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ABSTRACT
In many cases, building a generative model is difficult and
unnecessary since we may be only interested in making pre-
dictions of some certain situations. In this paper, we mod-
el the dynamics of predictions of interest, called prediction
profile, through a Markov decision process (MDP) and ac-
cordingly make the predictions using the learned model. We
further adapt the entropy concept to measure prediction ac-
curacy of the learned MDP model and provide importan-
t guidelines for strategically expanding events of interest
with the purpose of improving the predictions. We con-
duct experiments to demonstrate the performance of our
techniques.
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1. INTRODUCTION
It is known that learning a generative model that can make

predictions for all possible futures is often intractably com-
plex in a partially observable, stochastic environment of high
dimensions. In many cases, it is more interesting to make
predictions for a small set of future events. This motivates
the developments of a non-generative model in making a
small set of predictions of interest [1, 6, 11, 12, 13, 14].
The set of predictions of interest is usually denoted as a
prediction profile [12, 14], which is a vector of predictions
for the tests of interest, and a test is a sequence of action-
observation pairs to happen in the future that can be used
to describe the events of our interests.

Recent work on non-generative models usually builds par-
tially observable models by using prediction profiles as ob-
servation representations [12, 14]. Such a treatment leads
to the problems of time-consuming, local minima, etc., and
prior knowledge of the system is often required.

Observing that when the tests of interest contain the set
of core tests [4], the prediction profiles are sufficient statis-
tics of actions and observations in the past and can serve
as states in the underlying system. Inspired by this, we
present a Markov decision process (MDP) based approach
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for making predictions of tests of interest by using predic-
tion profiles as state representations. The MDP approach is
demonstrated to be far more efficient and accurate in making
predictions. We also demonstrate that the new MDP based
prediction model consistently provides superior performance
even if sufficient statistics are not guaranteed.

With the benefit from the utilization of MDP models, we
can evaluate and improve the prediction accuracy of the
learned MDP model before the model will be further ex-
perimented or applied in practice. Given the learned MDP
model, we adopt the model entropy [8] to measure the un-
certainty of state transition in the learned model, and reveal
a relation between the entropy and the prediction accuracy.
Such a relation further provides important guidelines for s-
trategically expanding events of interest with the purpose
of improving the predictions. This study also complements
our approach when the prediction profiles are not sufficien-
t statistics of the past, where the state transition becomes
stochastic.

2. MDP BASED PREDICTION MODELS

2.1 Clustering Prediction Profiles
Given the training data, we can estimate empirically the

prediction profile φ(h) = {p(t1|h), p(t2|h), · · · , p(ti|h)} for
the tests of interest T I = {t1, t2, · · · , ti} at history h [14] and
construct a set of prediction profiles, namely P = {p1, · · · , pn},
where n is the number of histories in the training data.

Due to the sample error, the estimated prediction profiles
will unlikely be equal at different histories, even if the true
underlying prediction profiles are identical.

To decide the set of distinct prediction profiles, we evalu-
ate the linear independence of the composed prediction pro-
files P by computing the matrix rank [3, 5, 7]. As the rank
computation considers the average error of matrix entries[3],
compared to the statistical tests [9, 14], differentiation of
the prediction profiles is more accurate. The prediction pro-
files that are linearly independent are classified into different
groups and correspond to different true underlying predic-
tion profiles. For each group i, a representative prediction
profile ppi is selected.

2.2 Learning MDP Models
Under the condition that the tests of interest contain the

set of core tests, the prediction profile is a sufficient statistic
of history so that it can represent the state of the underly-
ing systems. Simultaneously, observing that given sufficient
training data, the prediction profiles that do not appear in
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the training data can be thought as never or rarely encoun-
tered. With the obtained k representative prediction pro-
files, we learn an MDP model to describe the dynamics of
prediction profiles. The MDP specification follows:

• States the set of states is defined to be the set of rep-
resentative prediction profiles, i.e., S = {s1 = pp1, s2 =
pp2, · · · , sk = ppk}.

• Actions the set of actions is defined to be the set of
action-observation pairs in the original system, i.e., APP =
A×O.

• State-transition function T : S × APP × S → [0, 1],
where T (si, 〈ao〉, sj) is the probability of ending in sj when
an agent starts in state si and takes action 〈ao〉.

To learn the MDP model, we first translate the origi-
nal action-observation sequences into the form of 〈action-
observation〉-profile sequences [14]. Subsequently, we com-
pute the transition function in the transformed data and
build the MDP model. Given the learned MDP model, we
can make the predictions of tests of interest at any history.

2.3 Improving the Prediction
It is noted that under the conditions that the number of

the prediction profiles is finite and the prediction profiles
are sufficient statistics of the histories, the learned MDP is
deterministic.

Proposition 1. Given the tests of interest include the
set of core tests, the dynamics of prediction profiles is deter-
ministic.

Consequently, if the number of prediction profiles is finite,
the entry of the state-transition functions in the learned MD-
P model will be either 0 or 1 and the learned MDP model
is deterministic. Otherwise, in many cases, other than de-
terministic, the transition from one prediction profile to an-
other becomes stochastic, which will reduce the prediction
accuracy of tests of interest.

To improve the prediction accuracy, we first adopt the
concept of model entropy [Equation 5 of reference [8]] to
measure the learned MDP model’s accuracy and then make
a further step to improve the learned model’s prediction ac-
curacy accordingly.

The model entropy quantifies the uncertainty of state tran-
sitions in the learned MDP model. The entropy value grows
when the transitions become more stochastic, which usually
means a lower prediction accuracy of the learned model [8].
Hence we can use the entropy of the learned model as one
quantitive measurement of the model’s prediction accuracy.

As more tests are added into the set of tests of interest,
the prediction profile tends to be sufficient statistic of the
history. To improve the prediction accuracy, we can expand
the tests of interest in a strategic way. Intuitively we shall
add the tests that can reduce the uncertainty of the transi-
tions in the learned MDP model. Thus, the entropy of the
learned MDP model can be used as guidance for choosing
tests to be added into the set of tests of interest. When the
entropy of the learned model is high, some tests should be
added and the tests leading to a lower entropy should be
chosen. We can repeat the MDP model learning and make
predictions accordingly.

We design one simple iteration algorithm to properly ex-
pand the given set of tests of interest T I . Starting with a

randomly generated set of tests TR, in each round, we itera-
tively sample a new test and consider using it to replace each
element of TR, then the model is relearned using T I ∪ TR

as tests of interest. In each round, if the best replacement
is a reduction in terms of the entropy value of the learned
model, then we keep it.

3. EVALUATION
Experiments were conducted on the PocMan domain [2, 8,

10] and we compared the MDP based prediction technique
with the POMDP approach [14]. Both approaches used the
linear independence technique for clustering the prediction
profiles.

We conducted two sets of experiments. The first set is
to compare the two approaches’ performance by varying the
number of tests of interest. The learned models were eval-
uated in terms of prediction accuracy and model learning
time. The second set is to verify the entropy based strategy
for improving the accuracy of predictions of tests of interest.
We compared the entropy based selection to one baseline
technique that randomly replaces one element of TR of size
10 with the sampled new test. The new TR combined with
T I of size 50 was used to learn the corresponding model.
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Figure 1: Prediction errors for (a) different number
of tests of interest; (b) 10 rounds in expanding tests
of interest in PocMan.

Fig. 1 (a) reports the prediction accuracy of the evalu-
ated methods when varying the number of tests of interest.
The learned MDP model outperforms the POMDP approach
even when the number of tests of interest is very small (less
than the number of core tests). The results support the ap-
plication of the MDP model on making predictions of tests of
interest even if prediction profiles are not a sufficient statis-
tic of history. The learning time ratio between the POMDP
and MDP models reaches more than 6:1.

Fig. 1 (b) shows the average prediction errors of two selec-
tion methods (Random and Entropy-based) when new tests
were added into the tests of interest over 10 rounds in the
PocMan domain. The upper dashed line is the prediction
error of the original MDP model. The entropy-based strate-
gy significantly improves the prediction accuracy by adding
the new tests that lead to the lowest entropy of the learned
MDP model. It is observed for the random strategy, the per-
formance is not stable over rounds and the reduction of the
prediction errors is not guaranteed in most the cases. The
number at each point in the figure is the (lowest) entropy
at the corresponding round, which also shows that a higher
entropy value results in a lower prediction accuracy.
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