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1. INTRODUCTION
Assessing whether an agent is actually executing steps to-

wards a goal, or has abandoned it, is important when multi-
ple agents are trying to achieve joint goals, or when agents
commit to achieving goals for each other. Making such in-
ference for a single goal by observing only plan traces is not
a trivial task because agents often deviate from the optimal
plans for various reasons, including the pursuit of multi-
ple goals or the inability to act optimally. In this paper,
we develop a domain-independent approach based on plan-
ning techniques that addresses the problem of detecting sub-
optimal steps and determining whether an agent will hon-
our a commitment. Specifically, we use domain-independent
heuristics, landmarks (properties or actions that cannot be
avoided to achieve a goal from an initial state), and fact par-
titions to make inferences about goal achievability. Unlike [3,
4], Geib and Goldman, who use plan libraries for goal and
plan abandonment detection, we require minimal domain
knowledge to detect abandonment. While Kafali et al. [8]
approach to reason about commitment and goal achieve-
ment in an environment use a depth-first search algorithm
in Gosu, we use the more flexible domain independent plan-
ning algorithms. Finally, Kafali and Yolum’s [9] PISAGOR
use operational rules to monitor commitments with dead-
lines and decide whether an observed agent is progressing
well towards a commitment, complementing our work.

2. MONITORING SUB-OPTIMAL STEPS
To detect sub-optimal steps, we use a plan optimality

monitoring approach [14] that combines planning techniques,
i.e., domain-independent heuristics [11, 2, 6, 12] to analyse
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plan execution deviation, and landmarks [7] to predict up-
coming actions in the plan execution. To analyse deviation,
our approach uses domain-independent heuristics, that es-
timate the distance to a goal G for every state resulting
from the execution of an observed action. Given a state s,
a heuristic h returns an estimated distance h(s) to G. If an
observation oi results in a state si, we consider a deviation
from a plan to occur if h(si−1) < h(si). Our approach uses
landmarks to predict upcoming actions during execution and
obtain information about way-points to achieve a monitored
goal G. To predict which actions could be executed in the
next observation, it estimates the distance to the extracted
landmarks L closest to the current state. Namely, for every
fact landmark l ∈ L in which the estimated distance is 0,
we select those actions a ∈ A such that l ∈ pre(a); and for
every fact landmark l ∈ L in which the estimated distance is
1, we select those actions a ∈ A such that pre(a) ∈ current
state and l ∈ eff(a)+. These predicted actions may reduce
the distance to the monitored goal and next landmarks. By
combining these two approaches, Pereira et at. [14] devel-
oped an approach that detects sub-optimal steps (actions)
in observation sequence O. Here, an observed action o is
considered sub-optimal if o /∈ set of predicted actions and
(h(si−1) < h(si)).

In some planning domains, predicates may provide addi-
tional information that can be extracted by analysing pre-
conditions and effects in operator definition. Thus, Pattison
and Long [13] classify facts into mutually exclusive parti-
tions to reason about whether certain observations are likely
to be goals for goal recognition. We use this classification
to infer whether certain observations are consistent with a
particular goal. A Strictly Activating fact appears as an
operator’s precondition, and does not appear as an add or
delete effect in any operator definition, i.e., unless defined in
the initial state, this fact can never be added or deleted by
an operator. An Unstable Activating fact appears as both a
precondition and a delete effect in two operator definitions,
so once deleted, this fact cannot be re-achieved, preventing
goals that depend on it to be achieved. A Strictly Termi-
nal fact does not appear as a precondition of any operator
definition, and once added, cannot be deleted. For some
planning domains, this kind of fact is the most likely to be
in the set of goal facts, because once added in the current
state, it remains true until the final state. Evidence of such
predicates can help determine goal achievability.
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3. COMMITMENT ABANDONMENT
Commitments have been used in multi-agent systems to

enable autonomous agents to communicate and coordinate
successfully to achieve a particular goal [10, 17, 1]. A com-
mitment C(DEBTOR, CREDITOR, antecedent, consequent) for-
malizes that the agent DEBTOR commits to agent CREDITOR

to bring about the consequent if the antecedent holds. The
antecedent and consequent conditions are conjunctions or
disjunctions of events and possibly other commitments. We
aim to monitor the DEBTOR’s behaviour (i.e., sequence of ac-
tions) and detect DEBTOR is individually committed to carry-
ing out a plan to achieve the consequent for the CREDITOR.

We define commitment abandonment as a situation in
which an agent switches from executing the actions of one
plan that achieves the consequent it is committed to, by ex-
ecuting actions from another plan. This plan may achieve
other goals, including the consequent of other commitments.
Actions in a plan that do not contribute to achieve the con-
sequent of a commitment may indicate that the debtor agent
is likely to abandon the commitment that it is committed
to its creditor. In this paper, we take inspiration in ear-
lier work [1, 10] that connects commitments to planning, so
the domain definition Ξ represents the environment where
agents can interact and act, i.e., Σ is set of environment
properties and A is a set of available actions. Now, consider
a commitment C(DEBTOR, CREDITOR, At, Ct): in order for a
DEBTOR to achieve the consequent Ct from the antecedent At

we define that: the antecedent At must be in the initial state
I, i.e., At ⊆ I; and the consequent Ct is the goal G. Thus,
a plan π for C(DEBTOR, CREDITOR, At, Ct) is a sequence of
actions [a1, a2, ..., an] (where ai ∈ A) that modifies the state
At ⊆ I into one where Ct holds by the successive (ordered)
execution of actions in a plan π.

To decide if a debtor agent will abandon a commitment,
we observe the sequence of actions it executes, which should
achieve a consequent from an antecedent. When a DEBTOR

settles to commit to an agent CREDITOR to bring about the
consequent of a commitment, the DEBTOR should individu-
ally commit to achieving such a consequent state, and to
achieve such state, the DEBTOR has to execute a plan. Since
an observer does not know DEBTOR’s internal state, and con-
sequently to what plan it has committed to, we need to de-
termine which plan, from multiple optimal plans, DEBTOR is
pursuing. Definition 1 formalises an individual commitment
from an observer’s point of view.

Definition 1 (Individual Commitment). Given a
set of plans, a DEBTOR agent is individually committed to a
plan π if, given a sequence of observations o1, . . . , om: i)
ok ∈ π where (1 ≤ k ≤ m); and ii) if ok = aj, then ∀i =
1 . . . j − 1, ai ∈ O and ai occurs before ai+1 in O. An
observation op does not contribute to achieve a consequent
Ct if the DEBTOR agent is committed to plan π and: op /∈ π;
or if op = aj, ak has not yet been observed where k < j.

Using the notion of an individual commitment, we for-
mally define a commitment abandonment problem over a
planning theory in terms of a large enough deviation from
such an individual commitment in Definition 2. Note that
with Definition 1, we can now think of deviations from obser-
vations that constitute a strict sub-sequence of any optimal
plan that start with the initial state, allowing an agent to
infer abandonment at any point in a partial plan execution.

Definition 2 (Commitment Abandonment). A
commitment abandonment problem is a tuple CA = 〈Ξ, C, I,

Algorithm 1 Detecting Commitment Abandonment.

Input: Ξ = 〈Σ, A〉 planning domain, At antecedent condi-
tion (At ⊆ I), Ct consequent condition, I initial state, O
observation sequence, and θ threshold.

1: function HasAbandoned(Ξ, At, Ct, I, O, θ)
2: 〈Fsa, Fua, Fst〉 ← PartitionFacts(Σ,A)
3: if Fsa ∩ (At ⊆ I) = ∅ then
4: return true . Ct is no longer possible.

5: for each observed action o in O do
6: δ ← δ.Apply(o)
7: if (Fua ∪ Fst) ⊆ (δ) then
8: return true . Ct is no longer possible.

9: ASubOptimal ← DetectSubOptimalSteps(Ξ, I, Ct, O)

10: if ASubOptimal > (θ ∗ |O|) then
11: return true . Debtor abandoned commitment.
12: return false . Debtor may still be committed.

O, θ〉, in which Ξ is a planning domain definition; C is the
commitment, in which C(DEBTOR, CREDITOR, At, Ct), DEBTOR

is the debtor, CREDITOR is the creditor, At is the antecedent
condition, and Ct is the consequent; I as the initial state
(s.t., At ⊆ I); O is an observation sequence of the plan
execution with each observation oi ∈ O being an action from
domain definition Ξ; and θ is a threshold that represents the
percentage of actions in an observation sequence that do not
contribute to achieving Ct from At ⊆ I in which the DEBTOR

can execute in O.

The solution for this problem is whether an observation
sequence O has deviated more than θ from the optimal plan
to achieve the consequent Ct of commitment C. Algorithm 1
formalizes our approach to solve a commitment abandon-
ment problem, bring together the techniques described in
Section 2 (function DetectSubOptimalSteps). The al-
gorithm takes as input a CA tuple and returns whether a
commitment has been abandoned, based on whether one of
the following occurs during plan execution: (1) if Strictly Ac-
tivating facts that we extracted are not in the initial state
(Line 3); (2) if we observe the evidence of any Unstable Ac-
tivating and Strictly Terminal facts during the execution of
actions in the observations (Line 7); or (3) if the number of
sub-optimal steps are greater than the threshold θ (i.e., the
percentage of actions away from optimal execution that the
creditor allows the debtor to deviate in achieving the conse-
quent state) defined by the creditor (Line 9). If none of these
conditions hold, the debtor is considered to remain commit-
ted to achieving the consequent state of the commitment.
Note that in condition (2), the presence of predicates from
two of the fact partitions can determine that the monitored
goal (or consequent) is unreachable.

4. CONCLUSIONS
In this paper, we developed an approach for detecting

commitment abandonment that uses a plan optimality mon-
itoring approach and planning techniques. As future work,
we intend to explore partial observability (i.e., missing ob-
servations), interleaving plans, more modern heuristics [5,
15], and explore other planning techniques, such as symme-
tries in planning [16].
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