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ABSTRACT
Normative systems are a widely used framework to coordi-
nate interdependent activities in multi-agent systems. Most
research in this area has focused on how to compute norma-
tive systems that effectively accomplish a coordination task,
as well as additional criteria such as synthesising norms that
do not over-regulate a system, and the emergence of norms
that remain stable over time. We introduce a framework for
the synthesis of stable normative systems that are sufficient
and necessary for coordination. Our approach is based on
ideas from evolutionary game theory. We simulate multi-
agent systems in which useful norms are more likely to pros-
per than useless norms. We empirically show the effective-
ness of our approach in a simulated traffic domain.
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1. INTRODUCTION
Within the area of multi-agent systems, normative sys-

tems have been widely used as coordination mechanisms [5,
16]. Most research in the area has focused on the problem
of how to compute a normative system that effectively co-
ordinates a system, which was proven to be NP-Complete
in [17]. Two alternative approaches have been proposed to
solve this problem: off-line and on-line. Off-line approaches
aim at designing normative systems at design time [17, 8, 1,
6]. On-line approaches aim at creating norms at run-time,
either by emerging from the agent society [3, 18, 22, 2, 14],
or by being created by a norm synthesis mechanism based on
the observation of the system [11, 12]. On-line approaches
are considered to be more flexible than off-line approaches,
since norms can be adapted as a system evolves.

Most work in normative systems has focused on synthe-
sising effective normative systems that successfully achieve
certain goals [17, 1, 10]. Other works consider further cri-
teria, such as the synthesis of minimal normative systems
that, while being effective, do not over-regulate a system [7,
8, 12, 13]. Additionally, some works take inspiration on the
framework of evolutionary game theory, and study how sta-
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ble norms emerge as behavioural patterns of agent societies
[3, 15, 18, 4, 9, 21]. They consider a game-theoretic setting
[20, 19] in which agents iteratively play a game, learning the
best strategies. Eventually, agents converge to stable be-
havioural patterns that can be considered as stable norms.

In this paper, we incorporate ideas from evolutionary game
theory (EGT) to synthesise evolutionarily stable normative
systems that effectively regulate a system without lapsing
into over-regulation. We simulate a multi-agent system in
which agents repeatedly play a collection of games over time,
using norms to coordinate. Norms that are proven to be
useful for coordination prosper and spread within the agent
society, while useless norms are eventually discarded by the
agents. The outputs of these simulations are normative sys-
tems whose norms are sufficient and necessary for coordina-
tion, and are evolutionarily stable.

2. EVOLUTIONARY NORM SYNTHESIS
We consider a simulated traffic junction scenario where

agents are cars. The interactions between cars are regarded
as games that can lead to collisions. Figure 1 illustrates
two game examples. Game 1 (left of Figure 1) depicts two
cars perceiving one another with available actions“go”(move
forward) and“stop”(give way). Below each game is its payoff
matrix. Both cars can avoid collisions (getting payoff 1) only
if at least one of them stops. Otherwise, they collide and get
payoff 0. In game 2 (right of Figure 1), both cars are required
to stop in order to avoid collisions.

Norms are soft constraints aimed to regulate cars’ be-
haviours in games in order to avoid collisions. As an ex-
ample, consider norms n1 and n2 designed for game 1.

n1 : 〈ϕ, (“car1”, obl(stop))〉 n2 : 〈ϕ, (“car2”, obl(stop))〉

These norms have a sentence ϕ that describes the game
played between cars 1 and 2. Both norms oblige either car
1 or car 2 to stop, respectively. Note that collisions can be
avoided if either car 1 applies n1, or car 2 applies n2. If both
cars apply their respective norms they would remain stopped
needlessly, and we would say the game is over-regulated.

Each car has a normative system containing different norms
to coordinate in different games. In a game, each car can
identify which norms apply to it out of its normative system,
and can decide whether or not to comply with these norms.
Each norm has an utility to avoid collisions, computed in
terms of whether it is effective and necessary. A norm is
effective if it avoids collisions to the cars that apply it, and
it is necessary if cars collide after violating it. In game 1,
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Figure 1: Games in a traffic junc-
tion together with their payoff matri-
ces. Game 1 has two cars perceiving
one another. Game 2 is similar, but
both cars have a stopped car in front.
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Figure 2: Normative systems synthesised
upon convergence. Each circle represents a
normative system. Blue normative systems
are right-hand side priority. White norma-
tive systems are left-hand side priority.
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Figure 3: Competition of Ω1 against mutant
normative systems. The x axis shows differ-
ent generations of normative systems created
over time. The y axis depicts the identifier of
different normative systems.

both norms n1 and n2 are effective, but n1 is necessary only
if car 2 does not have norm n2 (and the other way around).

Our aim is to synthesise a normative system that con-
tains effective, necessary and evolutionarily stable norms to
coordinate in each possible game. In this way, no car could
benefit from switching to an alternative normative system.
In our example, this would equal to choosing a useful and
stable combination of norms to regulate game 1 (either n1

or n2), and so on for each game. With this aim, we take in-
spiration on EGT, which provides a model for the evolution
of agent societies, and their convergence to evolutionarily
stable strategies. We run simulations of our traffic scenario,
and simulate norm evolution in terms of their utilities.

Our simulations consider a population of cars that ini-
tially have different normative systems. Each norm has a
frequency that stands for the proportion of cars whose nor-
mative systems contain the norm. Each simulation runs in
rounds of 1,000 ticks. In each round, cars interact playing
games, applying and violating their applicable norms. Once
a game is played, the utility of each norm is updated. At
the end of each round, norms are replicated in terms of their
fitness. The fitness of a norm stands for its average utility
to a car that has the norm when it interacts with cars that
have other norms. Such fitness is computed in terms of: (1)
the utility of a car with such a norm when interacting with
cars that have alternative norms; and (2) the probability to
interact with cars that have these alternative norms (i.e.,
their frequencies). Norms whose fitness is above the aver-
age increase their frequency proportionally, whereas norms
whose fitness is below the average decrease their frequency.

After norm replication, a new population of cars is created
whose normative systems contain each norm according to
its frequency. Thus, if a norm is 70% frequent, then 70% of
cars will have it in their normative systems. In this way, the
frequency of fittest norms increases after each round, and
that of less fit norms decreases.

3. EMPIRICAL ANALYSIS AND RESULTS
We performed an empirical evaluation to analyse the per-

formance of our approach. We ran 500 simulations of our
traffic scenario, and analysed the normative systems synthe-
sised upon convergence. In each game, cars have 10% prob-
ability to violate the norms that apply to them (and 90% to
apply norms). Each simulation stops when the frequency of
each norm remains stable (unchanged) for 20 rounds.

Remarkably, 100% of simulations converged to a norma-

tive system whose norms are effective and necessary to avoid
collisions. Figure 2 graphically represents the normative sys-
tems synthesised upon convergence. Each circle represents
a normative system (Ω). The square on top of each circle
stands for the proportion of simulations that converged to
that normative system. The subset relationship between cir-
cles represents a normative system that is a subset of another
(e.g., Ω2 is a subset of Ω1). Out of 500 simulations, our sys-
tem converged to twelve different normative systems. Nor-
mative systems Ω1 to Ω7 contain different combinations of
norms to give way to the right, and the remaining normative
systems (Ω8 to Ω12) contain different combinations of norms
to give way to the left. In particular, 67% of simulations
converged to Ω1 (right-hand side normative system), and
18% of simulations to Ω8 (left-hand side normative system).
The remaining simulations converged to similar normative
systems (subsets of Ω1 and Ω8 that differ in 1-2 norms).

Stability analysis. We analysed the stability of the norma-
tive systems synthesised upon convergence. We performed
100 extra simulations that started with a population whose
cars unanimously abided by Ω1 (Figure 2). Each simulation
lasted 400 rounds. In each round, we created mutant cars
that abided by normative systems different from Ω1. At the
end of each round, norms were replicated as described in
Section 2. All simulations converged to a population whose
agents abided by Ω1. Figure 3 illustrates one of these sim-
ulations. The x-axis shows different rounds, and the y-axis
depicts the identifiers of the normative systems created over
time. Black points represent mutant normative systems cre-
ated in each round, and the red line represents the id of the
most frequent normative system. For the sake of clarity, we
represent Ω1 as the normative system with id 1,000. After
200 rounds, the simulation created 2,500 mutant normative
systems. Upon round 400, normative system Ω1 remained
stable most of the time. In punctual rounds, a big amounts
of mutants were created, making the frequency of Ω1 to go
below stability. But, after a few rounds, Ω1 replicated and
became again the most frequent normative system. Upon
round 400, the simulation converged to Ω1.
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