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ABSTRACT
With quickly progressing and increasingly complex robot control
and reasoning systems, a large gap of practical real-world knowl-
edge for robots needs to be filled. While two prominent directions
exist, namely designing all knowledge manually, or completely
bootstrapping it, we emphasize the combination of both: Starting
with simple heuristics, we let robots explore a task, record mem-
ories, interpret their findings, and improve their own multi-modal
understanding to better their own performance. In this work, we
present a software system for autonomous robots that allows them
to learn task nuances, and make informed decisions based on expe-
rience. They store these comprehensive probabilistic models of any
task they perform in a robot knowledge service, benefiting from a
shared knowledge base and centralized, well-maintained reasoning
algorithms.
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1. MOTIVATION
Enabling robots to interpret abstract task descriptions has a num-

ber of advantages: (1) The same task description works for a wide
variety of situations, (2) nested tasks can share action primitives,
resulting in synergies between different activities, and (3) generic
task descriptions can be augmented with concrete specializations
of a task if – even partial – explicit knowledge about this task is
available.

To make such abstract task reasoning useful and not introduce
exponential amounts of effort for a programmer, the reasoning must
be extendable beyond manually specifying new types of knowl-
edge. One existing source for new knowledge are robot episodic
memories, which contain both, relevant and (large amounts of) ir-
relevant data about the tasks a robot performed. Finding the cor-
rect correlations from these memories and transforming them into
actionable parameters for an autonomous robot is hard and effort-
prone in itself due to the sheer amount of data a robot produces,
and the often non-obvious relations between intentions and effects.

To ease this process, we propose a novel approach for multi-
modal data analysis on the basis of robot episodic memories. In
particular, we concentrate on non-deterministic environments and
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Figure 1: Processing pipeline to generate prediction functions from raw
robot experience data. Green shows our approach, compared to the
ARPlaces approach in orange.

deduce multivariate, mixed Gaussian distributions for parameter
ranges to help an autonomous robot in making informed decisions.

2. OVERVIEW
We demonstrate our multi-modal, experience-backed learning

process on the example of mobile manipulation, and more specifi-
cally pick and place tasks in a kitchen environment. The processing
pipeline of our approach is shown in Figure 1. More concretely, a
PR2 robot parametrizes its own choice of where to position itself
for picking up objects based on its own experience data, processed
using a Gaussian regression technique.

A similar goal, but with a completely different approach, was
pursued by Stulp et al. [1]. They used a Support Vector Machine
(SVM) based learning approach to generate Point Distribution Mod-
els (PDMs), and finally generate a probability map of the regions
well-suited for grasping using a Monte Carlo Simulation. We com-
pare our approach to theirs, and show how our approach extends
the type and dimensionality of source data that can be used, at the
cost of precision.

One of the main advancements of this work over previous ap-
proaches is the increase in search space dimensions. While pre-
viously the only features used to determine whether a position to
perform, say, a grasp action was well-chosen were the numerical
relative distances in x and y direction, we introduce Multivariate
Gaussian distributions over an arbitrary number of task parame-
ters. Our multi-modal data analysis covers both, real and nominal
values: Real values are measured based on their actual numerical
value, while nominal values are assigned an index number in their
category. This approach is well-formed, as nominal values are not
interpolated while querying for probabilities, but their exact indices
are used.

We have applied the presented parameterization learning frame-
work to a scenario in which a PR2 robot performs pick and place
tasks in a kitchen environment. It picked up objects from three
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Figure 2: Learned probability distributions for successful grasping, de-
pending on relative distance between robot and object. The three plots show
regions of high success probability for grasping the objects on the table near
them, as a density function f := f (relative-position, relative-orientation);
chosen relative orientations from left to right: -230Â°, -90Â°, and +300Â°.
The pure experience data points are shown in the overarching figure.

tables, multiple times. A manually defined heuristic based on Eu-
clidean robot/object distance was used to collect the training data.

Figure 2 shows the extracted feature points (green) as well as the
resulting MMVG distributions (gradient heatmaps) from 40 pick
trials. The distributions reflect the probability of success in the
given task based on the relative position of the robot w.r.t. the ob-
ject, as well as their relative orientation to one another. It is impor-
tant to note here that the learned model does not include character-
istics about the environment itself; the coordinates used for train-
ing and results retrieved afterwards are purely relative. From left to
right, the relative orientations between robot and object in the fig-
ures are -230Â°, -90Â° and +300Â°. Except for the rightmost sit-
uation, the resulting distributions reflect the source data very well.
Our assumption is that the number of data points (given three in-
dependent variables, x, y, and θ ) in that region is too low (and
scattered too much) to generate a properly aligned distribution. A
statistically significant amount of source data would mitigate this
problem. Besides this, the distributions give a very good prior of
where to stand in order to grasp an object, before falling back to the
manually designed heuristic.

The episodic memories used in our evaluation were recorded us-
ing the robot memory system SemRec [2] and include both, high-
volume low-level sensor data and low-volume high-level semantic
plan data. Therein included are object descriptions, exact robot mo-
tions, grasp details, and kinematic poses at all times. These are the
source for our training data.

The maximum expected cluster count depends on the task per-
formed, the size of the environment, and the number of experiences
involved. It is safe to say that the number of involved objects (in
our example case) gives a hint towards that maximum. We decided
to use ten clusters at maximum, while having five objects involved
in the pick and place task. Most of the time, this would result in
two to three clusters.

3. RELATED WORK
While some cognitive architectures, such as SOAR [3], 3T [4],

and ICARUS [5] use planning to solve problems for which an agent
knows no solution yet, the usefulness of task planning for agents
operating in realistic environments has often been called into ques-
tion (see [6] for an overview of some history behind a few cogni-
tive architectures). The main arguments against planning are that
it is an expensive operation that commits an agent to following a
plan, rather than reacting quickly and opportunistically to changes
in the environment. Also, classical planning is not well suited to
handle situations of incomplete information, stochastic environ-
ments and action effects, and quantitative specifications and sub-
symbolic, procedural knowledge such as controller parametriza-
tions; although some extensions of PDDL are meant to address this,
the corresponding implementations in actual planners are far from
mature.

More complex approaches to learning new general plans can be
found in explanation-based learning [7], which also attempts to
learn quantitative relationships between the actions an agent per-
forms and the state variables describing the world, and the ARPlaces
approach [1], which learns probabilities of task success based on
parameters such as relative locations of the robot and the objects it
needs to grasp. Both explanation-based learning and ARPlaces are
particularly interesting in that they consider the sub-symbolic level
of action parameters and effects, rather than STRIPS-style abstrac-
tions. STRIPS abstractions, while easy to represent propositionally,
often fail to capture nuances of environments and actions, such as
the existence of a place from which several objects can be grabbed
which obviates the need for several navigation actions [1]. Prob-
abilistic representations of locations, in terms of their effects on
robots’ actions, can then be used in larger knowledge-based sys-
tems to parametrize vague actions [8].

4. CONCLUSION
We have demonstrated our framework in the context of mobile

manipulation with a PR2 robot performing pick and place actions
in a kitchen environment. We compared our approach to a prede-
cessor technique, ARPlaces, and extended the possible dimension-
ality of the source data compared to that approach. The outcome of
our work fully satisfies its expectations by allowing robots to learn
arbitrary task parameter distributions from heuristics.

Among possible extensions to the current system, we see auto-
mated online learning; as of now, memories of episodes need to be
concluded before they can act as training data. Also, the dimension-
ality up until which learning stays feasible (in terms of amount of
training samples) needs to be explored. We have taken into account
three dimensions here, but we can easily find many more that seem
to be useful (left/right arm used for grasping, other collision objects
in the vicinity, etc.). Given that experience data includes both posi-
tive and negative task outcomes, we consider adding an additional,
negative probability element based on failed task attempts. This
would rule out regions that are especially bad for the task at hand
and allow the robot to form a more diverse knowledge of non-linear
parametrizations. Finally, the learned data needs to be tested across
multiple robots/platforms of the same/different morphology to see
how well the learned distributions generalize.
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