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ABSTRACT
Probabilistic conditional preference networks (PCP-nets) are a gen-
eralization of CP-nets for compactly representing preferences over
multi-attribute domains. We introduce the notion of a loss func-
tion whose inputs are a CP-net and an outcome. We focus on the
optimal decision-making problem for acyclic and cyclic CP-nets
and PCP-nets. Our motivations are three-fold: (1) our framework
naturally extends to allow reasoning on cyclic CP-nets and PCP-
nets for full generality, (2) in the multi-agent setting, we place no
restriction on agents’ preferences structure and voting rules under
our framework have desirable axiomatic properties, (3) we gener-
alize several previous approaches to finding the optimum outcome
in individual and multi-agent contexts. We characterize the compu-
tational complexity of computing the loss of a given outcome and
computing the outcomes with minimum loss for three natural loss
functions: 0-1 loss, neighborhood loss, and global loss. While the
optimal decision is NP-hard to compute for many cases, we give a
polynomial-time algorithm for computing the optimal decision for
tree-structured PCP-nets and profiles of CP-net preferences with a
shared dependency structure, w.r.t. neighborhood loss function.

1. INTRODUCTION
Many decision-making problems involve choosing an optimal

outcome from a multi-attribute domain where the alternatives are
characterized by p ≥ 1 variables and each variable corresponds to
an attribute of the outcome. In combinatorial voting there are p is-
sues, and the alternatives correspond to the decisions made on each
issue. The goal is to make an optimal (joint) decision for an agent
or a group of agents with preferences over the alternatives. How-
ever, since the number of outcomes in a multi-attribute domain is
exponentially large, it is impractical for the agents to express pref-
erences as a full ranking over all outcomes.

A popular practical solution is to use a compact preference lan-
guage to represent agents’ preferences. Perhaps the most com-
monly used language for agents to represent their preferences over
multi-attribute domains are CP-nets (conditional preference net-
works) [2]. In a CP-net, an agent can specify her local preferences
over any attribute given the values of some other attributes (called
its parents). Agents’ preferences are expressed in terms of ceteris
paribus statements of the form: “I prefer red wine to white wine,
ceteris paribus, given that meat is served as the main dish.”
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For a single agent whose preferences are represented by a CP-
net, a natural optimization objective is to identify undominated out-
comes [3]. Informally, an outcome is undominated if no other out-
come is preferred over it. The problem of computing undominated
outcomes is well studied in the CP-net literature. For acyclic CP-
nets (CP-nets with acyclic dependency graphs), an undominated
outcome always exists and is unique [2]. However, when we allow
cyclic dependencies, undominated outcomes can be hard to com-
pute [3, 9].

Recently, probabilistic conditional preference networks (PCP-
nets) have been introduced as a natural generalization of CP-nets [1,
7]. A PCP-net can be used to represent a single agent’s uncer-
tain preferences over a set of CP-nets, or a preference profile of
multiple CP-nets [8]. Given an acyclic PCP-net, [7] provides a
polynomial-time algorithm for computing the outcome that is un-
dominated with the highest probability. Despite this promising first
step in decision making with PCP-nets, the optimal decision mak-
ing problem for PCP-nets remains largely open. In particular, is
there any other sensible and more quantitative optimality criterion
beyond “being undominated” that we may consider for CP-nets as
well as PCP-nets? If so, how can we compute them? We take a
decision-theoretic approach by modeling the optimality of an out-
come by a loss function, whose inputs are an outcome (an assign-
ment of values to attributes) and a single (acyclic or cyclic) CP-net.

However, much of the existing work [11, 20, 18, 14, 19, 15, 5,
12] focuses on certain special cases with rather severe restrictions
on agents’ preferences such as allowing only profiles with acyclic
CP-nets, and dependencies that are compatible with a common or-
der on the issues (O-legality). We design a new class of voting rules
under our loss minimization framework that are characterized by a
loss function which takes as input any profile of CP-net preferences
and outputs a set of loss minimizing outcomes.

2. PRELIMINARIES
Let I = {X1, ..., Xp} be a finite set of p variables with finite

domains D(Xi). Let L(D(Xi)) denote the set of all linear orders
over D(Xi). For ease of presentation, we will assume that all vari-
ables are binary in this paper. An assignment (or outcome) ~d is a
vector in Πi≤pD(Xi). We use di to denote the value of Xi in ~d,
and d−i to denote the values of all other variables.

DEFINITION 1. [2] A CP-net C over the set of variables I is
given by two components (i) a directed graph G = (I, E) called
the dependency graph, and (ii) for each variable Xi, there is a
conditional preference table CPT (Xi) that contains a linear or-
der �i

C,~u over D(Xi) for each valuation ~u of the parents of Xi

(denoted Pa(Xi)) in G.
When G is (a)cyclic we say that C is a (a)cyclic CP-net.
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The partial order �C induced by a CP-net C over the set
of all possible assignments Πi≤pD(Xi) is the transitive closure
of {(ai, ~u, ~z) � (bi, ~u, ~z)} : i ≤ p; ai, bi ∈ D(Xi); ~u ∈
D(Pa(Xi)); ~z ∈ D(−(Pa(Xi) ∪ {Xi}))}. A CP-net is said to
be consistent if �C is asymmetric. Acyclic CP-nets are consistent
but cyclic CP-nets are not necessarily consistent.

DEFINITION 2 (WEAK AND STRICT DOMINANCE). An as-
signment ~a weakly dominates~b if ~a �C

~b. An assignment ~a strictly
dominates~b if ~a �C

~b and~b �C ~a.

DEFINITION 3. A PCP-net [1, 7] Q over the set of variables
I is given by (i) a directed graph G = (I, E), and (ii) for each
variable Xi, there is a probabilistic conditional preference table
PCPT (Xi) that contains a probability distribution f i

Q,~u over
L(D(Xi)) for each valuation ~u of the parents of Xi in G.

Loss Functions. In this paper we will focus on three loss functions.
Each loss function L takes a CP-net C and an assignment ~d as
inputs and outputs a real number L(C, ~d).

DEFINITION 4. The 0-1 loss function is defined as

L0−1(C, ~d) =

{
1 if there exists ~d′ such that ~d′ �C

~d,

0 otherwise

That is, the 0-1 loss function takes the value 0 if and only if ~d is not
weakly dominated by any other assignment in C.

DEFINITION 5. The neighborhood loss function is defined as
LN (C, ~d) = |{~d′ : ∃i : d′i �C di and d′−i = d−i}|.

That is, the neighborhood loss of ~d in C is the number of ~d’s neigh-
bors that can be obtained by a single improving flip from ~d in C.

DEFINITION 6. The global loss function is defined as
LG(C, ~d) = |{~d′ : ~d′ �C

~d, and ~d �C
~d′|.

That is, the global loss of ~d in C is the total number of assignments
that strictly dominate ~d in C.

We now formally define the decision problem of computing the
loss of an assignment w.r.t. a loss function.

DEFINITION 7 (L-LOSS). Given a PCP-net Q, a loss func-
tion L, a decision ~d, and a number k ∈ R, in L-LOSS we are asked
to compute whether L(Q, ~d) ≤ k.

Optimal Decision Problem. We define the decision problem of
computing optimal assignments L-OPTDECISION as follows.

DEFINITION 8 (L-OPTDECISION). Given a PCP-net Q, a
loss function L, and a number k ∈ R, does there exist an assign-
ment ~d such that L(Q, ~d) ≤ k?

Loss Minimizing Voting Rules. We develop a new class of voting
rules characterized by a loss function. Given a loss function L,
we define the voting rule rL to be the function that maps a CP-net
profile to a decision that minimizes the total loss i.e. rL(P ) =

arg min~d L(P, ~d), where L(P, ~d) =
∑n

i=1 L(Pi, ~d). We define
the decision problem of computing optimal joint decisions under
this setting as L-OPTJOINTDECISION:

DEFINITION 9 (L-OPTJOINTDECISION). Given a profile P ,
a collection of CP-net preferences, a loss function L, and a number
k ∈ R, does there exist an assignment ~d such that L(P, ~d) ≤ k?

3. DISCUSSION OF MAIN RESULTS
One might be tempted to believe that PCP-nets are so compli-

cated that all problems are hard to compute. This is not true. As
we can see in Table 1, computing LOSS w.r.t. L0−1 and LN can be
done in polynomial time for PCP-nets. Another false belief could
be that for the same loss function, LOSS is easier than OPTDECI-
SION (or vice versa). Neither is true by comparing Table 2(a) and
Table 1. LG-LOSS is coNP-hard but LG-OPTDECISION is in P
for acyclic CP-nets. LN -LOSS is in P but LN -OPTDECISION is
NP-complete for cyclic CP-nets. While it is hard to compute the
optimal outcomes w.r.t. all three loss functions (Table 2), for tree-
structured PCP-nets, we have a polynomial-time algorithm to com-
pute the optimal outcome. Similarly, while it is, hard to compute
the optimal outcomes w.r.t. L0−1 for acyclic PCP-nets, a simple
polynomial time algorithm allows us to compute the optimal out-
come for a profile of acyclic CP-nets. Finally, every voting rule
under our framework satisfies anonymity, category-wise neutrality,
consistency and weak monotonicity.

Table 1: Complexity of L-LOSS w.r.t. acyclic and cyclic CP-nets. The
complexity remains unchanged for the case of acyclic and cyclic PCP-nets.

Loss fn. Acyclic Cyclic
L0−1 P (trivial) P
LN P
LG coNPH coNPH

Table 2: Complexity of L-OPTDECISION w.r.t. acyclic and cyclic CP-nets
and PCP-nets.

Loss fn. CP-nets PCP-nets
Acyclic Cyclic Acyclic Cyclic

L0,1

P [2] NPC NPC, P for
trees [7]

NPC [7]

LN NPH, P for
trees

NPH

LG P coNPH

Table 3: Complexity of L-OPTJOINTDECISION w.r.t. profiles of acyclic
and cyclic CP-nets.

Loss fn. Acyclic Cyclic
L0−1 P NPC
LN NPC, P for shared tree-structured dependency graph.
LG coNPH
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