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ABSTRACT
Multi-Armed Bandit (MAB) problems can be naturally ex-
tended to Markov Decision Processes (MDP). We extend the
Best Arm Identification problem to episodic fixed-horizon
MDPs. Here, the goal of an agent interacting with the
MDP is to reach a high confidence on the optimal policy
in as few episodes as possible. We propose Posterior Sam-
pling for Pure Exploration (PSPE), a Bayesian algorithm
for pure exploration in MDPs. We empirically show that
PSPE achieves deep exploration and the number of episodes
required by PSPE for reaching a fixed confidence value is ex-
ponentially lower than random exploration and lower than
reward maximizing algorithms such as Posterior Sampling
for Reinforcement Learning (PSRL).
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1. INTRODUCTION
In Pure Exploration (PE), the agent’s goal is to explore

the MDP such that it reaches a high confidence on the opti-
mal policy in as few episodes as possible, i.e., maximize the
probability of following an optimal policy. This is different
from the classical Reinforcement Learning (RL) problem,
where the goal is to maximize the rewards collected.

We consider episodic fixed-horizon MDPs with a finite
states and actions. We are interested in model based Bayesian
algorithms, where the agent maintains a prior distribution
on the parameters of the MDP and computes posteriors
based on the rewards and transitions observed. The algo-
rithm uses these posteriors to pick actions according to the
goal of the agent.

In this paper, we propose an algorithm for the PE problem
in stochastic episodic fixed-horizon MDPs called PSPE. The
following table captures our contribution.

RL PE
MAB TS [?] PTS[?]
MDP PSRL [?] PSPE
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The Thompson Sampling (TS) [?] algorithm is for max-
imizing the cumulative rewards in MABs. The Pure ex-
ploration Thompson Sampling (PTS)[?] algorithm modifies
TS by adding a re-sampling step . TS is not suitable for
PE as it pulls the estimated best arm almost all the time,
and it takes a very long time to ascertain that none of the
other arms offer better rewards. The re-sampling step pre-
vents pulling the estimated best arm too often and helps
it in achieving higher confidence in lesser number of arm
pulls. PSRL[?] extends TS to the complete RL problem on
episodic fixed-horizon MDPs. We modify PSRL for PE by
adding a re-sampling step.

2. EPISODIC FIXED HORIZON MDP
An episodic fixed horizon MDP M is given by the tuple
〈S,A, R, P,H, ρ〉. Here S = {1, ..., S} and A = {1, ..., A} are
set of states and actions respectively. The agent interacts
with the MDP in episodes of length H. ρ is the initial state
distribution. In each step of an episode, the agent observes a
state sh and performs an action ah. It receives a reward rh ∼
R(sh, ah) and transitions to a new state sh+1 ∼ P (sh, ah).
The average reward received for a particular state-action is
R̄(s, a) = E[r|r ∼ R(s, a)].

A policy π is a mapping from S and time step h = 1, ..., H
to A. The value of a state s at step h under a policy π is
Vπ(s, h) = E[

∑H
i=h R̄(si, π(si, i))]. π∗ is an optimal policy

for the MDP if π∗ ∈ arg maxπ Vπ(s, h) for all s ∈ S and
h = 1, ..., H. For a MDP M , let ΠM be the set of optimal
policies.

3. POSTERIOR SAMPLING FOR PE
PSPE modifies PSRL by adding a re-sampling step. This

prevents it from following an estimated optimal policy too
frequently. The algorithm depends on a parameter β, where
0 < β < 1, which controls how often an optimal policy of a
sampled MDP is followed. Let f be the prior density over
the MDPs and Ht be the history of episodes seen until t−1.
Algorithm ?? describes PSPE.

3.1 Computing the Confidence
Let M∗ be the true underlying MDP and let Π∗ be its set

of optimal policies. The confidence of the agent αt at episode
t is the probability of sampling a MDP Mt and following one
of its optimal policies πt such that πt ∈ Π∗.

The confidence of a set of policies Π is the probability of
sampling a MDP M and following a policy from ΠM such
that it is also in Π. Let xΠ(M) denote the probability of
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Algorithm 1 PSPE

1: H1 = {}, t = 1
2: for t = 1, 2, ... do
3: Sample Mt ∼ f(·|Ht)
4: Sample B ∼ Bernoulli(β)
5: if B = 1 then
6: Choose a policy πt at random from ΠMt

7: else
8: repeat

9: Re-sample M̃t ∼ f(·|Ht)
10: until ΠM̃t

−ΠMt 6= ∅
11: Choose a policy πt at random from ΠM̃t

−ΠMt

12: end if
13: Observe initial state s1,t

14: for h = 1, ..., H do
15: Perform action ah,t = πt(sh,t, h)
16: Observe reward rh,t and next state sh+1,t

17: end for
18: Ht+1 = Ht ∪ {(sh,t, ah,t, rh,t, sh+1,t)|h = 1..H}
19: end for

picking a policy from ΠM which is also in Π.

xΠ(M) =
|ΠM ∩Π|
|ΠM |

The confidence of Π, denoted by αΠ can be expressed as
the expectation of xΠ(M) computed over the current poste-
rior distribution of MDPs.

αΠ = EM [xΠ(M)] =

∫
M∈M

xΠ(M)f(M |H)dM

Due to the Law of Large Numbers, this expectation is the
same as this summation in the limit.

αΠ = lim
n→∞

∑n
j=1 xΠ(Mj)

n
where Mj ∼ f(·|H)

At episode t, the confidence of the agent is αt = αΠ∗ . Our
algorithm itself does not require the confidence value for its
operation.

4. EMPIRICAL EVALUATION
We compare the performance of PSPE with PSRL and

random exploration, by measuring the number of episodes
required to reach a high confidence value. We use a uni-
form Dirichlet prior for the transition probabilities and a
Gaussian prior (N (0, 1)) for reward distribution. αΠ∗ is cal-
culated drawing 10000 i.i.d samples from the posterior. The
experiment tracks the first time when the confidence value
exceeds a fixed confidence of 0.90, 0.95 and 0.99. All the
results are averaged across 50 trials. We choose β = 1/2 in
PSPE.

We generate a random MDP having 3 states, 3 actions and
H = 3. Figure (a) displays the average number of episodes
required to reach each fixed confidence. PSPE reaches a
high confidence in lesser number of episodes than both PSRL
and random exploration. The policy gap is small, resulting
in requiring a large number of episodes(400000) to reach a
high confidence.

Stochastic Chains (Figure (c)) proposed by Osband & Van
Roy [?], is a family of MDPs which consist of a chain of
states. There are two actions, left and right. The left action

is deterministic, but the right action result in going right
with probability 1−1/N or going left with probability 1/N .
The only two rewards in this MDP are obtained by choosing
left in state 1 and choosing right in state N . These rewards
are drawn from a normal distribution with unit variance.
Each episode is of length H = N . The agent begins each
episode at state 1. The optimal policy is to go right at every
step to receive an expected reward of (1− 1

N
)N−1.

We consider stochastic chains of lengths 2 to 10 and mea-
sure the number of episodes required to reach a confidence
of 0.95. For PSPE and PSRL, this number is practically the
same and grows very slowly. For Random exploration, it
grows exponentially, as seen in Figure (b). PSRL and PSPE
are able to achieve “Deep Exploration”.

(a) Episodes vs Confi-
dence in Random MDP

(b) Episodes for 0.95 confi-
dence vs Chain length

(c) Stochastic Chain MDP

5. CONCLUSION
We present Posterior Sampling for Pure Explorations as

a Bayesian algorithm for the problem of Pure exploration
under a fixed confidence setting in episodic fixed-horizon
MDPs. We demonstrate that PSPE can achieve a high con-
fidence in lesser number of episodes than PSRL or random
exploration.
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