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ABSTRACT
We consider the problem of performing inverse reinforcement learn-
ing when the trajectory of the expert is not perfectly observed by the
learner. Instead, noisy observations of the trajectory are available.
We generalize the previous method of expectation-maximization
for inverse reinforcement learning, which allows the trajectory of
the expert to be partially hidden from the learner, to incorporate an
observation model.

1. INTRODUCTION
Inverse reinforcement learning (IRL) [1, 2] seeks to find the

observed expert’s rewards from passive observations, and usually
models the expert as a Markov decision process (MDP). However,
past methods predominantly assume that the learner has perfect
observability of the expert’s trajectory consisting of a sequence of
state and actions pairs [2, 3]. In this paper, we relax this assumption
– the learner is not able to observe the expert’s states and actions
directly. Consider the scenario introduced by Bogert and Doshi [4],
in which a hidden robot seeks to learn a patroller’s behavior in order
to penetrate the patrol without being spotted. Because the learner
is hidden, it’s field of view is limited and it cannot see the patroller
during much of the patrol. But, it may hear the patroller’s movement
sound at all times, which is useful for estimating the patroller’s
states and actions using an observation model.

Consequently, a sequence of observations is provided to the
learner. Clearly, the fact that sensors tend to be noisy motivates
the need for IRL under noisy observations. We generalize the previ-
ous method of expectation-maximization for IRL [5], which allows
the trajectory of the expert to be partially hidden from the learner,
to operate in situations where observations by the learner are noisy.
The generalization incorporates an observation function into IRL,
which models observations as a function of both state and action.
Importantly, this generalization can enable the learner to fuse data
from different sensors with different levels of noise.

2. ROBUST IRL
Because sensors tend to be noisy, a robotic learner may not per-

ceive the expert’s state-action pairs perfectly. We consider the
problem where sensory information is noisy or information comes
from different sensors with differing levels of noise, and a model
of the observation noise is available. A straightforward way to con-

Appears in: Proc. of the 16th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS 2017),
S. Das, E. Durfee, K. Larson, M. Winikoff (eds.),
May 8–12, 2017, São Paulo, Brazil.
Copyright c© 2017, International Foundation for Autonomous Agents and Multiagent
Systems (www.ifaamas.org). All rights reserved.

tinue using previous methods such as maximizing entropy [6] is to
simply pick the trajectory that is most likely given the sequence of
observations. However, it is easy to see that this method may not
be appropriate when noise levels are considerable. Thus, we need a
principled way of performing IRL with noise.

2.1 Hidden MDP
As a first step, we generalize the model that the learner ascribes

to the expert in order to include observations. Kitani et al. [7] intro-
duced the hidden MDP (hMDP) model, as depicted in Fig. 1 using
an influence diagram, which is appropriate here. While observations
in the previous hMDP were influenced by the state only, we extend
the model so that both state and action at a time step affect the
observation in that step. The conditional probability table of the
observation node in each time slice of the network is the same, and
it represents the observation model.

Figure 1: In hMDP, the state and action are hidden from the
learner but an observation of the state and action is available to
the learner at each time step.

2.2 Formulation
Let the learner receive a sequence of observations of length N ,

~ω := (o1, o2, ..., oN ), instead of the expert’s trajectory τ . A stochas-
tic observation model, Pr(o|s, a) (all occurring in the same deci-
sion epoch), that captures its sensor noise is available to the learner.
Note that Pr(~ω|τ) =

∏N
i=1 Pr(o

i|〈s, a〉i) using chain rule and
the conditional independence of an observation given the current
state-action pair from other past pairs.

One may utilize the observation model to pick the most likely
state-action pair at time step i while disregarding information from
previous time steps. However, this method is naive because it dis-
regards the effect of the transition function and the policy of the
expert in getting information about the expert’s true trajectory. In
the context of these limitations, we present a revised formulation of
the maximum entropy IRL that takes an expectation jointly over the
trajectories (hidden data) and the sequence of observations. As we
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show below, this allows considering the effect of the transition func-
tion and expert’s policy in constructing a distribution over possible
trajectories. Let ~ω ∈ Ω, then

max
∆

−∑
~ω,τ

Pr(~ω, τ) logPr(~ω, τ)


subject to

∑
~ω,τ

Pr(~ω, τ) = 1

∑
~ω∈Ω

∑
τ∈T

Pr(~ω, τ)
∑
〈s,a〉∈τ

φk(s, a) = φ̂k ∀k (1)

Here, the joint probability is obtained as,

Pr(~ω, τ) = Pr(~ω|τ)Pr(τ) (2)

where, Pr(τ) = Pr(s1)
∏N
i=2 Pr(ai−1|si−1) Pr(si|si−1, ai−1).

Let Ω̃ be the set of received observation sequences of length N in
the demonstration. The empirical feature expectation φ̂k is now
obtained as,

φ̂k =
1

|Ω̃|

∑
~ω∈Ω̃

∑
τ∈T

Pr(τ |~ω)
∑
〈s,a〉∈τ

φk(s, a)

Of course, Pr(τ |~ω) ∝ Pr(~ω, τ), and latter is given by Eq. 2.
We take the logical next step of applying Lagrangian relaxation

to the nonlinear program of (1), by bringing the parameterized con-
straints into the objective function, which gives L(Pr(~ω, τ), θ, η).
Optimizing this Lagrangian for Pr(~ω, τ) gives us,

∂L
∂Pr(~ω, τ)

= −log Pr(~ω, τ)− 1 +
K∑
k=1

θk
∑
〈s,a〉∈τ

φk(s, a) +
K∑
k=1

θk


∑
~ω∈Ω̃

P̃ r(~ω)

∑
τ ′∈T

[ ∑
〈s,a〉∈τ ′

φk(s, a)−
∑

〈s,a〉∈τ
φk(s, a)

]
Pr(~ω′, τ ′)

Pr(~ω)2
)


+ η

where ~ω′ and τ ′ are some other observation sequence and trajectory.
Rather than setting the above complicated partial derivative to 0 and
finding the optima, Wang et al. [8] and recently Bogert et al. [5],
utilize its approximation:

∂L
∂Pr(~ω, τ)

≈ −log Pr(~ω, τ)− 1 +

K∑
k=1

θk
∑

(s,a)∈τ

φk(s, a) + η

(3)

Setting Eq. 3 to zero gives us a log linear approximation,

Pr(~ω, τ) ≈ e

K∑
k=1

θk
∑

〈s,a〉∈τ
φk(s,a)

η(θ)
(4)

where η(θ) is the normalizing constant. By plugging the above
result into L(Pr(~ω, τ), θ, η) we obtain the dual:

Ldual(θ) = log η(θ)− 1

|Ω̃|

∑K

k=1
θk

∑
~ω∈Ω̃

∑
τ∈T

Pr(τ |~ω)

×
∑

(s,a)∈τ
φk(s, a) (5)

2.3 Expectation-Maximization
Because of the presence of the conditional Pr(τ |~ω) in Eq. 5,

we cannot use the usual exponentiated gradient descent to obtain
the optimal value of the parameter vector. Analogously to Bogert
et al., which extends Wang et al. [8], we develop an iterative EM
approach for solving the above dual Lagrangian. As the first step
toward the EM, we begin with establishing the log likelihood of
feature weights.

LL(θ|Ω̃) = log
∏

~ω∈Ω̃
Pr(~ω;θ)P̃ r(~ω)

=
∑

~ω∈Ω̃
P̃ r(~ω) logPr(~ω;θ)

∑
τ∈T

Pr(τ |~ω;θ)

=
∑

~ω∈Ω
P̃ r(~ω)

∑
τ∈T

Pr(τ |~ω; θ)logPr(~ω;θ)

Rewriting Pr(~ω;θ) as Pr(~ω,τ ;θ)
Pr(τ |~ω;θ)

in the last step we get,

LL(θ|Ω̃) =
∑
~ω∈Ω̃

P̃ r(~ω)
∑
τ∈T

Pr(τ |~ω;θ) log
Pr(~ω, τ ;θ)

Pr(τ |~ω;θ)

=
∑
~ω∈Ω

P̃ r(~ω)
∑
τ∈T

Pr(τ |~ω;θ)(log Pr(~ω, τ ;θ)

− log Pr(τ |~ω;θ)) (6)

Reformulating the likelihood as Q(θ,θi) + C(θ,θi) where,

Q(θ,θi) =
∑
~ω∈Ω̃

P̃ r(~ω)
∑
τ∈T

Pr(τ |~ω;θi) logPr(~ω, τ ;θ)) (7)

and,

C(θ,θi) = −
∑
~ω∈Ω̃

P̃ r(~ω)
∑
τ∈T

Pr(τ |~ω;θi) log(Pr(τ |~ω;θ))

Replacing Pr(~ω, τ ;θ) in Eq. 7 with Eq. 4, we obtain,

Q(θ,θi) = − log η(θ)− 1

|Ω̃|

K∑
k=1

θk

+
∑
~ω∈Ω̃

∑
τ∈T

Pr(τ |~ω; θi)
∑
〈s,a〉∈τ

φk(s, a)) (8)

Notice that the Q function is the negative of the dual presented
in Eq. 5. Therefore, maximizing the Q function is equivalent to
minimizing the dual. Using these facts, we may reformulate the
original problem stated in (1) as follows.

In the E-step we use the parameter θi from the previous iteration to
calculate the feature expectation of the expert.

φ̂
τ |~ω,i
k =

∑
~ω∈Ω̃

P̃ r(~ω)
∑
τ∈T

Pr(τ |~ω;θi)
∑
〈s,a〉∈τ

φk(s, a) (9)

where Pr(τ |~ω;θi) ∝ Pr(τ, ~ω;θi) computed as in Eq. 4.

In the M-Step, we utilize the empirical feature expectation that has
been calculated in the E-Step to obtain θ. Specifically, the computed
φ̂
τ |~ω,i
k forms the right-hand side of the constraint of the program

given in (1). The resulting program is easier to solve because the
available feature expectation value is treated as a constant, thereby
considerably simplifying the Lagrangian relaxation.

We iterate over the E- and M-steps until the parameter vector
θ stops changing. Notice that the E-step involves finding the dis-
tribution over each trajectory for each observed sequence. This is
computationally expensive because the space of all trajectories is
large and grows exponentially in the length.
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