing the MCTS.

The GRL agent AIµ [4] is designed to find the optimal
reward in a known environment. To isolate the effect of
discounting, this is the agent used for our experiments to
remove uncertainty in the agent’s model. We use Monte-
Carlo Tree Search (MCTS) as the planning algorithm to
approximate the agents search tree (specifically ρUCT [16]).
Although UCT [7] would suffice for our deterministic envi-
ronment, ρUCT is already incorporated into AIXIjs, and as
such was used for the planning.

Hyperbolic Discounting : These experiments were performed
on commit 3911d of the provided github link. We varied κ
between 1.0 and 3.0 in increments of 0.2, and kept β con-
stant at 1. The MCTS horizon was 10, Samples were 10 000
and UCB was 0.01. We found that for κ ≥ 1.8 the agent be-
haved myopically (red/lowest reward plot in Figure 1), and
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Figure 1: Reward Plot for Discounting Experiments

for κ < 1.8 the agent behaved far-sightedly (black/largest
reward plot Figure 1). For κ = 1.8, the agent planned to
stay at the instant reward for the next cycle and then move
off to collect a delayed reward. This plan was the same for
all cycles, with the agent constantly pursuing the instant
reward and planning to do the better long term action later
(essentially procrastinating). The agent was therefore time
inconsistent at every cycle. The fact that this behaviour
can be induced with this function supports the claim that
hyperbolic discounting can model certain irrational human
behaviours.

Power Discounting : We used β= 1.01 for this case. We
note that any change in β would result in similar behaviour,
with only the length and time between these stages chang-
ing. The MCTS horizon was 7, Samples were 100 000 and
UCB was 0.001. No time inconsistency was detected for this
function. These results can be replicated with the latest ver-
sion of AIXIjs. This result (See the blue/middle line in Fig-
ure 1) shows how a growing effective horizon can effect an
agent’s policy. Initially the agent is too short sighted to col-
lect the delayed reward, but over time this reward becomes
more heavily weighted compared to the instant reward. Af-
ter some time the agent starts to collect the delayed reward
and is fixed to a far-sighted policy. This shows it is pos-
sible to recreate this theoretically predicted behaviour in a
practical setting.

4. SUMMARY
We have adapted AIXIjs to include arbitrary discount

functions. Using this, we were able to isolate time incon-
sistent behaviour and empirically validate known results on
generalised discounting using a simple MDP. We show hy-
perbolic discounting can induce procrastinating agent be-
haviour, and that it is possible to observe the impact of a
growing effective horizon with power discounting. The AIX-
Ijs platform now permits a larger class of experiments and
demos with general discounting, which will be useful for fu-
ture research on the topic. There will continue to be new
results proven for GRL, so an avenue for future work would
be to demonstrate those results in a similar fashion to the
work presented here. Our contributions would allow for this
to be done easily for new results on agent discounting.
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