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ABSTRACT
The market for selling reusable products is growing rapid-
ly. Existing works for policy optimization often ignore the
dynamic property of demand and the competition among
providers. This paper studies service providers’ dynamic
pricing in consideration of market competition and dynam-
ics, which makes two key contributions. First, we propose a
comprehensive model that takes into account the dynamic
demand under market competition and formulate the opti-
mal pricing policy as an equilibrium. Second, as it is difficult
to compute the Nash equilibrium due to incomplete infor-
mation and implicit revenue function, we develop an efficient
algorithm to calculate an approximate equilibrium, which is
more practical in the real world. The experiments show that
the proposed policy outperforms existing strategies and the
incentive to deviate the approximate equilibrium is small.

1. INTRODUCTION
In many real-world applications, the service providers’ re-

sources are reusable. Dynamic pricing policy plays an im-
portant role in making profits from price-sensitive users,
which has shown great success in industries, e.g., the car
rentals [7], hotel reservations [2, 19], network services [14],
and the cloud computing [10, 20], and has attracted lots
of research attention [5, 11, 15]. There are two importan-
t properties for the market: 1) users’ demand is stochas-
tic over time, which leads to dynamic inventories; and 2)
providers that offer similar services need to compete against
each other. However, existing works have partially neglect-
ed or treated these characteristics in an inadequate way.
Against this background, this paper investigates dynamic
pricing to match demand with inventory in order to maxi-
mize providers’ long-term revenues in the competitive mar-
ket, which gives solid theoretical and experimental analyses
and makes two key contributions.

First, we propose a comprehensive model to describe the
real-world applications with multiple providers and stochas-
tic user demand, where a product can be reused, e.g., re-
sources in a cloud platform. Existing works ignore either
the competition or the dynamic feature. Demand forecast
is studied in [7, 19] and the most widely-used model to de-
scribe users’ dynamic demand is the Poisson process [5, 6,
14, 20]. However, those works do not consider the mar-
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ket competition. Xu and Hopp [22] assume that customer-
s’ arrival rates follow the geometric Brownian motion and
the perfect Bayesian equilibrium is used to model provider-
s’ behaviors. Levin et al. [11] consider strategic users and
propose the subgame-perfect equilibrium. However, they fo-
cus on the one-shot inventory replenishment problem with
dynamic pricing, which cannot describe the market with
reusable products. In this paper, we adopt the Poisson pro-
cess and formulate the dynamic and competitive market as
continuous-time Markov chains [8, 13, 16].

Since each provider aims to maximize his/her expected
revenue, the optimal policy is supposed to be a Nash Equi-
librium (NE). Our second contribution lies in that we show
it is difficult to compute the NE because a provider’s revenue
cannot be explicitly represented as a function of his/her pric-
ing policy and then introduce the Approximate Equilibrium
(AE) solution concept [12, 18]. By utilizing the principles
of uniformization theory [9, 17] and Bellman equation [1, 4],
we propose an algorithm based on the best-response princi-
ple to efficiently compute the AE, which we demonstrate is
more practical than the NE in the real market.

We conduct extensive experiments to evaluate our algo-
rithm which shows good convergence performance. The re-
sults indicate that our pricing policy outperforms existing
strategies and the incentive to deviate from the AE is tiny.

2. MODELING COMPETITIVE MARKET
WITH STOCHASTIC DEMAND

We use K to represent the set of service providers in
the market. Following the common practice in the liter-
ature [5, 14, 21, 22], we assume that users’ demand for
the service of provider k ∈ K is determined by two inde-
pendent Poisson processes, namely the arrival process that
models the coming of new demand and the departure pro-
cess that corresponds to the leaving of existing request-
s. Specifically, we use λk(·) to represent the Poisson ar-
rival rate (number of new demand instances per unit time)
for provider k, which satisfies the following properties [3]
λk(p) ≥ 0, ∂λk(p)/∂pk < 0 and ∂λk(p)/∂pk′ 6=k > 0, where
p = (p1, p2, . . . , p|K|). Similarly, the Poisson departure pro-
cess is modeled by µk(·), which satisfies that µk(p) ≥ 0,
∂µk(p)/∂pk > 0 and ∂µk(p)/∂pk′ 6=k < 0. We use the no-
tation (pk, p−k) = p. Let Nk be the maximal capacity of
provider k and [Nk] denote the set {0, 1, . . . , Nk}. Since both
the arrival and departure of demand are random process, the
number of instances used by customers can be formulated
as a continuous-time Markov process and the pricing policy
of provider k is represented as Pk = (pk,0, pk,1, . . . , pk,Nk ),
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where pk,n is the price for the state n. Then the tran-
sition rate matrix for provider k is Qk(P ) = (qki,j(P ))i,j ,
i, j ∈ [Nk]:

qki,j(P ) =


E
π−k(P )

p−k∈P−k
{λk(pk,i, p−k)}, if j = i+ 1;

E
π−k(P )

p−k∈P−k
{µk(pk,i, p−k)}, if j = i− 1;

−
∑
l6=i q

k
i,l(P ), if j = i;

0, otherwise,

(1)

where πk(P ) is called the stationary (or steady-state) proba-
bility satisfying

∑
n∈[Nk] πk,n(P ) = 1 and πk(P )·Qk(P ) = 0.

When n instances are being used by customers, provider k
can receive n · pk,n revenue per unit time. Thus the average
long-term expected revenue rate for provider k is

Jk(Pk, P−k) =
∑Nk

n=0
πk,n(P ) · n · pk,n. (2)

3. OPTIMAL DYNAMIC PRICING
We first introduce the notation of NE.

Definition 1 (Nash equilibrium). A Nash equilibri-
um is a pricing policy profile P ∗ = ×k∈KP ∗k , such that
∀k ∈ K, Jk(P ∗k , P

∗
−k) ≥ Jk(Pk, P

∗
−k) for all Pk.

That is, no one can gain higher revenue rate by unilateral
changing his/her equilibrium policy. Motivated by this ob-
servation, the NE can be computed by a best response pro-
cedure, which optimizes each provider j’s pricing Pj while
keeping others’ P−j fixed in each iteration, until no one
wants to change his/her pricing policy. However, Jk(Pk, P−k)
is not an explicit function with respect to P = (Pk, P−k).
To address this challenge, when we optimize provider k’s
policy in the best-response procedure, we view the steady-
state probabilities π−k of others as fixed (i.e., they do not
change with P ). Provider k’s stationary probability under
this assumption, π̂k(P |π−k), can be calculated based on the
linear equations

∑
n∈[Nk] π̂k,n(P |π−k) = 1 and π̂k(P |π−k) ·

Qk(P |π−k) = 0, where Qk(P |π−k) is the same with Qk(P )
except that π−k(P ) in Eq.(1) is replaced with π−k. The
corresponding revenue rate with fixed π−k is

Ĵk(Pk, P−k|π−k) =
∑Nk

n=0
π̂k,n(P |π−k) · n · pk,n. (3)

The optimal (best-response) policy that maximizes the above

revenue rate is defined as B̂k(P−k|π−k) = arg maxPk∈∆k

Ĵk(Pk, P−k|π−k), which can be computed with Bellman E-
quation. When the random best response algorithm termi-

nates, it follows that, ∀k ∈ K, P̂ ∗k = B̂k(P̂ ∗−k|π−k(P̂ ∗)) and

hence Ĵk(P̂ ∗k , P̂
∗
−k|π−k(P̂ ∗)) ≥ Ĵk(Pk, P̂

∗
−k|π−k(P̂ ∗)) for all

Pk ∈ ∆k. The policy P̂ ∗ is not a NE according to Definition
1, which is an AE, as defined below.

Definition 2 (Approximate equilibrium). An ε- ap-

proximate equilibrium is a pricing policy profile P̂ ∗ = ×k∈KP̂ ∗k
with a vector ε = (ε1, ε2, . . . , ε|K|), such that ∀k ∈ K, Jk(P̂ ∗k ,

P̂ ∗−k) + εk ≥ Jk(Pk, P̂
∗
−k) for all Pk.

The εk can be viewed as the additional revenue provider k

can gain by unilaterally deviating from P̂ ∗, which is shown
to be very small in the experiments. If εk = 0 for all k ∈ K,

then the AE is equal to the NE. The policy P̂ ∗ is more
practical than P ∗ in the real world with incomplete informa-
tion because providers cannot calculate P ∗, however, each

provider k can observe others’ P−k and π−k and then opti-

mize his/her policy with B̂k(P−k|π−k), which will make the

policy to converge to the P̂ ∗ eventually.

4. EXPERIMENTAL EVALUATION
We use the following arrival and departure rate functions

in our experiments: λk(p) = lk(1− p2
k)

∑
i6=k p

2
i

|K|−1
and µk(p) =

ukp
2
k

∑
i6=k(1−p2i )

|K|−1
, where lk and uk are parameters. To eval-

uate the benefits of the proposed P̂ ∗, we compare it with
the existing optimal dynamic pricing [5, 14, 20], which max-

imizes
∑Nk
k=1 πk(Pk)npk,n for each provider k without con-

sideration of others’ strategy profile P−k. The results are
shown in Figure 1, which indicate that the noncompetitive
strategy will lead to about 10% drop of revenue as compared

with P̂ ∗. The evaluation for the tightness of ε is depicted in

Table 1. We see that the benefit of deviating from P̂ ∗k is very
limited. Thus, it is reasonable to assume providers to use

P̂ ∗k – a more realistic equilibrium strategy that can be com-
puted under both full and partial information assumptions.
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Figure 1: Strategy Comparison

Setting k lk uk Nk Ĵ∗k (·) εk εk/Ĵ
∗
k (·)

1 2 1 6 4.6390 .0620 1.33%
S1 2 1.6 1 6 4.5194 .0553 1.22%

3 1.2 1 6 4.3506 .0463 1.06%

1 1.6 0.8 6 4.6753 .0626 1.34%
S2 2 1.6 1 6 4.5603 .0572 1.25%

3 1.6 1.2 6 4.4589 .0396 0.89%

Table 1: Tightness of ε

5. CONCLUSION AND FUTURE WORK
We studied the dynamic pricing optimization problem for

the service providers selling reusable products and made t-
wo main contributions. First, we proposed a comprehensive
model that captures the dynamic and competitive features of
the market. Second, we formulated providers’ optimal pric-
ing policies as an approximate equilibrium and developed
an efficient algorithm to solve it. Our experimental results
showed that the policy we computed outperforms existing
methods in the literature. In future work, we will inves-
tigate the structural properties of the AE policy, e.g., its
monotonicity with respect to the capacity utilization. Be-
sides, we will propose more efficient algorithms to compute
the best-response strategy and the AE.
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