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ABSTRACT
Learning a complex task like robot maneuver while prevent-
ing Monocular SLAM failure is challenging for both robots
and humans. We devise a computational model for repre-
senting and inferring strategies for this task, formulated as a
Markov Decision Process (MDP). We show how the reward
function can be learned using Inverse Reinforcement Learn-
ing. The resulting framework allows us to understand how
chosen parameters affect the quality of Monocular SLAM.
A significant improvement in performance as compared to
other state-of-the-art methods is also shown.
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1. INTRODUCTION
Active Simultaneous Localization and Mapping (Active

SLAM), deals with the generation of controls for a robot
moving in an unknown environment while simultaneously
mapping the environment and localizing itself. Most works
in this area ([1, 2, 3, 4, 5, 6, 7]) assume the availability of
dense range data or depth maps. Monocular SLAM methods
on the other hand provide sparse maps and are susceptible
to errors in pose estimates due to insufficient visual tracking
or motion induced errors.

Literature that talks about Active Monocular SLAM is
sparse. There have been works demonstrating Autonomous
Navigation for Micro Aerial Vehicles (MAVs) with Monocu-
lar SLAM [8, 9]. We approach the problem for non-holonomic
robots, which is more constrained than using MAVs. Recent
work shows the use of Reinforcement Learning to do so [10].
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The above mentioned methods are hand crafted and may
not accurately capture the importance of the parameters
used.Hence, we formulate an Inverse Reinforcement Learn-
ing (IRL) model, that learns behavior which performs even
more favorably than the above mentioned works. The main
focus here is not to introduce a new IRL method, rather to
apply existing methods to solve a challenging problem.

2. INVERSE REINFORCEMENT LEARNING
The problem of learning a reward function for an MDP led

to the emergence of IRL methods [11, 12, 13, 14, 15] under
the umbrella of Learning from demonstration frameworks.
The algorithm that we follow for performing IRL can be
found in detail in [12].

Let φ : S × A × S → [0, 1]n be a parametrization of
state-action pairs. We assume that the reward function is a
weighted combination of these parameters given by

R(s, a, s′) = ωTφ(s, a, s′) (1)

Given a policy π, its feature expectation µ(π), can be
expressed as

µ(π) =

∞∑
t=0

γtφ(st, at, st+1) (2)

Given the feature expectation of an expert agent µ(πE),
IRL tries to find weights that resemble the reward function
the expert demonstrator is trying to maximize.

3. REWARD FUNCTION PARAMETERS
Failure in Monocular SLAM systems usually occurs when

we enter areas of low feature density. Large rotations with-
out adequate translation also add to the deterioration of
pose estimates. When performing Monocular SLAM, multi-
ple sequences of subsequent forward and backward motions
are executed to give differing viewpoints from which simi-
lar parts of the scene can be viewed, thereby improving the
quality of the map and consequently, the pose estimate.
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Figure 1: Results of Goal based trajectory navigation. The first row shows the maps with start and goal locations shown as blue and
green circles, marked as ”S” and ”G” respectively. The second row shows the Trajectory and Map estimates using IRL for navigation.

Keeping in mind the above points, the parameters that we
have considered are the direction of motion, angle change ∆θ
and the common features seen between subsequent views,
denoted as ∆FOV . One additional feature that we have
considered is the SLAM failure itself after an action is exe-
cuted, which is obtained as a feedback from the SLAM.

4. EXPERIMENTATION AND RESULTS
Gazebo [16] is a framework that accurately simulates robots

and dynamic environments. Experiments were performed
in simulated environmentson a Turtlebot using a Microsoft
Kinect for the RGB camera input. We use PTAM (Paral-
lel Tracking and Mapping) [17] for the Monocular SLAM
framework. The Q-values are learnt offline between every
IRL iteration using Q-learning [18, 19] and are interpolated
with Stochastic Gradient Descent Regression, implemented
using scikit-learn [20]. We use 5th order Bernstein curves
for trajectory planning [21]. Experiments were carried out
on a laptop with Intel Core i7-5500U 2.40GHz CPU run-
ning Ubuntu 14.04 using Robot Operating System (ROS)
[22] for controlling the robot and performing SLAM. The
IRL algorithm terminates after around 6-7 iterations on an
average. The weights obtained, shown in table 1, are quite
intuitive and capture the way the parameters affect Monoc-
ular SLAM.

Table 1: Weights obtained from the IRL algorithm

Features Backward Forward ∆θ ∆FOV SLAM
Failure

Weights 0.0801 -0.1831 -0.4698 0.3127 -0.8009

To verify the usefulness of the learnt weights, we use two
different criteria. The first is the average number of steps
executed till PTAM failure, the results of which are shown
in table 2. The percentages refer to the exploitation ratio.

Table 2: Average no. of steps executed till PTAM failure

RL 60% RL 80% RL 95% IRL 95%
80 95 112 174

The second is navigation between start and goal locations
in various maps. During navigation, we continuously check if
the subsequent part of the trajectory would lead to a SLAM
failure, by thresholding the Q-value of an action and per-
forming recovery actions in case a failure is detected. Table
3 summarizes the results of our goal based navigation ex-
periments which can be seen qualitatively in Fig. 1.

Table 3: Results for Goal Based Trajectory Planning

Map Planner
Type

Runs Success Failures Success
%

1 RL 10 9 1 90
1 IRL 10 10 0 100
2 RL 10 8 2 80
2 IRL 10 9 1 90
3 RL 10 8 2 80
3 IRL 10 7 3 70
4 RL 10 6 4 60
4 IRL 10 8 2 80

5. CONCLUSION
Automating Monocular SLAM has been a significantly

challenging problem to solve as failures are common even
if the camera is carefully moved or teleoperated by an ex-
pert. This paper proposes a novel data driven strategy for
learning handcrafted expert behavior. The proposed strat-
egy learns such expert intuited policies and outperforms the
expert through enhanced SLAM longevity and goal reaching
behavior on a variety of maps.
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Gramfort, Vincent Michel, Bertrand Thirion, Olivier
Grisel, Mathieu Blondel, Peter Prettenhofer, Ron
Weiss, Vincent Dubourg, et al. Scikit-learn: Machine
learning in python. Journal of Machine Learning
Research, 12(Oct):2825–2830, 2011.

[21] Bharath Gopalakrishnan, Arun Kumar Singh, and
K Madhava Krishna. Time scaled collision cone based
trajectory optimization approach for reactive planning
in dynamic environments. In Intelligent Robots and
Systems (IROS 2014), 2014 IEEE/RSJ International
Conference on, pages 4169–4176. IEEE, 2014.

[22] Morgan Quigley, Ken Conley, Brian Gerkey, Josh
Faust, Tully Foote, Jeremy Leibs, Rob Wheeler, and
Andrew Y Ng. Ros: an open-source robot operating
system. In ICRA workshop on open source software,
volume 3, page 5. Kobe, 2009.

1699


	Introduction
	Inverse Reinforcement Learning
	Reward Function Parameters
	Experimentation and Results
	Conclusion



