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ABSTRACT
We extend the study of congestion problems to a more real-
istic scenario, the Road Network Domain (RND), where the
resources are no longer independent, but rather part of a net-
work, thus choosing one path will also impact the load of an-
other one having common road segments. We demonstrate
the application of state-of-the-art multi-agent reinforcement
learning methods for this new congestion model and analyse
their performance. RND allows us to highlight an impor-
tant limitation of resource abstraction and show that the
difference rewards approach manages to better capture and
inform the agents about the dynamics of the environment.
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1. INTRODUCTION
Current benchmark congestion problems present in the

literature often make unrealistic assumptions regarding the
independence between the available resources. In complex
network management domains, such as smart grids and traf-
fic networks, resources are connected and interdependent,
such that using one resource impacts the load of others as
well. For this purpose we introduce the Road Network Do-
main (RND), a problem that models the resources as a sys-
tem of interconnected roads. We proceed to demonstrate
the application of state-of-the-art multi-agent reinforcement
learning (MARL) methods on this problem and analyse their
capacity of capturing the newly introduced dynamics in the
environment.

Reinforcement Learning (RL) [3] is a machine learning ap-
proach which allows an agent to learn how to solve a task by
interacting with the environment. The solution consists in
finding a policy, i.e., a mapping between states and actions
that maximizes the received reward signal. When transition-
ing to the multi-agent case, we consider the scenario of self-
interested independent Q-learners [5] interacting in the same
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environment. In MARL a central concern is to provide a re-
ward signal that will offer a beneficial collective behaviour at
the system level. Two straightforward approaches are: the
local reward (L) which reflects information about the parts
of the system the agent is involved in, or the global reward
(G) which reflects the global system utility and should stim-
ulate agents to perform actions beneficial for the system.

A congestion problem from a multi-agent learning per-
spective is defined by a set of n available resources Ψ =
{ψ1, ..., ψn}. Each resource ψ is defined by three properties:
ψ = 〈wψ, cψ, xψ,t〉, where wψ ≥ 0 represents the weight-
ing of the resource, cψ > 0 is the capacity of ψ and finally
xψ,t ≥ 0 is the consumption of ψ at time t. A resource
ψ is congested when xψ,t > cψ. One benchmark conges-
tion problem present in the literature is the beach problem
domain (BPD) [4], where all the available resources are con-
sidered beach sections with the same weight equal to 1 and

the same capacity c: L(ψ, t) = xψ,te
−xψ,t
c . The global util-

ity is defined as the sum over all the local utility functions
at time t: G(t) =

∑
ψ∈Ψ L(ψ, t). If the number of agents

exceeds the total capacity of the system, the configuration
achieving the highest global utility for this benchmark prob-
lem is that one that overcrowds one of the resources and
leaves the rest at optimum capacity.

Difference rewards (D) [6] is a MARL reward signal that
informs the agents about their individual contribution to
the system. Under a global system utility G, the difference
rewards for agent i is defined as: Di(z) = G(z) − G(z−i),
where z denotes a general term for state, or state-action pair,
and G(z−i) is the global utility of a virtual system lacking
the effect of agent i.

The fourth MARL approach considered here is resource
abstraction (RA) [2], i.e., grouping the set of resources into
disjoint subsets, and modifying the local reward function
after reaching the congestion point of a resource, such that
agents using it will get a higher penalty for overcrowding.
An abstract group is defined by aggregating the properties
of the composing resources: consumption Xb,t =

∑
ψ∈b xψ,t,

capacity Cb =
∑
ψ∈b cψ and weight Wb = 1

|b|
∑
ψ∈b wψ.

2. ROAD NETWORK DOMAIN
We propose the Road Network Domain (RND), a problem

in which the resources are not independent, as using one
path introduces additional load for others as well. Each
road segment is modelled as a resource, corresponding to the
description presented in Section 1. The RND can be used
with the utility function of BPD. The local reward of a path
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P is then simply the sum over all the local rewards of the
composing road segments ψ (e.g., Figure 1, roads AB and
BD for the path ABD): Lpath(P, t) =

∑
ψ∈P L(ψ, t). We

compute the global system utility by summing over all the
local rewards of the roads segments present in the network.

As the impact of agent i on the system is limited to the
composing road segments of his chosen path P , we can define
the difference rewards for the RND as follows, where f is a
local reward function:

Di(t) = Lpath(P, t)− Lpath(P−i, t) (1)

For the resource abstraction method, we consider here two
approaches for defining the abstract groups: over road seg-
ments or over paths of the network. As a road segment is a
resource, the properties of an abstract group over a set of
segments coincide with the ones defined in section 1. The
abstract reward for each road segment ψ and its correspond-
ing group b is defined as:

A(b, ψ, t) =

{
L(ψ, t), xψ,t ≤ cψ

−Xb,te
−Xb,t
Cb , xψ,t > cψ

(2)

The abstract reward for choosing a path P at time t then
becomes the sum over the abstract reward of each composing
road segment.

The extension for an abstract group over a set of paths
is straightforward, if we define a path P as a resource with
the properties: consumption xP,t as the number of agents
that choose path P , capacity cP = minψ∈P (cψ) and weight
wP = 1

|P |
∑
ψ∈P wψ. We can now define the abstract reward

for a selected path P at time t:

A(b, P, t) =

{
Lpath(P, t), ∀ψ ∈ P : xψ,t ≤ cψ

−Xb,te
−Xb,t
Cb , ∃ψ ∈ P : xψ,t > cψ

(3)

where b is the corresponding abstract group of P .
We perform two experiments on the RND instance de-

picted in Figure 1: with RA defined over paths and RA over
road segments. Each agent uses the Q-learning algorithm
with an exploration parameter ε = 0.05 and an exploration
decay rate of 0.9999. We match the resource abstraction
RA parameters to the one used in [1]: learning rate α = 0.1,
decay rate for α is 0.9999 and discount factor γ = 1.0. The
parameters used for L, G and D are: α = 0.1, with no decay,
and γ = 0.9.

Figure 1: Example of an opti-
mum distribution of 50 agents
over the network under the BPD
local utility (c = 5,w = 1).

3. RESULTS AND DISCUSSION
Figures 2 and 3 show that none of the RA settings man-

age to converge to an optimum configuration for the selected
RND scenario. To better understand these results, we can
turn to Figure 1. Notice that even though the capacity of the
road segments is 5, the optimum configuration does not in-
clude any segments having reached this value. We conclude
that we cannot express the solution as ‘overcrowd these seg-
ments and keep the rest at optimum capacity’, thus being
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Figure 2: RND with BPD local utility, 50 agents, RA over
paths.
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Figure 3: RND with BPD local reward, 50 agents, RA over
road segments.

unable to properly express the desired solution using the
RA approach. Additionally, it seems that having disjoint
abstract groups is not a sufficient condition for being able
to reach an optimum solution using RA and that the ne-
cessity of having independent resources goes beyond having
segments not belonging to the same abstract group. On the
other hand, D manages to achieve the optimal performance
in this scenario, demonstrating its capacity to allow agents
to adapt to more difficult environment dynamics.

The Road Network Domain presents a novel challenge for
resource selection congestion problems, introducing the re-
alistic aspect of interconnected resources as we often find
in real-word application such as: electricity grids or traffic
networks. We note that the network topology used here is a
small one, yet sufficient to illustrate the additional challenge,
and that more research is necessary in order to evaluate sce-
narios that closely model real-world situations.

Acknowledgments
This work is supported by Flanders Innovation & Entrepreneur-
ship (VLAIO), SBO project 140047: Stable MultI-agent
LEarnIng for neTworks (SMILE-IT).

1706



REFERENCES
[1] K. Malialis, S. Devlin, and D. Kudenko. Intrusion

response using difference rewards for scalability and
online learning. In Workshop on Adaptive and Learning
Agents at AAMAS (ALA-14), 2014.

[2] K. Malialis, S. Devlin, and D. Kudenko. Resource
abstraction for reinforcement learning in multiagent
congestion problems. In Proceedings of the 2016
International Conference on Autonomous Agents &
Multiagent Systems, pages 503–511. International
Foundation for Autonomous Agents and Multiagent
Systems, 2016.

[3] R. S. Sutton and A. G. Barto. Reinforcement learning:
An introduction. MIT press Cambridge, 1998.

[4] K. Tumer and S. Proper. Coordinating actions in
congestion games: impact of top–down and bottom–up
utilities. Autonomous agents and multi-agent systems,
27(3):419–443, 2013.

[5] C. J. C. H. Watkins. Learning from delayed rewards.
PhD thesis, University of Cambridge England, 1989.

[6] D. H. Wolpert and K. Tumer. Optimal payoff functions
for members of collectives. Advances in Complex
Systems, 4(2/3):265–279, 2001.

1707




