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ABSTRACT
Reward shaping has been proposed as a means to address the
credit assignment problem in Multi-Agent Systems (MAS).
Two popular shaping methods are Potential-Based Reward
Shaping and difference rewards, and both have been shown
to improve learning speed and the quality of joint policies
learned by agents in single-objective MAS. In this work we
discuss the theoretical implications of applying these ap-
proaches to multi-objective MAS, and evaluate their effi-
cacy using a new multi-objective benchmark domain where
the true set of Pareto optimal system utilities is known.
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1. INTRODUCTION
Multi-Agent Reinforcement Learning (MARL) has proven

to be successful in developing suitable joint policies in nu-
merous complex single-objective problems (e.g. [2, 5, 10,
17]), but research into multi-objective applications is still at
a very early stage. MARL problems may be formalised using
the Stochastic Game (SG) framework [3]. A SG is defined
as a tuple < S,A1...N , T,R1...N >, where N is the number of
agents, S is the set of states, Ai is the set of actions for agent
i (and A is the joint action set), T is the transition function,
and Ri is the reward function for agent i. In MARL, agents
learn to maximise the return from R, and thus the design
of R directly affects the joint policies learned. R may be
augmented by an additional shaping reward F to provide
additional feedback to the agents, thus improving learning
speed and/or the final joint policy learned. Two typical
MARL reward functions exist: local rewards (Li) based
on the utility of the part of a system that agent i can ob-
serve directly, and global rewards (G) based on the utility
of the entire system. Potential-Based Reward Shap-
ing (PBRS) is a form of reward shaping which has been
proven to preserve the Nash equilibria of a SG [6]. In PBRS
the shaping term is F (s, s′) = γΦ(s′)− Φ(s), where Φ(s) is
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a potential function representing preferences for agents to
reach certain system states. A difference reward (Di) is
a shaped reward signal that aims to quantify each agent’s
individual contribution to the system performance [20]:

Di(si, ai) = G(s, a)−G(s−i ∪ sci , a−i ∪ aci ) (1)

where G(s−i∪sci , a−i∪aci ) is the counterfactual which repre-
sents the global utility for a theoretical system without the
contribution of agent i. The terms s−i and a−i refer to all
the states and actions not involving agent i, while sci and
aci are fixed states and actions not dependent on agent i.
Difference rewards have featured in many successful MARL
applications (e.g. [7, 8, 11, 13, 14, 17, 19, 21]).

2. REWARD SHAPING THEORY
In a Multi-Objective Stochastic Game (MOSG) the re-

ward function R returns a vector r consisting of the rewards
for each individual objective c ∈ C. Empirical results have
shown that both D [13, 14, 21] and PBRS [9] can out-
perform agents learning using unshaped G in MOSGs, in
terms of learning speed, average performance on system ob-
jectives, and quality of the non-dominated solutions found.
It has been proven that applying PBRS in multi-objective
domains does not alter the true Pareto optimal policies [9].
PBRS does affect the agents’ exploration and may alter the
Nash equilibrium reached by the agents; therefore different
policies could be learned compared to agents learning with-
out PBRS. Colby and Tumer [4] proved that the relative
ordering of expected returns is not altered when agents are
rewarded using D instead of G in a two-player single objec-
tive matrix game. We generalise this result to the case of a
co-operative MOSG with |C| ≥ 1 objectives and N agents.

Theorem 1. For any state s ∈ S in a co-operative MOSG,
the relative ordering of rewards is not altered when D is used
in place of the system evaluation function.

Proof. For any state s ∈ S in a co-operative MOSG,
agents select a joint action a according to their joint policy
π, and are rewarded for this state transition using the system
evaluation function G. If all agents except agent i follow a
joint policy π†−i ∈ Π−i, and agent i follows a policy πi ∈ Πi,

the resulting joint policy is π†−i∪πi. Suppose that the reward
for an objective c ∈ C is greater if agent i follows policy
π1
i ∈ Πi rather than π2

i ∈ Πi in state s when all other
agents follow their respective policies from π−i. Formally:

Gc(s, a
†
−i ∪ a

1
i ) > Gc(s, a

†
−i ∪ a

2
i ) (2)

where Gc(s, a) is the return from the system evaluation func-
tion for objective c when joint action a is selected in system

1625



state s, a†−i are the actions selected in state s by all agents

except agent i when following their policies from π†−i, and

a1i and a2i are the actions selected by agent i when follow-
ing policy π1

i or π2
i respectively. If objectives are shaped

independently when using D, a counterfactual term must
be calcuated for each objective c in order to apply Eqn. 1
to the global reward vector. As the counterfactual term
Gc(s−i∪sci , a†−i∪a

c
i ) for any objective c does not depend on

the policy being followed by agent i, for each possible system
state s we can infer that the counterfactuals for agent i must
be a fixed quantity. Thus we can add −Gc(s−i∪sci , a−i∪aci )
to each side of Eqn. 2 while preserving the inequality:

Gc(s, a
†
−i ∪ a

1
i )−Gc(s−i ∪ sci , a†−i ∪ a

c
i ) >

Gc(s, a
†
−i ∪ a

2
i )−Gc(s−i ∪ sci , a†−i ∪ a

c
i )

(3)

And noting that the difference evaluation for objective c for
agent i is: Dc,i(si, ai) = Gc(s, a)−Gc(s−i ∪ sci , a−i ∪ aci )

∀c ∈ C, s ∈ S, i ∈ {1, ..., N}
[
Dc,i(si, a

1
i ) > Dc,i(si, a

2
i )

⇐⇒ Gc(s, a
†
−i ∪ a

1
i ) > Gc(s, a

†
−i ∪ a

2
i )
] (4)

Therefore D does not alter the relative order of rewards for
actions in any system state s, although it does alter the
absolute values. Any property that relies on the ordering of
rewards, and not the absolute value is therefore unaffected
for each system state s. For example, if an action ai in state
s leads to a Nash equilibrium reward with respect to G, it
also leads to a Nash equilibrium reward with respect to Di.
And if an action ai in state s is Pareto optimal with respect
to G, it is also Pareto optimal with respect to Di.

3. RESULTS & DISCUSSION
The Multi-Objective Beach Problem Domain (MOBPD)

[12] is the first MOSG where the true Pareto optimal system
utilities are known. It extends an earlier single-objective
version [7], in a similar manner to Yliniemi and Tumer’s
multi-objective extension [21] to the El-Farol bar problem
[1]. Each agent begins at a beach section s ∈ S, and then
decides at which section they will spend their day. At each
timestep an agent knows which beach section it is currently
attending, and can choose to move to an adjacent section or
to stay still. Agents must coordinate their actions to max-
imise two conflicting objectives: “capacity” and “mixture”.

Each section has a capacity ψ, and the highest capacity
reward for a section is received when the number of agents
present is equal to ψ. Sections which are too crowded or
too empty receive lower rewards as they are less desirable.
Agents in the MOBPD are assigned one of two static types:
m or f . The maximum mixture reward for a section is re-
ceived when the number of m agents in attendance is equal
to the number of f agents, while sections with an unequal
mixture of agents receive a lower reward as they are less
desirable. The local, global and difference rewards for ca-
pacity and mixture are calculated as per previous work [21].
Rewards for each objective are first normalised [15] before
linear scalarisation [16] is applied with an even weighting.

We test multiple individual Q-learning [18] agents using
credit assignment structures L, G, G + PBRS and D in
the MOBPD, as well as agents that randomly select actions.
The PBRS heuristics used are adapted from the work of
Devlin et al. [7]. We set ψ = 5, num agents M = 70,
num agents F = 30, |S| = 5, num episodes = 10000,

Figure 1: Best non-dominated episodes over all runs

Table 1: Experimental Results
PO Solns. Avg. HV Best HV

True Pareto Front 19 3.347111
D 16 3.322784 3.329418
G+ PBRS(Mid) 0 2.852388 3.238757
G 0 2.158390 2.474170
G+ PBRS(Spr) 0 1.966866 2.300028
L 0 1.939231 2.338821
Random 0 1.609211 1.849685

num timesteps = 1, α = 0.1, ε = 0.05 with decay rate
0.9999 and γ = 0.9. Half of the m and f agents begin each
episode at section 1, while the rest begin at section 3.

Table 1 lists the number of true Pareto optimal solutions
found across all 50 statistical runs (PO Solns.), the average
hypervolume of the non-dominated solutions found (Avg.
HV), and the hypervolume of the best non-dominated so-
lutions found across all runs (Best HV). Best HV gives an
indication of how close an approach can get to finding the
true Pareto front of the problem, while Avg. HV shows
how consistent the performance of an approach is. D of-
fered the best overall performance, sampling 16 of 19 Pareto
optimal solutions and achieving hypervolumes very close to
that of the true Pareto front. Fig. 1 shows that the best
non-dominated solutions found by D and G+ PBRS(Mid)
match closely with those of the true Pareto front. All the
solutions found by L and G are dominated by those found by
D and G+PBRS(Mid); these typical MARL credit assign-
ment structures are not informative enough to guide agents
towards good solutions in the MOBPD.

The performances of D and G+PBRS(Mid) demonstrate
that well designed shaping techniques can guide agents to-
wards true Pareto optimal solutions in MOSGs by making G
more informative. Appropriate credit assignment is just as
important in MOSGs as it is in traditional single-objective
SGs, and this work demonstrated for the first time that
agents learning using D can sample true Pareto optimal
solutions in MOSGs. More sophisticated scalarisation ap-
proaches combined with D may allow further improvements
in coverage along the true Pareto front in complex MOSGs.
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