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ABSTRACT
Traditional reinforcement learning (RL) techniques often en-
counter limitations when solving large or continuous state-
action spaces. Training times needed to explore the very
large space are impractically long, and it can be difficult to
generalize learned knowledge. A compact representation of
the state space is usually generated to solve both problems.
However, simple state abstraction often cannot achieve the
desired learning quality, while expert state representations
usually involve costly hand-crafted strategies.

We propose a new technique, generalization-based Kan-
erva coding, that automatically generates and optimizes state
abstractions for learning. When applied to adapting the
congestion window of the highly complex TCP congestion
control protocol, a standard Internet protocol, this tech-
nique outperforms the current standard-TCP New Reno by
59.5% in throughput and 6.5% in delay. Our technique also
achieves a 35.2% improvement in throughput over the best
previously proposed Kanerva coding technique when applied
in the same context.
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1. INTRODUCTION
RL has been effectively applied to a variety of problem do-

mains, such as robotics [1], control [2] and computer game
playing [3]. In this paper, we explore how RL techniques can
be effective when applied to hard networking control prob-
lems. Applying RL to TCP congestion control is challenging
due to the problem’s continuous and high-dimensional state
space in a dynamically-changing network environment. For
continuous state systems, it is impossible to directly repre-
sent all system states. This motivates the need for approxi-
mating representations to store the value functions.

Many approximating approaches have been developed to
abstract or compress full state spaces and one popular ap-
proach is function approximation [4]. Many function approx-
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imation techniques have been applied, including tile cod-
ing [5] (also known as CMAC) and its variants [6], [7], and
tree-based state partitions [8]. However, the use of manual
partitions or inflexible abstractions of the state space limit
the applicability of these techniques when solving real-world
problems.

Kanerva coding [9], also known as Sparse Distributed Mem-
ories, provides another approach for dealing with a complex,
high-dimensional state space. This technique uses a subset
of the state space to represent the whole state space. If
the subset of states is chosen wisely, this approach works
well [10]. Its effectiveness in complex learning domains has
been evaluated by [11], [12], [13], [14] and [15]. However,
its ability to abstract successfully is very sensitive to the
selection of the subset [16].

In this paper, we propose a novel generalization-based
Kanerva approach that explores the near-optimal structure
of the set of prototypes (a subset of the state space), and
dynamically modifies and fully utilizes the set of prototypes
over time. Our algorithm can provide a user-specified level of
abstraction when exploring the state space. Specifically, we
maintain an additional set of states, the candidate prototype
set, that allows each state to learn its value and record its
level of generalization. When useless prototypes are removed
from the standard set of prototypes, states with certain lev-
els of generalization and well-trained values in the candidate
prototype set can be immediately migrated to and used by
the standard set of prototypes.

We apply our proposed generalization-based Kanerva cod-
ing algorithm to the complex network environment in which
we reformulate the congestion control algorithm in TCP. We
observe considerably improved performance through a com-
prehensive simulation study.

2. METHODS
Kanerva-based function approximation approaches are usu-

ally initialized with a number of randomly generated states
as prototypes, and value updates are applied to those pro-
totypes. Inappropriate allocations of prototypes would re-
sult in poor value approximation. However, simply generat-
ing new prototypes and/or deleting prototypes usually pro-
vides limited improvements to the prototype set. We pro-
pose a generalization-based Kanerva coding technique that
provides a general methodology to dynamically adjust the
potential state space abstractions and manage the levels of
generalization on prototypes in an easy and flexible manner.
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Figure 1: Network topology with a bottleneck link
that can be set to a fixed or varying bandwidth.
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Figure 2: Average throughput and RTT comparisons.

Our generalization-based prototype optimization algorithm,
while cooperating with Q-learning to do value updates, fol-
lows the following steps to construct successful sets of pro-
totypes. First, we initialize a prototype set S by randomly
selecting a number of prototypes from the state space. Sec-
ond, after every k time steps of learning, we check the level
of generalization, that is, the number of adjacent states en-
countered, for each prototype and dynamically adjust the
level of generalization of the whole prototype set S to a
desired value v. To do that, we first record the level of gen-
eralization of each prototype and then remove prototypes
whose levels of generalization are much bigger or smaller
than v. Finally, a number of states that have approximately
v levels of generalization from the candidate prototype set
are selected and introduced to the prototype set S.

One contribution of our technique is that it dynamically
identifies prototypes with inappropriate levels of generaliza-
tion and replaces those prototypes with ones having desired
levels of generalization, giving agents the ability to adjust
the levels of generalization on prototypes between coarse-
grain and fine-grain over time.

To better serve the dynamic generalization on the proto-
type set, we also propose a prototype migration mechanism
that utilizes two sets of states referred to as the hot zone and
the cold zone. The hot zone is the regular prototype set used
to represent the state abstraction. We apply generalization-
based prototype removal and introduction on the hot zone.
The cold zone consists of a large number of prototypes that
include candidate prototypes and prototypes removed from
the hot zone. Prototypes in the cold zone are continuously
trained over time. The cold zone is used to provide qual-
ified prototypes that have desired levels of generalization
and sufficiently leaned values. With this mechanism, when
we need new prototypes to supply to the hot zone, qualified
prototypes that have certain generalizing ability can be eas-
ily found in the cold zone and when they are migrated to
the hot zone, their values are already preset. In addition,
since inappropriate prototypes in the hot zone are migrated
to the cold zone instead of being deleted, we reduce the risks
of permanently losing previously learned values and deleting
prototypes with as-yet undiscovered potentials.

3. RESULTS
We embed our learning algorithm in the ns-3 network sim-

ulator as a new congestion control protocol and design a
typical network topology that can be encountered in real-life
network environment. This network topology has continu-
ous, high-dimensional state spaces.

We evaluate the performance of New Reno, which is a
standard TCP congestion control protocol, adaptive Kan-
erva coding, which is the best previously proposed Kanerva-
based technique, and our new generalization-based Kanerva
coding approach, by applying all to the fixed-bottleneck link
network (the bottleneck link has a fixed bandwidth) and the
varying-bottleneck link network (the bottleneck link has two
bandwidths that alternate) shown in Figure 1. Since each
server acts as a learning agent, competition for available
bandwidths among different leaning agents exists in this net-
work, making the network environment complex. And the
bottleneck link, that has a fixed or varying bandwidth, in-
troduces more dynamics to the network environment.

We repeat our simulation five times using each algorithm
in both network settings, and report the average through-
put and delay in Figure 2(a) and Figure 2(b). Figure 2(a)
shows that in the fixed-bottleneck link network, the average
throughput of generalization-based Kanerva coding is 18.0
Mbps which outperforms both adaptive Kanerva coding and
New Reno by 9.6%. In the more complex varying-bottleneck
link network, the average throughput achieved by our algo-
rithm is 16.7 Mbps which outperforms adaptive Kanerva
coding by 35.2% and outperforms New Reno by 59.5%. As
shown in Figure 2(b), we observe that both Kanerva-based
algorithms achieve lower delay than New Reno, and the
generalization-based Kanerva coding has comparable aver-
age RTT with adaptive Kanerva coding in both network
settings.

4. CONCLUSIONS
Our work describes an effective RL agent that has the abil-

ity to handle highly complex domains, making the RL ap-
proach widely applicable. The learning agent applies a novel
generalization-based Kanerva coding approach to better uti-
lize available bandwidth in network traffic by adjusting the
congestion window size to adapt to real-time network con-
gestion. In our experiments, the policy converges quickly to
a stable set of actions. Our technique reformulates the RL
process with dynamically changed state abstractions, mak-
ing it possible to abstract useful information from the rich
details of the environment, while using a very small set of
prototypes to approximate the value functions as closely as
possible.

In the experiments, our learning agent achieved better
throughput and delay performance than both the best-known
Kanerva-based algorithm and New Reno in a complex net-
work topology. We conclude that generalization-based Kan-
erva coding can be used to manage congestion in complex
networks, and that the technique enables effective state space
abstraction in reinforcement learners.
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